Some Stronger Forms of supra bT- Continuous Functions

K.Krishnaveni and Dr.M.Vigneshwaran

Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, TN, INDIA.

ABSTRACT: The aim of this paper is to introduce new classes of functions called strongly supra bT-Continuous and perfectly supra bT - continuous functions and study some of their properties and relations among them.

KEYWORD: bT^{μ} -closed (open) sets, bT^{μ} - continuous, bT^{μ} -irresolute, strongly bT^{μ} - continuous and perfectly bT^{μ} - continuous.

I. INTRODUCTION

In 1983 Mashhour et. al [2] introduced Supra topological spaces and studied S- continuous maps and S^{*}- continuous maps. In 2010, Sayed et. al [3] introduced and investigated several properties of supra b-open set and supra b-continuity. Recently Krishnaveni and Vigneshwaran [3] have introduced and investigated supra bT –closed sets. In this paper, we introduce a new class of function called strongly supra bT-continuous and perfectly supra bT – continuous functions.

II. PRELIMINARIES

Definition 2.1[4,6] A subfamily of μ of X is said to be a supra topology on X, if

(i) $X, \phi \in \mu$ (ii) If $A_i \in \mu$ for all $i \in J$ then $\bigcup A_i \in \mu$.

The pair (X,μ) is called supra topological space. The elements of μ are called supra open sets in (X,μ) and complement of a supra open set is called a supra closed set. **Definition 2.2[6]**

(i) The supra closure of a set A is denoted by $cl^{\mu}(A)$ and is defined as $cl^{\mu}(A) = \bigcap \{B : B \text{ is a supra closed set and } A \subseteq B \}$.

(ii) The supra interior of a set A is denoted by $int^{\mu}(A)$ and defined as $int^{\mu}(A) = \bigcup \{B : B \text{ is a supra open set and } A \supseteq B \}$.

Definition 2.3[4] Let (X,τ) be a topological spaces and μ be a supra topology on X. We call μ a supra topology associated with τ if $\tau \subset \mu$.

Definition 2.4[6] Let (X,μ) be a supra topological space. A set A is called a supra b-open set if $A \subseteq cl^{\mu}(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A))$. The complement of a supra b-open set is called a supra b-closed set.

Definition 2.5[3] A subset A of a supra topological space (X,μ) is called bT^{μ} -closed set if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is T^{μ} - open in (X,μ) .

Definition 2.6[3] Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f : (X, \tau) \to (Y, \sigma)$ is called bT^{μ} - continuous if $f^{-1}(V)$ is bT^{μ} - closed in (X, μ) for every closed set V of (Y, σ) .

Definition 2.7[3] Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f : (X, \tau) \to (Y, \sigma)$ is called bT^{μ} - irresolute if $f^{-1}(V)$ is bT^{μ} -closed in (X, μ) for every bT^{μ} -closed set V of (Y, σ) .

III. STRONGLY bT^{μ} - CONTINUOUS AND PERFECTLY bT^{μ} - CONTINUOUS.

Definition 3.1 Let (X,τ) and (Y,σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called Strongly bT^{μ} -Continuous if the inverse image of every bT^{μ} -closed in Y is supra closed in X.

Theorem 3.2 Let (X,τ) be a topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is Strongly bT^{μ} -Continuous then it is bT^{μ} -Continuous.

Proof Assume that f is strongly bT^{μ} -Continuous. Let G be any supra closed set in Y. By the theorem 3.2[3] every supra closed set is bT^{μ} -closed in Y, G is bT^{μ} - closed in Y. Since f is strongly bT^{μ} - continuous, $f^{-1}(G)$ is supra closed in X. Therefore f is bT^{μ} - continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.3 Let $X=Y=\{a,b,c\}$, $\tau=\{X,\phi,\{a\}\}$ and $\sigma=\{Y,\phi,\{a\},\{a,b\}\}$.Let $f:(X,\tau)\rightarrow(Y,\sigma)$ be an identity map. Then f is bT^{μ} - continuous but not strongly bT^{μ} - continuous, since for the bT^{μ} - closed set $V = \{c\}$ in Y, $f^{-1}(V) = f^{-1}(\{c\}) = \{c\}$ is not supra closed in X.

Theorem 3.4 A function $f:(X,\tau) \rightarrow (Y,\sigma)$ be strongly bT^{μ} - continuous if and only if the inverse image of every bT^{μ} - closed set in Y is supra closed in X.

Proof Assume that f is strongly bT^{μ} - continuous. Let F be any bT^{μ} - closed set in Y. Then F^{c} is bT^{μ} - open set in Y. Since f is strongly bT^{μ} - continuous, $f^{1}(F^{c})$ is supra open in X. But $f^{1}(F^{c}) = X - f^{1}(F)$ and so $f^{1}(F)$ is supra closed in X.

Conversely, assume that the inverse image of every bT^{μ} -closed set in Y is supra closed in X. Let G be any bT^{μ} - open set in Y. Then G^c is bT^{μ} - closed set in Y. By assumption, $f^{-1}(G^c)$ is supra closed in X. But $f^{-1}(G^c)$ = X-f⁻¹(G) and so f⁻¹(G) is supra open in X. Therefore f is strongly bT^{μ} - continuous.

Theorem 3.5 If a function $f:X \rightarrow Y$ is strongly bT^{μ} - continuous and a map $g: Y \rightarrow Z$ is bT^{μ} - continuous, then the composition gof : $X \rightarrow Z$ is strongly bT^{μ} - continuous.

Proof Let G be any supra closed in Z. Since g is bT^{μ} - continuous, $g^{-1}(G)$ is bT^{μ} - closed in Y. Since f is strongly bT^{μ} - continuous, $f^{-1}(g^{-1}(G))$ is supra closed in X. But $(gof)^{-1}(G) = f^{-1}(g^{-1}(G))$. Therefore gof is strongly bT^{μ} - continuous.

Theorem 3.6 If a function f: $X \rightarrow Y$ is strongly bT^{μ} - continuous and a map g: $Y \rightarrow Z$ is bT^{μ} - continuous, then the composition gof : $X \rightarrow Z$ is bT^{μ} - continuous.

Proof Let G be any supra closed in Z. Since g is bT^{μ} - continuous, $g^{-1}(G)$ is bT^{μ} - closed in Y. Since f is strongly bT^{μ} - continuous, $f^{-1}(g^{-1}(G))$ is supra closed in X. By the theorem (3.2)[3] every supra closed is bT^{μ} - closed, $f^{-1}(g^{-1}(G))$ is bT^{μ} - closed. But $f^{-1}(g^{-1}(G)) = (gof)^{-1}(G)$. Therefore gof is bT^{μ} - continuous.

Theorem 3.7 If a function $X \rightarrow Y$ is supra continuous then it is strongly bT^{μ} - continuous but not conversely. **Proof** Let f: $X \rightarrow Y$ is supra continuous. Let F be a supra closed set in Y. Since f is continuous, $f^{-1}(F)$ is supra closed in X. By the theorem (3.2)[3] every supra closed set is bT^{μ} - closed set, $f^{-1}(F)$ is bT^{μ} - closed. Hence f is bT^{μ} - closed.

Converse of the above theorem need not be true as seen from the following example.

Example 3.8 Let $X=Y=\{a,b,c\}, \tau=\{X,\phi,\{a\},\{a,b\}\}$ and $\sigma=\{Y,\phi,\{a\},\{c\},\{a,b\},\{a,c\}\}$.Let $f:(X,\tau)\to(Y,\sigma)$ be an identity map. Then f is Strongly bT^{μ} - continuous, $V = \{b\}$ is bT^{μ} -closed in Y, $f^{-1}(V) = f^{-1}(\{b\}) = \{b\}$ is supra closed in X. Since $V=\{b\}$ is not supra closed in Y, f is not supra continuous.

Definition 3.9 Let (X,τ) and (Y,σ) be two topological spaces and μ be an associated supra topology with τ . A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is called perfectly bT^{μ} -Continuous if the inverse image of every bT^{μ} -closed in Y is both supra closed and supra open in X.

Theorem 3.10 Let (X,τ) be a topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is perfectly bT^{μ} -Continuous then it is strongly bT^{μ} -Continuous.

Proof Assume that f is perfectly bT^{μ} -Continuous. Let G be any bT^{μ} - closed set in Y. Since f is perfectly bT^{μ} - continuous, $f^{-1}(G)$ is supra closed in X. Therefore f is strongly bT^{μ} - continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.11 Let $X=Y=\{a,b,c\}$, $\tau=\{X,\phi,\{a\},\{a,b\}\}$ and $\sigma=\{Y,\phi,\{a\},\{c\},\{a,c\}\}$.Let $f:(X,\tau)\to(Y,\sigma)$ be an identity map. Then f is strongly bT^{μ} - continuous but not perfectly bT^{μ} - continuous, since for the bT^{μ} - closed set $V = \{b,c\}$ in Y, $f^{-1}(V) = f^{-1}(\{b,c\}) = \{b,c\}$ is not in both supra open and supra closed in X.

Theorem 3.12 A function $f:(X,\tau) \rightarrow (Y,\sigma)$ be perfectly bT^{μ} - continuous if and only if the inverse image of every bT^{μ} - closed set in Y is both supra open and supra closed in X.

Proof Assume that f is perfectly bT^{μ} - continuous. Let F be any bT^{μ} - closed set in Y. Then F^c is bT^{μ} -open set in Y. Since f is perfectly bT^{μ} - continuous, $f^{-1}(F^{c})$ is both supra open and supra closed in X. But $f^{-1}(F^{c}) = X - f^{-1}(F)$ and so $f^{-1}(F)$ is both supra open and supra closed in X.

Conversely, assume that the inverse image of every bT^{μ} -closed set in Y is both supra open and supra closed in X. Let G be any bT^{μ} - open set in Y. Then G^c is bT^{μ} - closed set in Y. By assumption, $f^{-1}(G^c)$ is supra closed in X. But $f^{-1}(G^c) = X \cdot f^{-1}(G)$ and so $f^{-1}(G)$ is both supra open and supra closed in X. Therefore f is perfectly bT^{μ} - continuous.

Theorem 3.13 If a function $X \rightarrow Y$ is strongly bT^{μ} -continuous then it is bT^{μ} -irresolute but not conversely. **Proof** Let f: $X \rightarrow Y$ is strongly bT^{μ} -continuous function. Let F be a bT^{μ} -closed set in Y. Since f is strongly bT^{μ} - continuous , f¹(F) is supra closed in X. By the theorem (3.2)[3] every supra closed set is bT^{μ} - closed set, f¹(F) is bT^{μ} -closed in X. Hence f is bT^{μ} -irresolute .

Converse of the above theorem need not be true as seen from the following example.

Example 3.14 Let $X=Y=\{a,b,c\}, \tau=\{X,\phi,\{a\}\}$ and $\sigma=\{Y,\phi,\{a\},\{a,b\}\}$. Let $f:(X,\tau)\to(Y,\sigma)$ be an identity map. Then f is bT^{μ} -irresolute but not strongly bT^{μ} - continuous, since for the bT^{μ} -closed set $V = \{b\}$ in Y, $f^{-1}(V) = f^{-1}(\{b\}) = \{b\}$ is not supra closed in X.

Theorem 3.15 If a function $X \rightarrow Y$ is perfectly bT^{μ} -continuous then it is bT^{μ} -irresolute but not conversely. **Proof** Let f: $X \rightarrow Y$ is perfectly bT^{μ} -continuous function. Let F be a bT^{μ} -closed set in Y. Since f is perfectly bT^{μ} - continuous, $f^{-1}(F)$ is both supra open and supra closed in X. By the theorem (3.2)[] every supra closed set is bT^{μ} - closed set, $f^{-1}(F)$ is bT^{μ} -closed in X. Hence f is bT^{μ} -irresolute. Converse of the above theorem need not be true as seen from the following example.

Example 3.16 Let $X=Y=\{a,b,c\}, \tau=\{X,\phi,\{a\}\} \text{ and } \sigma=\{Y,\phi,\{a\},\{a,b\}\}$. Let $f:(X,\tau)\to(Y,\sigma)$ be an identity map. Then f is bT^{μ} -irresolute but not perfectly bT^{μ} - continuous, since for the bT^{μ} - closed set $V = \{b\}$ in Y, $f^{1}(V) = f^{1}(\{b\}) = \{b\}$ is not in both supra open and supra closed in X.

From the above theorem and example we have the following diagram

Supra continuous \downarrow \downarrow \downarrow \downarrow \downarrow Strongly bT^{μ} - continuous \downarrow \downarrow $bT^{<math>\mu$} - continuous

REFERENCES

- Arya .S .P. and Gupta.R, On Strongly continuous mappings, Kyungpook Math.J., 14(1974), 131-143.
- [1] [2]
- [3] [4]
- Jamal M. Mustafa, Totally supra b- continuous and slightly supra b- continuous functions, Stud. Univ. Babes-Bolyai Math. 57(2012), No. 1, 135-144. K.Krishnaveni and M.Vigneshwaran, On supra bT- closed sets in supra topological spaces, International journal of Mathematical Archive-4(2),2013,1-6.
- [5] A.S.Mashhour, A.A.Allam, F.S.Mohamoudand F.H.Khedr, Onsupra
- topologicalspaces, Indian J. Pureand Appl. Math. No.4, 14(1983), 502-510. [6]
- [7]
- [8]
- N.Ramya and A.Parvathi, Strong forms of $\psi \hat{g}$ continuous functions in topological spaces, J.Math.Comput.Sci. 2(2012), No. 1, 101-109 O.R. Sayed and Takashi Noiri,On b-open sets and supra b- Continuity on [9]
- [10] topological spaces, European Journal of Pure and applied Mathematics,
- 3(2)(2010), 295-302. [11]