The Number of Transitive P – Groups Of Degree P^3

^{1,}Apine, E.

Department of Mathematics, University of Jos, PMB2084, Jos, Nigeria.

e-mail of corresponding author: apineen@gmail.com

ABSTRACT: In this paper we determine the number of transitive p-groups of degree p^3

KEYWORDS: number, transitive, degree, exponent, isomorphism.

1.1 INTRODUCTION

From our previous result in [2], we can easily deduce that for $n \ge 7$, there are, up to isomorphism, 2 non – abelian transitive p – groups of degree p^3 , exponent p^3 and order p^n while for n = 4, 5 and 6, we have up to isomorphism, one such group.

I. RESULTS

1.2 Proposition: For each odd prime p, there are, up to isomorphism, 5 transitive p – groups of degree p^3 and order p^3 . 3 of these are abelian and of the remaining 2 non – abelian groups, 1 is of exponent p^2 and 1 is of exponent p.

Proof: Since each of these groups is transitive, we must have:

 $|\alpha^{G}| = p^{3}, |G_{\alpha}| = 1, \forall \alpha \in \Omega \text{ with } |\Omega| = p^{3},$

thus G is regular and two cases arise: (i) G abelian and (ii) G non – abelian.

If G is abelian, then as G is of degree p^3 , we have the following possibilities: either

 $G \cong C_{p^3} \text{ or } G \cong C_{p^2} \times C_p \text{ or } G \cong C_p \times C_p \times C_p$

If G is non – abelian, then as G is a p – group of order p^3 , it contains a normal p – subgroup H of order p^2 which must be abelian, and so either $H \cong C_{p^2}$ or $H \cong C_p \times C_p$. Thus G \cong < a, b >, where a \in G is such that

$$a^{p^2} = 1, b \in G - \langle a \rangle, b^p = 1, b^{-1}ab \in \langle a \rangle$$

or $G \cong G'' = \langle a, b, c \rangle$, where a, b, $c \in G$ are such that $a^p = 1$, $b^p = 1$, $c \in G - \langle a, b \rangle$, $c^p = 1$, $c^{-1}ac$, $c^{-1}bc \in G - \langle a, b, c \rangle$, $c^{-1}ac \neq a$, $c^{-1}bc \neq b$. This completes the proof.

1.3 Proposition

For each odd prime p, there are, up to isomorphism, 5 non – abelian transitive p – groups of degree p^3 and exponent p.

Proof: Let G be a non – abelian transitive p – group of degree p^3 and exponent p. Then by [2] we must have $|G| = p^n$, n = 3, 4, 5. If $|G| = p^3$, then by [2], G \cong G₁ = < a, b, c >, where a, b \in G are such that $a^p = 1$, $b^p = 1$, $c \in G - \langle a, b \rangle$, $c^p = 1$, $c^{-1}ac$, $c^{-1}bc \in G - \langle a, b, c \rangle$, $c^{-1}ac \neq a$, $c^{-1}bc \neq b$.

If $|\mathbf{G}| = p^4$, then G contains a normal p – subgroup H of order p^3 which is either abelian in which case $\mathbf{H} \cong \mathbf{C}_p \mathbf{x}$ $\mathbf{C}_p \mathbf{x} \mathbf{C}_p$, and so $\mathbf{G} \cong \mathbf{G}_2 = \langle \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \rangle$, where $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{G}$ are such that

$$a^{p} = 1, b^{p} = 1, c^{p} = 1, d \in G - \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle c \rangle, d^{p} = 1, d^{-1}ad, d^{-1}bd, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle b \rangle \times \langle c \rangle, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle b \rangle \times \langle b \rangle \times \langle c \rangle, d^{-1}cd \in \langle a \rangle \times \langle b \rangle \times \langle b \rangle \times \langle c \rangle, d^{-1}cd \in \langle a \rangle \times \langle b \rangle$$

$$d^{-1}ad \neq a, d^{-1}bd \neq b, d^{-1}cd \neq c.$$

or non – abelian in which case $H \cong G_1$, so that $G \cong G_3 < G_1$, d >, where $d \in G - G_1$ is such that $d^p = 1$, $G_1 \le G_3$. If $|G| = p^5$, then G contains a normal p – subgroup H of order p^4 . Suppose H is non – abelian, then by the case $|G| = p^4$ above, either $H \cong G_2$ or $H \cong G_3$. These yield the following possibilities for G: either $G \cong < G_2$, e >, where $e \in G - G_2$, $e^p = 1$, $G_2 \leq G$, or $G \cong \langle G_3, f \rangle$, where $f \in G - G_3$, $f^p = 1$, $G_3 \leq G$. If H were abelian, we would have $H \cong C_p \ge C_p \ge C_p \ge C_p \text{ or } H \cong \langle a \rangle \le \langle b \rangle \le \langle c \rangle \le \langle d \rangle$, where $a^p = 1$, $b^p = 1$, $c^p = 1$, $d^p = 1$. But $C(a) = \langle a \rangle$, $C(b) = \langle b \rangle$, $C(c) = \langle c \rangle$, and $C(d) = \langle d \rangle$, so that $\langle a \rangle \le \langle b \rangle \le \langle c \rangle \le \langle d \rangle = C(a) \cap C(b) \cap C(c) \cap C(d)$, and hence $|H| = p^4 = |\langle a \rangle \le \langle c \rangle \le \langle d \rangle = |C(a) \cap C(b) \cap C(c) \cap C(d)| \le |C(a)| = p$, which is impossible. Thus H is not abelian.

1.4 Proposition : For each odd prime p, there are, up to isomorphism, (2 p (p+1) - 7) non – abelian transitive p – groups of degree p^3 and exponent p^3 .

Proof: Since G is transitive of degree p^3 , two cases arise: either G contains exactly one generator of order p^3 and the remaining generators are each of order p (by [1]) or G contains no generator of order p^3 but 3 generators each of order p^2 and other generators each of order p. By [2], such a group G exists only for n = 4, 5, ..., p(p+1)+1, with $|G| = p^n$ and (by our opening remark in **1.1** above), for each n = 7, 8, ..., p(p+1)+1, we have two non – isomorphic such groups. Thus their total number is 2[p(p+1)+1-6]. And for each n = 4, 5, 6, there is, up to isomorphism, one such group. So that the total number of non – abelian transitive p – groups of degree p^3 and exponent p^3 is 2[p(p+1)+1-6]+3 = 2p(p+1)-7

1.5 Remark: (i) For the case p = 2, we have, up to isomorphism, 6 non – abelian transitive 2 – groups of degree $2^3 = 8$ and exponent $2^3 = 8$, by [1]. (ii) From Proposition 1.2 we deduce that there are, up to isomorphism, 2 non – abelian transitive p – groups of degree p^3 and exponent p: one containing the unique abelian transitive p – group of exponent p mentioned in the Lemma. But by [2], for any such a group G, the rank r(G) = 3, 4 or 5. Of interest to us is the case r(G) = 5. By [1], if G' is a transitive p – group of degree p^3 and rank 6 containing G as a normal subgroup, then G' must be of exponent p^2 . Consequently, we obtain two new non – isomorphic non – abelian transitive p – groups of degree p^3 , exponent p^2 .

Applying the same argument above to our result in[2], we get two new non – isomorphic non – abelian transitive p – groups of degree p^3 , exponent p^2 and order p^7 (obtained from G[']) with one isomorphic to the unique non – abelian transitive p – groups of degree p^3 , exponent p^2 and order p^7 generated by a generator of order p^2 . An important implication of the above is that there is no non – abelian transitive p – group G of degree p^3 , exponent p and rank (G) with $6 \le \operatorname{rank}(G) \le p(p+1)$.

1.6 Proposition : For each odd prime p, there are, up to isomorphism, (p (p+1) + 2) non – abelian transitive p – groups of degree p^3 and exponent p^2 .

Proof: If G is a non – abelian transitive p – groups of degree p^3 and exponent p^2 , then either G is generated by a generator of order p^2 or not. In the first case, by Remark1.5, for each

n = 3, 4, ..., p(p+1)+1 with $|G| = p^n$, there is, up to isomorphism, one such group. Hence their total number is p(p+1)+1-2=p(p+1)-1.

In the second case, by Remark1.5., we must have $|G| = p^6$ or $|G| = p^7$. In the first case,

we have 2 non – isomorphic non – abelian such groups (by Remark1.5(ii)) and in the second case, we have 1 such group, up to isomorphism. Hence in all, we have p(p+1) - 1 + 2 + 1 = p(p+1) + 2 such groups./.

1.7 Remark : For the case p = 2, we have, up to isomorphism, 10 non – abelian transitive 2 – groups of degree $2^3 = 8$ and exponent $2^2 = 4$, by [1].

For non – abelian transitive p – groups of degree p^3 , we have:

1.8 Theorem : For each odd prime p, there are, up to isomorphism, 3(p (p + 1) + 1) different transitive p - g roups of degree p^3 . Three of these are abelian. Of the 3p (p + 1) non – abelian groups, we have that 2p (p + 1) - 7 are of exponent p^3 , p (p + 1) + 2 are of exponent p^2 and the remaining 5 are of exponent p.

Proof : By Proposition 1.4., the number of non – abelian transitive p – groups of degree p^3 and exponent p^3 is (2p (p + 1) - 7),

And by Proposition 1.6, the number non – abelian transitive p – groups of degree p^3 and exponent p^2 is p(p + 1) + 2,

By [1]., the number of non – abelian transitive p – groups of degree p^3 and exponent p is 5 while by Proposition 1.2, there are three abelian such groups. Adding these numbers together we get the result.

1.9 Remark: For the case p = 2, we have, up to isomorphism, 19 transitive $2 - \text{groups of degree } 2^3 = 8$ by [1].

REFERENCES

- [1] Apine, E. and Jelten B.N (2014) Trends in Transitive *p* Groups and Their Defining Relations. Journal of Mathematical Theory and Modeling, (IISTE). Vol.4. No.11 2014 (192-209).
- [2] Apine, E. (2014) Size of Generating Set for Transitive p-Group G of degree p^3 . International Journal of Mathematics and Statistics Invention(IJMSI) Vol.2 Issue 10 2014(1-4).
- [3]. Audu, M. S. (1986) Generating Sets for Transitive Permutation Groups of Prime-Power Order. Abacus Vol. 17 (2): 22-26.
- [4] Audu. M. S. (1988a) The Structure of the Permutation Modules for Transitive p-groups of degree p². Journal_of Algebra Vol. 117:227-239.
- [5] Audu .M.S. (1988b) The Structure of the Permutation Modules for Transitive Abelian Groups of Prime-Power Order. Nigerian Journal of Mathematics and Applications.Vol.1:1-8.
- [6] Audu. M. S. (1988c) The Number of Transitive p-Groups of degree p². Advances Modelling and Simulation_Enterprises Review. Vol.7(4)9-13.
- [7] Audu. M. S. (1989a) Groups of Prime-Power Order Acting on Modules over a Modular Field. Advances Modelling and Simulation Enterprises Review. Vol.9(4)1-10.
- [8] Audu. M. S. (1989b) Theorems About p-Groups. Advances Modelling and Simulation Enterprises Review. Vol.9(4)11-24.
- [9] Audu. M. S.(1991a) The Loewy Series Associated with Transitive p-Groups of degree p². Abacus. Vol. 2 (2): 1-9.
- [10] Audu. M. S. (1991b) On Transitive Permutation Groups. Afrika Mathmatika Journal of African Mathematical Union. Vol. 4 (2): 155-160.
- [11]. Audu, M. S. and Momoh, S. U (1993) An Upper Bound for the Minimum Size of Generating Set for a Permutation Group. Nigerian Journal of Mathematics and Applications. Vol. 6: 9-20.
- [12] Audu. .M. S, Afolabi. A, and Apine .E (2006) Transitive 3-Groups of Degree 3^n (n = 2, 3) Kragujevac Journal Mathematics 29 (2006) 71-89.
- [13]. Apine, E. (2002). On Transitive p-Groups of Degree at most p³. Ph.D. Thesis, University of Jos, Jos.
- [14]. Cameron, P. J. (1990) Oligomorphic Permutation Groups. Cambridge University Press, Cambridge, 159p.
- [15]. Dixon, J. D. (1996) Permutation Groups. Springer Verlag, New York, 341p.
- [16]. Durbin, J. R. (1979) Modern Algebra. John Wiley and Sons Inc., New York, 329p
- [17]. Fraleigh, J. B. (1966) A First Course in Abstract Algebra. Addison-Wesley Publishing Company, Reading, 455p.
- [18]. Gorenstein, D. (1985) Finite Simple Groups: An Introduction to their Classification. Plenum Press, New York, 333p.
- [19]. Hartley, B. and Hawkes, T. O. (1970) Rings, Modules and Linear Algebra. Chapman and Hall, London, 210p.
- [20]. Janus, G. J (1970) Faithful Representation of p-Groups at Characteristic p. Journal of Algebra. Vol. 1: 335-351.
- [21]. Kuku, A. O. (1980) Abstract Algebra. Ibadan University Press. Ibadan 419p.
- [22] Marshall, H. Jr (1976) The Theory of Groups. Chelsea Publishing Company New York. Second Edition 433p.
- [23]. Neumann, P. M. (1976) The Structure of Finitary Permutation Groups. Archiv dev Mathematik (basel). Vol. 27 (1):3-17.
- [24]. Pandaraparambil, X. J. (1996) On the Wreath Product of Groups. Ph. D Thesis. University of Ilorin, Ilorin.
- [25]. Passman, D. (1968) Permutation Groups. W. A. Benjamin, Inc., 310p.
- [26]. Shapiro, L. (1975) Introduction to Abstract Algebra. McGraw-Hill, Inc., New York, 340p.
- [27]. Wielandt, H. (1964) Finite Permutation Groups. Academic Press Inc., 113p.
- [28] Wielandt,H. (1969) Permutation Groups Through Invariant Relations and Invariant Functions. Lecture Notes, Ohio State University, Columbus, Ohio.