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1.1 INTRODUCTION 
 From our previous result in [2], we can easily deduce that for n  7, there are, up to isomorphism, 2 non 

– abelian transitive p – groups of degree p
3
, exponent p

3 
and order p 

n
 while for n = 4, 5 and 6, we have up to 

isomorphism, one such group. 
 

                                                                               

I. RESULTS 
1.2 Proposition: For each odd prime p, there are, up to isomorphism, 5 transitive p – groups of degree p

3
 and 

order p
3
. 3 of these are abelian and of the remaining 2 non – abelian groups, 1 is of exponent p

2
 and 1 is of 

exponent p. 

 

Proof: Since each of these groups is transitive, we must have: 

 
G
  = p

3
,  G  = 1,    with  = p

3
,  

thus G is regular and two cases arise: (i) G abelian and (ii) G non – abelian. 

If G is abelian, then as G is of degree p
3
, we have the following possibilities: either  

pppPPP
CCCGorCCGorCG  23     

 If G is non – abelian, then as G is a p – group of order p
3
, it contains a normal p – subgroup H of order p

2
 which 

must be abelian, and so either ppp
CCHorCH  2 . Thus G  < a, b >, where a G is such that 

  aabbbaGba pp 1,1,,1
2

  

or G  G
//
 = < a, b, c >, where a, b, c G are such that 

bbccaacccbaGbccacccbaGcba ppp   1111 ,,,,,,1,,,1,1 . This 

completes the proof.  

 

1.3 Proposition 
For each odd prime p, there are, up to isomorphism, 5 non – abelian transitive p – groups of degree p

3
 and 

exponent p. 
 

Proof:  Let G be a non – abelian transitive p – group of degree p
3
 and exponent p. Then by [2] we must have   

G = p 
n
, n = 3, 4, 5. 

If G = p
3
, then by [2], G  G1 = < a, b, c >, where a, b  G are such that 

bbccaacccbaGbccacccbaGcba ppp   1111 ,,,,,,1,,,1,1 .      

If G = p
4
, then G contains a normal p – subgroup H of order p

3
 which is either abelian in which case H  Cp x 

Cp x Cp, and so G  G2 = < a, b, c, d >, where a, b, c  G are such that 
1 1 1

1 1 1

1, 1, 1, , 1, , , ,

, , .

p p p pa b c d G a b c d d ad d bd d cd a b c

d ad a d bd b d cd c

  

  

            

  
 

 or non – abelian in which case H  G1, so that G  G3 < G1, d >, where d  G - G1 is such that 
pd =1, G1 ⊴ G3. 

If G = p
5
, then G contains a normal p – subgroup H of order p

4
. Suppose H is non – abelian, then by the case 

G = p
4
 above, either H  G2 or H  G3. These yield the following possibilities for G: either G  < G2, e >, 



The Number Of Transitive P... 

                                                             www.ijmsi.org                                               17 | P a g e  

where e  G – G2, e 
p
 =1, G2 ⊴ G, or  G  < G3, f >, where f  G – G3, f 

p
 =1, G3 ⊴ G. If H were abelian, we 

would have  

H  Cp x Cp x Cp x Cp or H  < a >x < b >x < c >x < d >, where a 
p
 = 1, b 

p 
= 1, c 

p
 = 1, 

 d 
p
 = 1. But C(a) = < a >, C(b) = < b >, C(c) = < c >, and C(d) = < d >, so that 

 < a >x < b >x < c >x < d > = C(a)  C(b)  C(c)  C(d), and hence 

H = p
 4
 = < a >x < b >x < c >x < d > = C(a)  C(b)  C(c)  C(d)   C(a) = p, which is impossible. 

Thus H is not abelian.  

 

1.4 Proposition : For each odd prime p, there are, up to isomorphism, (2 p (p +1) – 7) non – abelian transitive p 

– groups of degree p
3
 and exponent p

3
. 

 

Proof: Since G is transitive of degree p
3
, two cases arise: either G contains exactly one generator of order p

3
 and 

the remaining generators are each of order p (by [1]) or G contains no generator of order p
3
 but 3 generators 

each of order p
2
 and other generators each of order p. By [2], such a group G exists only for n = 4, 5, . . . , 

p(p+1)+1, with G= p 
n
 and ( by our opening remark in 1.1 above), for each n = 7, 8, . . . , p(p+1)+1, we have 

two non – isomorphic such groups. Thus their total number is 2[ p (p+1)+1-6]. And for each n = 4, 5, 6, there 

is, up to isomorphism, one such group. So that the total number of non – abelian transitive p – groups of degree 

p
3
 and exponent p

3
 is 2[ p (p+1)+1-6] +3 = 2p(p+1)-7  

 

1.5 Remark:  (i) For the case p = 2, we have, up to isomorphism, 6 non – abelian transitive 2 – groups of degree 

2
3
 = 8 and exponent 2

3
 = 8, by [1].  (ii) From Proposition1.2 we deduce that there are, up to isomorphism, 2 non 

– abelian transitive p – groups of degree p
3
 and exponent p: one containing the unique abelian transitive p – 

group Cp x Cp x Cp as a normal subgroup and the other containing the unique non – abelian transitive p – group 

of exponent p mentioned in the Lemma. But by [2], for any such a group G, the rank r (G) = 3, 4 or 5. Of 

interest to us is the case r (G) = 5. By [1], if G
/
 is a transitive p – group of degree p

3
 and rank 6 containing G as a 

normal subgroup, then G
/
 must be of exponent p

2
. Consequently, we obtain two new non – isomorphic non – 

abelian transitive p – groups of degree p
3
, exponent p

2
 and order p

6
 which are not generated by any generators of 

order p
2
.  

Applying the same argument above to our result in[2], we get two new non – isomorphic non – abelian 

transitive p – groups of degree p
3
, exponent p

2
 and order p

7
 (obtained from G

/
 ) with one isomorphic to the 

unique non – abelian transitive p – groups of degree p
3
, exponent p

2
 and order p

7
 generated by a generator of 

order p
2
 . An important implication of the above is that there is no non – abelian transitive p – group G of degree 

p
3
, exponent p and rank (G) with 6  rank (G)  p (p+1). 

 

1.6 Proposition : For each odd prime p, there are, up to isomorphism, (p (p +1) + 2) non – abelian transitive p – 

groups of degree p
3
 and exponent p

2
. 

 

Proof: If G is a non – abelian transitive p – groups of degree p
3
 and exponent p

2
, then either G is generated by a 

generator of order p
2
  or not. In the first case, by Remark1.5, for each  

n = 3, 4, . . . , p(p+1)+1 with G= p 
n
, there is, up to isomorphism, one such group. Hence their total number is 

p ( p+1)+1-2= p ( p+1)-1.  

In the second case, by Remark1.5., we must have G = p
6
 or G = p

7
. In the first case, 

we have 2 non – isomorphic non – abelian such groups (by Remark1.5(ii)) and in the second case, we have 1 

such group, up to isomorphism. Hence in all, we have  

p ( p+1) -1 + 2 +1= p ( p+1) + 2 such groups./.  

 

1.7 Remark : For the case p = 2, we have, up to isomorphism, 10 non – abelian transitive 2 – groups of degree 

2
3
 = 8 and exponent 2

2
 = 4, by [1].  

For non – abelian transitive p – groups of degree p
3
, we have: 

 

1.8 Theorem : For each odd prime p, there are, up to isomorphism, 3(p (p + 1) + 1) different transitive p – 

groups of degree p
3
. Three of these are abelian. Of the 3p (p + 1) non – abelian groups, we have that 2p (p + 1) 

– 7 are of exponent p
3
, p (p + 1) + 2 are of exponent p

2
 and the remaining 5 are of exponent p. 

 

Proof : By Proposition1.4., the number of non – abelian transitive p – groups of degree p
3
 and exponent p

3
 is 

(2p (p + 1) – 7), 

And by Proposition1.6, the number non – abelian transitive p – groups of degree p
3
 and exponent p

2
 is p (p + 1) 

+2,  
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By [1]., the number of non – abelian transitive p – groups of degree p
3
 and exponent p is 5 while by 

Proposition1.2, there are three abelian such groups. Adding these numbers together we get the result.                                                                       

 

1.9 Remark:  For the case p = 2, we have, up to isomorphism, 19 transitive 2 – groups of degree 2
3
 = 8  by [1].   
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