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ABSTRACT : In this paper, we suggest a new one-step, fifth-order iterative method for solving nonlinear 

equations, which is an improvement on methods introduced by Hosseini [10]. Several numerical examples are 

given and compared to other well known methods of the same order, illustrating the efficiency and performance 

of the proposed method.  
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I. INTRODUCTION 
 We consider iterative methods to find a simple root 𝛼 of a nonlinear equation𝑓 𝑥 = 0, where 𝑓 ∶ I ⊆
 ℝ → ℝ is a scalar function and continuously differentiable, and 𝐼 is a neighborhood of the root 𝛼. By iterative 

method we mean a sequence 𝑥𝑛  𝑛∈𝑁, defined by 

                                                               𝑥𝑛+1 = 𝜑 𝑥𝑛 ; 𝑥𝑛−1 , 𝑥𝑛−2; … , 𝑥𝑛−𝑗    , 𝑛 ≥ 0                                      (1) 

where  𝜑 is the iteration function.  

There are several existing methods to compute the root 𝛼 of a nonlinear equation 𝑓 𝑥 = 0 (see [1-16] and the 

reference therein). The most famous of these methods is the classical Newton’s method 

                                                                    𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛 )

𝑓′(𝑥𝑛 )
   ,                                                                               (2) 

starting from some initial value 𝑥0 with convergence order 2. This method is based on Taylor’s series 

expansion. Hosseini [10] extended the procedure of obtaining (2) and obtained a cubic iterative method of order 

3 given as:  
 

                                       𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛 )𝑓 ′ 𝑥𝑛 

2𝑓′ 2 𝑥𝑛  − 𝑓(𝑥𝑛 )𝑓′′ 𝑥𝑛  
 ,   𝑛 = 0,1,2, …                                                  (3) 

 

and a quartic iterative methods of order 4 given as 

                                    𝑥𝑛+1 = 𝑥𝑛 −
𝑓(2𝑓 ′ 2−𝑓𝑓 ′′)2

𝑓𝑖    𝑓 ′ 2−𝑓𝑓 ′′  2𝑓 ′ 2−2𝑓𝑓 ′′ +
2

3
𝑓2𝑓 ′𝑓 ′′′ 

 

𝑥=𝑥𝑛

 ,   𝑛 = 0,1,2,…                              (4) 

The methods (3) and (4) converges from both left side  𝑥0 < 𝛼  and right side  𝑥0 > 𝛼  towards the root 𝛼 

when tested for most functions, whereas the other methods work usually well from one side only. In this work, 

we introduced a new iterative method of order 5 by extending (3) and (4). 
              

 

II. DEVELOPMENT OF THE METHOD 
Let 𝑓 𝑥 = 0 be a nonlinear equation. The Taylor’s series expansion around a given initial point 𝑥 = 𝜃, 

assuming 𝜃 being close enough to the simple root 𝑥 = 𝛼 is given as follows: 

 

    𝑓 𝑥 = 𝑓 𝜃 + 𝑓 ′ 𝜃  𝑥 − 𝜃 +
𝑓′′ 𝜃 

2!
 𝑥 − 𝜃 2 +

𝑓′′′ 𝜃 

3!
 𝑥 − 𝜃 3 +

𝑓′′′′(𝜃)

4!
(𝑥 − 𝜃)4 + 𝐻𝑂𝑇 = 0      (5) 

 

where 𝐻𝑂𝑇 denotes the higher order terms. Then the nonlinear equation becomes 

 

            𝑓 𝑥 = 𝑓 𝜃 + 𝑓′ 𝜃  𝑥 − 𝜃 +
𝑓′′ 𝜃 

2!
 𝑥 − 𝜃 2 +

𝑓′′′ 𝜃 

3!
 𝑥 − 𝜃 3 +

𝑓′′′′(𝜃)

4!
(𝑥 − 𝜃)4 + 𝐻𝑂𝑇      (6) 

 

When 𝜃 is close enough to 𝛼, equation (6) becomes 
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      𝑓 𝑥 = 𝑓 𝜃 + 𝑓′ 𝜃  𝑥 − 𝜃 +
𝑓′′ 𝜃 

2!
 𝑥 − 𝜃 2 +

𝑓′′′ 𝜃 

3!
 𝑥 − 𝜃 3 +

𝑓′′′′(𝜃)

4!
(𝑥 − 𝜃)4 ≈ 0                 (7) 

hence; 

         𝑓 𝜃 + 𝑓′ 𝜃  𝑥 − 𝜃 +
𝑓′′ 𝜃 

2!
 𝑥 − 𝜃 2 +

𝑓 ′′′ 𝜃 

3!
 𝑥 − 𝜃 3 +

𝑓′′′′(𝜃)

4!
(𝑥 − 𝜃)4 ≈ 0                              (8) 

 

               𝑓 𝜃 +  𝑥 − 𝜃  𝑓′ 𝜃 +
𝑓′′ 𝜃 

2!
 𝑥 − 𝜃 +

𝑓′′′ 𝜃 

3!
 𝑥 − 𝜃 2 +

𝑓′′′′ 𝜃 

4!
 𝑥 − 𝜃 3 ≈ 0                     (9) 

The relation for obtaining (4) in Hosseini [10] is given as: 

 

                                  𝑥 − 𝜃 ≈
−3𝑓(𝜃) 2𝑓′ 2 𝜃 − 𝑓 𝜃 𝑓′′(𝜃) 2

12𝑓′ 5 𝜃 + 6𝑓2 𝜃 𝑓′ 𝜃 𝑓 ′′ 2 𝜃 

−18𝑓 𝜃 𝑓′ 3 𝜃 𝑓′′ 𝜃 + 2𝑓2 𝜃 𝑓 ′ 2 𝜃 𝑓′′′(𝜃)

                                                 (10) 

Using the relation (10) in (9) we have the algorithm stated below: 

 

Algorithm 1.1 

Assume that the function 𝑓 ∶ I ⊆  ℝ → ℝ has a single root α ∈ I, where  is an open interval. Assume 

furthermore that f(x) is a sufficiently differentiable function in the neighborhood of , and let 𝑥0 = 𝜃 be close 

enough to 𝛼 a simple zero of 𝑓(𝑥), the approximate solution 𝑥𝑛+1 by the one step iteration scheme is achieved 

by the following steps: 

 

INPUT initial approximation 𝑥0; tolerance 𝜀 and maximum number of iteration 𝑁𝑚𝑎𝑥 . 

OUTPUT number of Iteration N and approximate solution 𝑥𝑛+1 , or a message of failure. 

Step 1:  Set 𝑛 = 0 and 𝑁 = 1 

Step 2:  While 𝑁 ≤ 𝑁𝑚𝑎𝑥  do steps 3 to 5 

Step 3:  Calculate 

                                                            𝑗𝑛 = 𝑓′𝑓2𝑓′′′                                                                    (11𝑎) 

                                                           𝐿𝑛 = 2𝑓′ 2 − 2𝑓𝑓′′                                                          (11𝑏) 

                                                            𝑦𝑛 = 2𝑓′ 2 − 𝑓𝑓 ′′                                                            (11𝑐) 

                                                            𝑧𝑛 = 𝑦𝑛𝐿𝑛 +
2

3
𝑗𝑛                                                              (11𝑑) 

     𝑥𝑛+1 = 𝑥𝑛 −  𝑓𝑓′ 3𝑧3

𝑓′ 4𝑧3 −
1
2

𝑦2𝑓𝑓′ 2𝑓′′𝑧2 +
1
6

𝑦4𝑓2𝑓′𝑓′′′𝑧 −
1

24
𝑦6𝑓3𝑓′′′′

 

𝑥=𝑥𝑛

               (11𝑒) 

 

Step 4  If  𝑥𝑛+1 − 𝑥𝑛  < 𝜀, then OUTPUT (𝑥𝑛+1); stop. 

Step 5  Set 𝑛 = 𝑛 + 1, 𝑁 = 𝑁 + 1 and go to Step 2. 

Step 6:  OUPUT (“Method failed after 𝑁𝑚𝑎𝑥  iterations, 𝑁𝑚𝑎𝑥 =” 𝑁𝑚𝑎𝑥 . 

 

It will be shown that the computational order of convergence of the proposed method is five and hence it has 

fifth-order convergence. 

 

III. COMPUTATIONAL ORDER OF CONVERGENCE OF THE METHOD 
After the work of Weerakoon and Fernando [14], many other authors have considered the Computational Order 

of Convergence (COC) in their research (see Grau and Noguera [5], and Grau-Sanchez, Noguera and Gutierrez 

[8] and references therein). In all those papers the COC is used to test numerically the order of convergence of 

the methods presented. In view of this, Grau-Sanchez et al. [4] provided a new parameter with low cost than 

COC. Here, we also established the order of convergence of (11) by computation. Since the proposed method is 

a one-point iterative method for solving nonlinear equation 𝑓 𝑥 = 0, it will generate a sequence of 

approximation of the root  𝑥𝑛 𝑛∈𝑁, defined by (1) which we uses in determining its order. 

Definition 1. (See Dennis and Schnable [1] ) Let 𝛼 ∈ ℝ, 𝑥𝑛 ∈ ℝ, 𝑛 = 0,1,2, … Then, the sequence  𝑥𝑛   is said 

to converge to 𝛼 if 

                                                                      lim
𝑛→∞

 𝑥𝑛 − 𝛼 = 0                                                          (12)  

If, in addition, there exists a constant 𝑐 ≥ 0, an integer 𝑥0 ≥ 0,  and 𝑝 ≥ 0 such that for all 𝑛 ≥ 𝑥0,  

                                                           𝑥𝑛+1 − 𝛼 ≤ 𝑐 𝑥𝑛 − 𝛼 𝑝                                                           (13) 

then  𝑥𝑛   is said to converge to  with 𝑞-order at least 𝑝. If 𝑝 = 5, the convergence is said to be of order . 
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Definition 2 (See Grau-Sanchez et al. [4]) The computational local order of convergence, 𝜌𝑛   , (CLOC) of a 

sequence  𝑥𝑛  𝑛≥0 is defined by 

                           𝜌𝑛   =
𝑙𝑜𝑔 𝑒𝑛  

𝑙𝑜𝑔 𝑒𝑛−1 
 ,                                                             (14) 

where 𝑥𝑛−1 and 𝑥𝑛  are two consecutive iterations near the roots 𝛼 and 𝑒𝑛 = 𝑥𝑛−1 − 𝛼 . 

 

The local order of convergence of an iterative method in a neighborhood of a root is the order of the 

corresponding sequence. If it is 𝜌, then the method approximately multiplies by 𝜌 the number of correct 

decimals after each iteration. That is, from (14) we get log10 𝑒𝑛  ≈ 𝜌𝑛   log10 𝑒𝑛−1 , for 𝑛 large enough. Grau-

Sanchez et al [4] have shown that (12) is a variant of  Computational Order of Convergence (COC) and for 

sequence  𝑥𝑛   converging to 𝛼, with starting points 𝑥−𝑗 , … , 𝑥−1 , 𝑥0 close enough to 𝛼, the value of 𝜌𝑛    converges 

to 𝜌 (the order of the method), when 𝑛 → ∞. 

 

IV. NUMERICAL EXAMPLES 
 The accuracy of our contribution is tested on numerous numerical problems. Our goal is fulfilled in this 

section by comparison of our method with the other existing fifth-order methods. These include Kou and Li 

method (KM) [11] given by 

                𝑥𝑛+1 = 𝑧𝑛 −  1 +
𝑀(𝑥𝑛 )

1+𝑀(𝑥𝑛 )
 

𝑓(𝑧𝑛 )

𝑓 ′(𝑧𝑛 )
                                              (15) 

where 

                          𝑡 𝑥𝑛  =
𝑓 ′′ 𝑥𝑛  𝑓(𝑓 ′(𝑥𝑛 ))

𝑓𝑖2 (𝑥𝑛 )
                                                         (16) 

 

                       𝑀 𝑥𝑛  =
𝑓 ′′ 𝑥𝑛   𝑓 𝑥𝑛  −𝑓(𝑧𝑛 ) 

𝑓 ′ 2(𝑥𝑛 )
                                                   (17) 

YoonMee and Changbum’s method (YCM) [15] with 𝐷 = −1, 𝐴 = 1, 𝐵 = 3, 𝐶 = 5 is defined by 

 

                                       𝑥𝑛+1 = 𝑦𝑛 −
𝑓′ 2 𝑦𝑛  + 3𝑓 ′ (𝑥𝑛 )

5𝑓′  𝑦𝑛  + 𝑓′ (𝑦𝑛)
×

𝑓(𝑦𝑛)

𝑓′(𝑥𝑛 )
                                          (18) 

where  

                                                            𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑦𝑛 )

𝑓′(𝑥𝑛 )
                                                                  (19) 

 

Grau and Diaz-Barrero’s method (GM) [7] defined by 

 

𝑥𝑛+1 = 𝑥𝑛 −  1 +
𝑓′′(𝑥𝑛) 𝑓 𝑥𝑛  + 𝑓(𝑧𝑛 ) 

2𝑓′ 2(𝑥𝑛 )
 

𝑓 𝑥𝑛  + 𝑓 𝑧𝑛  

𝑓′(𝑥𝑛 )
          (20) 

where  

        𝑧𝑛 = 𝑥𝑛 −  1 +
1

2

𝑓′′(𝑥𝑛 )𝑓 𝑥𝑛  

𝑓′ 2(𝑥𝑛 )
 

𝑓 𝑥𝑛  

𝑓′(𝑥𝑛 )
                                       (21) 

Noor and Noor’s method (NNM) [12] defined by 

 

      𝑥𝑛+1 = 𝑥𝑛 −
2[𝑓 𝑥𝑛  +  𝑧𝑛  ]𝑓′(𝑥𝑛 )

2𝑓′ 2 𝑥𝑛  −  𝑓 𝑥𝑛  + (𝑧𝑛 ) 𝑓′′(𝑥𝑛 )
                       (22) 

 

                        𝑥 = 𝑓 𝑥 − 𝑓 𝑥𝑛  −  𝑥 − 𝑥𝑛  𝑓′ 𝑥𝑛  −
1

2
 𝑥 − 𝑥𝑛  2𝑓′′ 𝑥𝑛                       (23) 

 

                                 𝑧𝑛 =  𝑥𝑛 −  1 +
𝑡(𝑥𝑛)

2 − 𝑡(𝑥𝑛 )
 

𝑓 𝑥𝑛  

𝑓 ′(𝑥𝑛)
                                                            (24) 

 

                                               𝑡 𝑥𝑛  =
𝑓′′(𝑥𝑛 )𝑓 𝑥𝑛  

𝑓′ 2(𝑥𝑛 )
                                                                        (25) 

Ezzati and Azadegan’s method (EAM) [2] defined by 
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                                        𝑥𝑛+1 = 𝑧𝑛 −

𝑓 𝑧𝑛  + 𝑓  𝑧𝑛 −
𝑓 𝑧𝑛  
𝑓′(𝑥𝑛 )

 

𝑓′(𝑥𝑛)
                                                 (26) 

where  

                                          𝑧𝑛 = 𝑥𝑛 −

𝑓 𝑥𝑛  + 𝑓  𝑥𝑛 −
𝑓 𝑥𝑛  

𝑓𝑖(𝑥𝑛 )
 

𝑓′(𝑥𝑛 )
                                                  (27) 

We used the following test functions and display the approximate zero 𝑥∗ found up to the 15th decimal places. 
 

 
 
 
 
 

 
 
 
 

 
𝑓1 = 𝑥3 + 4𝑥2 − 10   2,3,15 ,                          𝑥∗ = 1.365230013414100

𝑓2 = ln 𝑥 +  𝑥 − 5   2 ,                               𝑥∗ = 8.309432694231570

𝑓3 = 𝑥2 − 𝑒𝑥 − 3𝑥 + 2   [2],                     𝑥∗ = 0.257530285439861

𝑓4 =  𝑥 + 2 𝑒𝑥 − 1  [2,10],                        𝑥∗ = −0.4428544010023889

𝑓5 = 𝑠𝑖𝑛2𝑥 − 𝑥2 + 1   [2,15],                        𝑥∗ = 1.404491648215340 

𝑓6 = 𝑥𝑒𝑥2
− 𝑠𝑖𝑛2𝑥 + 3𝑐𝑜𝑠𝑥 + 5  [2, 3, 10],   𝑥∗ = −1.207647827130920

𝑓7 =  𝑥 − 1 3 − 2    2 ,                               𝑥∗ = 2.259921049894870

  

All calculations were done using Microsoft EXCEL VISUAL BASIC for Application (VBA) using 15 digit 

floating arithmetic. We use the following stopping criteria for computer programs:  𝑥𝑛+1 − 𝑥𝑛  < 𝜀 ,  𝑓(𝑥𝑛 ) <
𝜀 and so, when the stopping criterion is satisfied, 𝑥𝑛+1 is taken as a computed value of the exact root. For 

numerical illustration in this section we use the fixed stopping criterion 𝜀 = 1. 𝐸−15, where 𝜀 represents 

tolerance. 

We present below some iteration results for some selected functions given above with their corresponding 

CLOC. 
Table 1.  OOM iterations results with their CLOC. 

Iteration 𝑓3 𝑥 , 𝑥0 = 1   𝑓4 𝑥 , 𝑥0 = 2     𝑓5 𝑥 , 𝑥0 = 1       𝑓7 𝑥 , 𝑥0 = 3 

1.  0.256010825834790 0.407745500839142 1.395127685808690 2.271993950088230 
 

2.  0.257530285439861 -0.415213763430005 1.404491648197400 2.259921049960910 
 

3.  0.257530285439861 -0.442854398907566 1.404491648215340 2.259921049894870 
 

4.   -0.442854401002389 1.404491648215340 2.259921049894870 
 

5.   -0.442854401002389   

CLOC 5.767859     5.568893427         5.297457       5.307191192 

From Table 1 we observed that the computational local order of convergence (CLOC) of the method on all the 

test functions is at least 5.     
 

 

Table 2. Comparison of the number of iterations (NIT) in some existing methods and OOM . 
 

      Functions 

NIT 

GM NNM KM YCM EAM OOM 

𝑓1 𝑥 , 𝑥0 = 1 4 6 4 3 4 2 

𝑓2 𝑥 , 𝑥0 = 7 2 3 2 2 2 2 

𝑓3 𝑥 , 𝑥0 = 1 4 5 4 3 3 2 

𝑓4 𝑥 , 𝑥0 = 2 5 9 Failed 5 5 4 

𝑓5 𝑥 , 𝑥0 = 1 Failed 7 5 4 6 3 

𝑓6 𝑥 , 𝑥0 = −1 4 6 Failed 4 4 3 

𝑓7 𝑥 , 𝑥0 = 3 4 7 4 4 4 3 

 

Table 3. Comparison of number of functions evaluation (NOFE) of different iterative methods. 

   

     Functions 

NOFE 

GM NNM KM YCM EAM OOM 

𝑓1 𝑥 , 𝑥0 = 1 16 36 24 12 20 10 

𝑓2 𝑥 , 𝑥0 = 7 8 18 12 8 10 10 

𝑓3 𝑥 , 𝑥0 = 1 16 30 24 12 15 10 

𝑓4 𝑥 , 𝑥0 = 2 20 54 ND 20 25 20 

𝑓5 𝑥 , 𝑥0 = 1 ND 42 30 16 30 15 

𝑓6 𝑥 , 𝑥0 = −1 16 36 ND 16 20 15 

𝑓7 𝑥 , 𝑥0 = 3 16 42 24 16 20 15 

ND – Not defined           NOFE – Number of Functions Evaluation 
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The computational results shows that OOM requires less iterations and number of functions evaluations (NOFE) 

than GM, NNM, KM, YCM, and EAM as far as the numerical results are concerned. Therefore, the new method 

(OOM) is of practical interest.  

V. CONCLUSION 
 We have shown that OOM is at least fifth-order convergent provided the first, second, third and fourth 

derivatives of the function exist. Computed results (Table 1) support the fifth- order convergence, and for some 

functions the Computational Local Order of Convergence (CLOC) is even more than five. We have also 
observed that, OOM needs less total function evaluation at iteration convergence points than some existing 

methods of same order compared with; it is evident by the computed results in (Table 3). Finally, it is hoped that 

this study makes a contribution to solve nonlinear equation. 
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