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ABSTRACT: The present paper deals with the determination of quasi static thermal stresses in a limiting thick
circular plate with internal heat generation subjected to axisymmetric arbitrary heat flux on upper and lower
surface and the fixed circular edge is thermally insulated. Initially the plate is at zero temperature. Here we
modify Kulkarni [1]and compute the effects of internal heat generation and axisymmetric heat supply in terms
of stresses along radial direction. The governing heat conduction equation has been solved by the method of
integral transform technique. The results are obtained in a series form in terms of Bessel’s functions. The results
for temperature change, displacement and stresses have been computed numerically and illustrated graphically.
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I. INTRODUCTION

During the last century the theory of elasticity has found of considerable applications in the solution of
engineering problems. Thermoelasticity contains the generalized theory of heat conductions, thermal stresses. A
considerable progress in the field of air-craft and machine structures, mainly with gas and steam turbines and the
emergence of new topics in chemical engineering have given rise to numerous problems in which thermal
stresses play an important role and frequently even a primary role. Nowacki [2] has determined the temperature
distribution on the upper face, with zero temperature on the lower face and the circular edge thermally insulated.
Bhongade and Durge [3] studied an inverse steady state thermal stresses in a limiting thick circular plate with
internal heat generation.

Most recently Bhongade and Durge [4] considered thick circular plate and discuss the effect of Michell
function on steady state behavior of thick circular plate, now here we consider a thick circular plate with
internal heat generation subjected to axisymmetric arbitrary heat flux on upper and lower surface and the fixed
circular edge is thermally insulated. Initially the plate is at zero temperature. Here we modify Kulkarni [1] and
compute the effects of internal heat generation and axisymmetric heat supply on the limiting thick circular plate
in terms of stresses along radial direction. The governing heat conduction equation has been solved by the
method of integral transform technique. The results are obtained in a series form in terms of Bessel’s functions.
The results for temperature change, displacement and stresses have been computed numerically and illustrated
graphically. A mathematical model has been constructed with the help of numerical illustration by considering
steel (0.5% carbon) limiting thick circular plate. No one previously studied such type of problem. This is new
contribution to the field.

The direct problem is very important in view of its relevance to various industrial mechanics subjected
to heating such as the main shaft of lathe, turbines and the role of rolling mill, base of furnace of boiler of a
thermal power plant and gas power plant.

Il. FORMULATION OF THE PROBLEM

Consider a limiting thick circular plate of radius a and thickness 2h defined by 0 = r = a.—h =z = h.
Initially the plate is at zero temperature. Let the plate be subjected to a axisymmetric arbitrary heat flux
+f(r.t) prescribed over the upper surface (z = k) and the lower surface (z = —h). The fixed circular
edge (r = a) is thermally insulated. Assume a limiting thick circular plate with internal heat generation is free
from traction. Under these prescribed conditions, the quasi static transient thermal stresses are required to be
determined.
The differential equation governing the displacement potential function @(r. =t is given in [5] as
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where K is the restraint coefficient and temperature change 7 =T — T; T; is initial temperature.
Displacement function g is known as Goodier’s thermoelastic displacement potential.
The temperature of the plate at time t satisfying the heat conduction equation as follows,

gr rer T g _ 1T
ar? " r Er+&'x:+ E oaat (2)
with the boundary conditions
I'= +f(rntlatz=1th, 0=r=a 3)
T =Oatr=g-hszsh 4)
glr.z.t) = 8lr —nlsin(fpz) 1 —e )L 0<n <a (5)
and the initial condition
T=0att=0 (6)

where e is the thermal diffusivity of the material of the plate, k is the thermal conductivity of the material of
the plate, q is the internal heat generation and &(r} is well known dirac delta function of argument .
The Michell’s function M must satisfy

VIVIM =0 )
where
” a2 148 a2
V=mtiat (8)

The components of the stresses are represented by the thermoelastic displacement potential ¢ and
Michell’s function M as

o = 26 {22~ Ko+ Z[ovin - 2]} )
oge = 26 {* 22— kr+ Z[ovim -2 2]} (10)
o= 26{22 — k4 2]z - wvim - 2X]} (12)
e 5. = 95{‘;:‘-" + 2[a-vyvim - ‘;—“] J (12)
re - drdz ar dz=2

where G and v are the shear modulus and Poisson’s ratio respectively.
For traction free surface stress functions
Gy =0y =0atz=nh (13)
Equations (1) to (13) constitute mathematical formulation of the problem.

Il. SOLUTION
To obtain the expression for temperature T (r, z, t), we introduce the finite Hankel transform
over the variable r and its inverse transform defined by [6] as

T(Bp z.t) = fnc r Ky Bm.v) T(r.z,£) dr (14)
T(r.zt) = Y= _ Ky(Bp.v) T8y z.t) (15)
_ YT h(Bmn)
where Ky (. ) = e b (16)
[y are roots of transcendental equation
J1(Bma) = 0 (17)
where is Bessel function of the first kind of order n.

On applying the finite Hankel transform defined in the Eq. (14), its inverse transform defined in (15)
and applying Laplace transform and its inverse by residue method successively to the Eg. (2), one obtains the
expression for temperature as
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Since initial temperature T; = 0, t =T - T;

=T (19)
Michell’s function M
Now let’s assume that Michell’s function M, which satisfy Eq.(7) is given by

M= (ZK) T S 2 )

% [Bpy sin h(fpz) + Coppy Bz cos R(f, 2} ] (20)
where By, and Oy are arbitrary functions, which can be determined by using condition (13).
Goodiers Thermoelastic Displacement Potential g, . t]

Assuming the displacement function @(r. z. t} which satisfies Eq. (1) as
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Now using Egs. (18), (20) and (21) in Egs. (9), (10), (11) and (12), one obtains the expressions for stresses
respectively as
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In order to satisfy condition Eq. (13), solving Egs. (22) and (25) for By, and C one obtains
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IV. SPECIAL CASE AND NUMERICAL CALCULATIONS
Setting
firt) = 8r—mll—eh
a = 2m, h =0.2000000000000000000001m, 1, =1m.t = 2 sec.
where &(r) is well known diract delta function of argument r.
Material Properties
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The numerical calculation has been carried out for steel (0.5% carbon) limiting thick circular plate with
the material properties defined as

Thermal diffusivity @ = 14.74% 1078 m?s %,

Specific heat €, = 465 ] /kg.

Thermal conductivity k = 53.6 W/m K,
Poisson ratio ¢ = 0.33,
Young’s modulus E =130 & pa,
Lame constant 4 = 26.67,
Coefficient of linear thermal expansion a, = 13 x 107% 1,-’5{

Roots of Transcendental Equation

The 8, =1.9159, 8, = 3.5078, f; = 5.0867, §, = 6.6618, B = 8.2353, f; = 9.8079 are the roots
of transcendental equation J,(fnal} = 0. The numerical calculation and the graph has been carried out with the
help of mathematical software Mat lab.

V. DISCUSSION
In this paper a limiting thick circular plate with internal heat generation is considered and determined
the expressions for temperature, displacement and stresses. We compute the effects of internal heat generation
and axisymmetric heat supply in terms of stresses along radial direction by substituting g = 0 in Egs. (18), (21),
(22), (23), (24), (25), (26) and (27). We compare the results for g =0 and g # 0. As a special case
mathematical model is constructed by considering steel (0.5% carbon) limiting thick circular plate with the
material properties specified above.
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Fig. 1 Temperature T for (g="0). Fig. 2 Temperature T for (g=0).
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Fig. 3 The displacement ¢ for (g= 0).
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Fig. 9 Axial stresses % for (g =0). Fig. 10 Axial stresses % for (g #0).
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Fig. 11 Stress ﬁmcdon% for (g=0). Fig. 12 Stress function % for (g 0).

From fig. 1 and 2, it is observed that due to internal heat generation in limiting thick circular plate
temperature increases along radial direction. Axisymmetric heat supply shows a negligible effect at the point of
heat supply along radial direction.

From fig. 3 and 4, it is observed that the internal heat generation and axisymmetric heat supply shows a
negligible effect on displacement in limiting thick circular plate at the point of heat supply along radial
direction.

From fig. 5 and 6, it is observed that the internal heat generation and axisymmetric heat supply
develops tensile radial stress f towards the lateral surface of limiting thick circular plate along radial direction.

From fig. 7 and 8, it is observed that the internal heat generation and axisymmetric heat supply develops tensile
angular stress f towards the lateral surface of limiting thick circular plate along radial direction.

From fig. 9 and 10, it is observed that the internal heat generation and axisymmetric heat supply
. . Tz .. . . . . .
develops tensile axial stress a towards the lateral surface of limiting thick circular plate along radial direction.

From fig. 11 and 12, it is observed that the internal heat generation and axisymmetric heat supply develops
P Trx .. . . . . .
infinitesimal stress 'l towards the lateral surface of limiting thick circular plate along radial direction.
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VI. CONCLUSION
We can conclude that due to internal heat generation in limiting thick circular plate temperature
increases along radial direction. Axisymmetric heat supply shows a negligible effect on temperature,
displacement at the point of heat supply in limiting thick circular plate along radial direction. The internal heat
generation and axisymmetric heat supply develops tensile radial stress ‘Tﬁi , angular stress %’" the axial stress %

and the stress if towards the lateral surface of limiting thick circular plate along radial direction.

The results obtained here are useful in engineering problems particularly in the determination of state
of stress in a limiting thick circular plate and base of furnace of boiler of a thermal power plant and gas power
plant.
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