N-Homeomorphism and N^{*}-Homeomorphism in supra Topological spaces

L.Vidyarani and Dr.M.Vigneshwaran

Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, TN, INDIA.

ABSTRACT: In this paper, we introduce the concept of strongly supra N-continuous function and perfectly supra N-continuous function and studied its basic properties. Also we introduce the concept of supra N-Homeomorphism and supra N^{*}- Homeomorphism. We obtain the basic properties and their relationship with supra N-closed maps, supra N-continuous maps and supra N-irresolute maps in supra topological spaces.

KEYWORDS: supra N-Homeomorphism, supra N^{*}- Homeomorphism, strongly supra N-continuous function, perfectly supra N-continuous functions.

I. INTRODUCTION

In 1983, A.S.Mashhour et al [6] introduced the supra topological spaces and studied, continuous functions and s^{*} continuous functions. R.Devi[2] have studied generalization of homeomorphisms and also have introduced α -homeomorphisms in topological spaces.

In this paper, we introduce the concept of strongly supra N-continuous function and perfectly supra N-continuous function and studied its basic properties. Also we introduce the concept of supra N-homeomorphism and supra N^* -Homeomorphism in supra topological spaces.

II. PRELIMINARIES

Definition 2.1[6]

A subfamily μ of X is said to be supra topology on X if i) $X, \phi \in \mu$

ii)If $A_i \in \mu \ \forall i \in j$ then $\bigcup A_i \in \mu$. (X, μ) is called supra topological space.

The element of μ are called supra open sets in (X, μ) and the complement of supra open set is called supra closed sets and it is denoted by μ^{c} .

Definition 2.2[6]

The supra closure of a set A is denoted by $cl^{\mu}(A)$, and is defined as supra $cl(A) = \cap \{B : B \text{ is supra closed and } A \subseteq B \}$.

The supra interior of a set A is denoted by $int^{\mu}(A)$, and is defined as $supra int(A) = \bigcup \{B: B \text{ is supra open and } A \supseteq B \}$.

Definition 2.3[6]

Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with τ , if $\tau \subseteq \mu$.

Definition 2.4[5]

Let (X, μ) be a supra topological space. A set A of X is called supra semi- open set, if $A \subseteq cl^{\mu}(int^{\mu}(A))$. The complement of supra semi-open set is supra semi-closed set.

Definition 2.5[4]

Let (X, μ) be a supra topological space. A set A of X is called supra α -open set, if $A \subset int^{\mu}(cl^{\mu}(int^{\mu}(A)))$. The complement of supra α -open set is supra α -closed set.

Definition 2.6[7]

Let (X, μ) be a supra topological space. A set A of X is called supra Ω closed set, if $scl^{\mu}(A) \subseteq int^{\mu}(U)$,whenever $A \subseteq U$, U is supra open set. The complement of the supra Ω closed set is supra Ω open set.

Definition 2.7[7]

The supra Ω closure of a set A is denoted by $\Omega cl^{\mu}(A)$, and defined as $\Omega cl^{\mu}(A) = \bigcap \{B: B \text{ is supra } \Omega \text{ closed} \text{ and } A \subseteq B \}.$

The supra Ω interior of a set A is denoted by Ω int^{μ}(A), and defined as Ω int^{μ}(A) = \cup {B: B is supra Ω open and A \supseteq B}.

Definition 2.8

Let (X, μ) be a supra topological space . A set A of X is called supra regular open if $A = int^{\mu}(cl^{\mu}(A))$ and supra regular closed if $A = cl^{\mu}(int^{\mu}(A))$.

Definition 2.9[9]

Let (X, μ) be a supra topological space . A set A of X is called supra N-closed set if $\Omega cl^{\mu}(A) \subseteq U$, whenever $A \subseteq U$, U is supra α open set. The complement of supra N-closed set is supra N-open set.

Definition 2.10[9]

The supra N closure of a set A is denoted by Ncl^{μ} (A), and defined as Ncl^{μ} (A) = \cap {B: B is supra N-closed and A \subseteq B}.

Definition 2.11[9]

Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called supra N-continuous function if $f^{-1}(V)$ is supra N-closed in (X, τ) for every supra closed set V of (Y, σ) .

Definition 2.12[9]

Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called supra N-irresolute if $f^{-1}(V)$ is supra N-closed in (X, τ) for every supra N-closed set V of (Y, σ) .

Definition 2.13[10]

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called supra N-closed map(resp. supra N-open) if for every supra closed(resp. supra open) F of X, f(F) is supra N-closed(resp. supra N-open) in Y.

Definition 2.14[10]

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be almost supra N-closed map if for every supra regular closed F of X, f(F) is supra N-closed in Y.

Definition 2.15[10]

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be strongly supra N-closed map if for every supra N closed F of X, f(F) is supra N-closed in Y.

Definition: 2.16[10]

A supra topological space (X, τ) is T_N^{μ} – space if every supra N-closed set in it is supra closed.

III. SOME FORMS OF SUPRA N-CONTINUOUS FUNCTIONS

Definition 3.1

A map $f:(X, \tau) \to (Y, \sigma)$ is called strongly supra N-continuous function if the inverse image of every supra N-closed set in (Y, σ) is supra closed in (X, τ) .

Definition 3.2

A map $f:(X, \tau) \to (Y, \sigma)$ is called perfectly supra N-continuous function if the inverse image of every supra N-closed set in (Y, σ) is both supra open and supra closed in (X, τ) .

Theorem 3.3

Every perfectly supra N-continuous function is strongly supra N-continuous function.

Proof Let $f:(X, \tau) \to (Y, \sigma)$ be a perfectly N-continuous function. Let V be N-closed set in (Y, σ) . Since f is perfectly N-continuous function $f^{-1}(V)$ is both supra open and supra closed in (X, τ) . Therefore f is strongly supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.4

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}, \sigma = \{Y, \phi, \{a, b\}\}.$

 $f:(X, \tau) \to (Y, \sigma)$ be the function defined by f(a)=b, f(b)=a, f(c)=c. Here f is strongly supra N-continuous but not perfectly supra continuous, since $V=\{b,c\}$ is supra N-closed in Y but $f^{-1}(\{b,c\}) = \{a,c\}$ is supra closed set but not supra open in X.

Theorem 3.5

Let $f:(X, \tau) \to (Y, \sigma)$ be strongly supra N-continuous and $g: (Y, \sigma) \to (Z, v)$ be strongly supra N-continuous then their composition $gof:(X, \tau) \to (Z, v)$ is a strongly supra N-continuous function.

Proof Let V be supra N-closed set in (Z, v). Since g is strongly N-continuous, $g^{-1}(V)$ is supra closed in (Y, σ) . We know that every supra closed set is supra N-closed set, $g^{-1}(V)$ is supra N-closed in (Y, σ) . Since f is strongly N-continuous, $f^{-1}(g^{-1}(V))$ is supra closed in (X, τ) , implies (gof)(V) is supra closed in (X, τ) . Therefore gof is strongly N-continuous.

Example 3.6

Let $X=Y=Z=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, \{a,b\}, \{b,c\}\}, \sigma=\{Y, \phi, \{a\}, \{b, \{a,b\}, \{b,c\}\}, \upsilon=\{Z, \phi, \{a,b\}, \{b,c\}\}, \iota=\{X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=b, f(b)=a, f(c)=c. g: $(Y, \sigma) \rightarrow (Z, \upsilon)$ be a function defined by g(a)=c, g(b)=b, g(c)=a. Here f and g are strongly supra N-continuous and gof is also strongly supra N-continuous function.

IV. SUPRA N-HOMEOMORPHISM AND SUPRA N^{*}-HOMEOMORPHISM Definition 4.1

A bijection $f:(X, \tau) \to (Y, \sigma)$ is called supra N-Homeomorphism if f is both supra N-continuous function and supra N-closed map(f⁻¹ is N-continuous function).

Definition 4.2

A bijection $f:(X, \tau) \to (Y, \sigma)$ is called supra N^{*}-Homeomorphism if f and f⁻¹ are supra N-irresolute.

Theorem 4.3

Let $f:(X, \tau) \to (Y, \sigma)$ be a bijective supra N-continuous map. Then the following are equivalent

- 1) f is an N-open map
- 2) f is an N-homeomorphism
- 3) f is an N-closed map.

Proof (i) \Rightarrow (ii):If f is a bijective supra N-continuous function, suppose (i) holds. Let V be supra closed in (X, τ) then V^c is supra open in (X, τ). Since f is supra N-open map, f(V^c) is supra N-open in (Y, σ). Hence f(V) is supra N-closed in (Y, σ) implies f⁻¹ is supra N-continuous. Therefore f is an supra N-homeomorphism.

(ii) \Rightarrow (iii):Suppose f is an supra N-Homeomorphism and f is bijective supra N-continuous function then from the definition 4.1, f¹ is supra N-continuous, implies f is supra N-closed map.

(iii) \Rightarrow (i):Suppose f is supra N-closed map. Let V be supra open in (X, τ) then V^c is supra closed in (X, τ) . Since f is supra N-closed map, $f(V^c)$ is supra N-closed in (Y, σ) . Hence f(V) is supra N-open in (Y, σ) . Therefore f is an supra N-open map.

Remark 4.4

The composition of two supra N-Homeomorphism need not be an supra N-Homeomorphism. Since composition of two supra N-continuous function need be supra N-continuous and composition of two supra N-closed map need not be supra N-closed map. It is seen from the following example

Example 4.5

Let $X=Y=Z=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}, \sigma = \{Y, \phi, a\}\}$. $\upsilon=\{Z, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. and g: $(Y, \sigma) \rightarrow (Z, \upsilon)$ be the function defined by g(a)=b, g(b)=c, g(c)=a. Here f and g is supra N-closed map, but its composition is not supra N-closed map, since g of $\{b, c\} = \{a, b\}$ is not supra N-closed in Z. Therefore gof is not an supra N-Homeomorphism

Theorem 4.6

Every supra N-Homeomorphism is supra N-continuous.

Proof It is obvious from the definition 4.1

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.7

Let $X = Y = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}, \sigma = \{Y, \phi, \{a, b\}, \{b, c\}\}.$

 $f:(X, \tau) \to (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is supra N-continuous but not supra N-Homeomorphism, since f^{-1} is not supra N-continuous.

Theorem 4.8

Every supra N^{*}-Homeomorphism is supra N-irresolute.

Proof It is obvious from the definition 4.2

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.9

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$, $\sigma = \{Y, \phi, \{a, b\}, \{b, c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a.Here f is supra N-irresolute but not supra N^{*}-Homeomorphism, since f⁻¹ is not supra N-irresolute.

Theorem 4.10

If $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, v)$ are supra N^{*}-Homeomorphism then the composition gof is also supra N^{*}-Homeomorphism

Proof Let V be a supra N-closed set in (Z, v). Since g is supra N^{*}-Homeomorphism g and g⁻¹ are supra N-irresolute, then $g^{-1}(V)$ is supra N-closed set in (Y, σ) .Now $(gof)^{-1}(V) = f^{-1}(g^{-1}(V))$. Since f is N^{*}-Homeomorphism f and f⁻¹ are supra N-irresolute, then $f^{-1}(g^{-1}(V))$ is supra N-closed set in (X, τ) . Thus gof is supra N-irresolute.

For an supra N-closed set V in (X, τ) . (gof)(V)=g(f(V)).By Hypothesis f(V) is supra N-closed set in (Y, σ) . Thus g(f(V)) is supra N-closed set in (Z, v). Hence $(gof)^{-1}$ is supra N-irresolute. Therefore gof is supra N^{*}-Homeomorphism.

Theorem 4.11

If $f:(X, \tau) \to (Y, \sigma)$ is a supra N^{*}-Homeomorphism then $Ncl(f^{-1}(B))=f^{-1}(Ncl(B))$, for every $B\subseteq Y$ is supra N-closed.

Proof Since f is supra N^{*}-Homeomorphism f and f¹ are supra N-irresolute. Let B be supra N-closed set in (Y, σ) . Since f is supra N-irresolute f¹(B) is supra N-closed set in (X, τ) . Since B is supra N-closed set, B=Ncl(B). Therefore f¹(Ncl(B)) is supra N-closed set in (X, τ) . Since f¹(B) is supra N-closed set, Ncl(f¹(B))=f¹(B) is supra N-closed in (X, τ) . Therefore Ncl (f¹(B))= f¹(Ncl(B)) is supra N-closed set in (X, τ) .

Theorem 4.12

If $f:(X, \tau) \to (Y, \sigma)$ is a supra N^{*}-Homeomorphism then Ncl(f(B))=f(Ncl(B)), for every B \subseteq X is supra N-closed. **Proof** Since f is supra N^{*}-Homeomorphism f and f⁻¹ are supra N-irresolute. Let B be supra N-closed set in (X, τ) . Since f⁻¹ is supra N-irresolute f(B) is supra N-closed set in (Y, σ) . Since B is supra N-closed set, B=Ncl(B). Therefore f(Ncl(B)) is supra N-closed set in (Y, σ) . Since f(B) is supra N-closed set, Ncl(f(B))=f(B) is supra N-closed set in (Y, σ) .

Theorem 4.13

Every supra N^{*}-Homeomorphism is strongly supra N-closed map.

Proof Since $f:(X, \tau) \to (Y, \sigma)$ is supra N^{*}-Homeomorphism f and f¹ are supra N-irresolute. f¹ is supra N- irresolute implies f is strongly supra N-closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.14

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}, \{b, c\}\}$, $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is strongly supra N-closed but not supra N^{*}-Homeomorphism, since f^{-1} is supra N-irresolute(strongly supra N-closed map) but f is not supra N-irresolute.

Theorem 4.15

If (X, τ) and (Y, σ) is a $T_N^{\mu} - space$, and if $f:(X, \tau) \to (Y, \sigma)$ is a supra N-continuous function then f is supra N-Homeomorphism.

Proof Let V be supra closed in (Y, σ) . Since f is supra N-continuous $f^{-1}(V)$ is supra N-closed in (X, τ) . Since (X, τ) and (Y, σ) is a T_N^{μ} – *space*, then every supra N-closed set is supra closed set. Let B be supra closed set in (X, τ) , then f(B) is supra N-closed in (Y, σ) , implies f is N-closed map $(f^{-1}$ is N-continuous function). Hence f is N-Homeomorphism.

Theorem 4.16

The set N^* -h(X, τ) from (X, τ) on to itself is a group under the composition of maps.

ProofLet $f,g \in N^*-h(X, \tau)$, then by theorem 4.10 gof $\in N^*-h(X, \tau)$, we know that the composition of mapping is associative and the identity I: $(X, \tau) \rightarrow (X, \tau)$ belonging to $N^*-h(X, \tau)$ serves as the Identity element.

If $f \in N^*$ -h(X, τ) then $f^1 \in N^*$ -h(X, τ) such that for $f^1 = f^1$ of =I. Therefore inverse exists for each element of N^* -h(X, τ). Hence N^* -h(X, τ) is a group under composition of maps.

REFERENCE

- I.Arokiarani and M.Trinita Pricilla, Some Stronger Forms of g^µb- continuous functions, IOSR Journal of Engineering, Vol.1, Issue 2, pp.111-117, 2011
- [2] R.Devi, Studies on generalizations of closed maps and homeomorphisms in topological spaces, Ph.D thesis, Bharathiar University, Coimbatore(1994)
 [3] P.Devi, S.Samathkumar and M.Caldes, On suma g onen sets and sg continuous maps. Concrel. Mathematics.
- [3] R.Devi, S.Sampathkumar and M.Caldas, On supra α open sets and s α -continuous maps, General Mathematics, 16(2)(2008),77-84.
- [4] P.Krishna, Dr.J.Antony Rex Rodrigo, On R-Closed Maps and R-Homeomorphisms in Topological Spaces, IOSR Journal of Mathematics, Volume 4, Issue 1(2012),pp 13-19.
- [5] N.Levine, Semi-open sets and Semi-continuity in topological spaces, Amer.Math.,12(1991),5-13.
- [6] A.S.Mashhour, A.A.Allam, F.S.Mahmoud and F.H.Khedr, On supra topological spaces, Indian J.Pure and Appl.Math.,14(A)(1983),502-510.
- [7] T.Noiri and O.R.Sayed, On Ω closed sets and Ω s closed sets in topological spaces, Acta Math, 4(2005), 307-318.
- [8] M.Trinita Pricilla and I.Arockiarani, Some Stronger Forms of g^µb-continuous Functions, IOSR Journal of Engineering, Vol-1, Issue 2, Pages 111-117.
- L.Vidyarani and M.Vigneshwaran, On Supra N-closed and sN-closed sets in Supra Topological Spaces, International Journal of Mathematical Archieve, Vol-4, Issue-2, 2013, pages 255-259
- [10] L.Vidyarani and M.Vigneshwaran, Some forms of N-closed maps in supra Topological spaces, IOSR Journal of Mathematics, Vol-6, Issue-4, 2013 Pages 13-17.