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𝑨𝑩𝑺𝑻𝑹𝑨𝑪𝑻: The whole point of classical dynamics is to show how a system changes in time; 

in other words, how does a point on the configuration space change once we give initial 

conditions? For a system with nonholonomic constraints, the state after some time evolution 

depends on the particular path taken to reach it. In other words, one can return to the original 

point in configuration space but not return to the original state. The main aim of this paper is, 

first we determine the Finsler deformations to the Matsumoto (𝛼,𝛽) −metric and we 

construct the Finslerian nonholonomic frame. Further we obtain the Finslerian nonholonomic 

frame for special (𝛼,𝛽)- metric i.e. ,𝐹 = 𝑐1𝛽 +
𝛼2

𝛽
 ,  (𝑐1 ≥ 0). 

𝑲𝑬𝒀 𝑾𝑶𝑹𝑫𝑺: 

              𝐹𝑖𝑛𝑠𝑙𝑒𝑟 𝑠𝑝𝑎𝑐𝑒, (𝛼,𝛽)−𝑚𝑒𝑡𝑟𝑖𝑐𝑠,𝐺𝐿 −𝑚𝑒𝑡𝑟𝑖𝑐,𝐹𝑖𝑛𝑠𝑙𝑒𝑟𝑖𝑎𝑛 𝑛𝑜𝑛𝑜𝑙𝑜𝑛𝑜𝑚𝑖𝑐  𝑓𝑟𝑎𝑚𝑒. 

 
I. 𝑰𝑵𝑻𝑹𝑶𝑫𝑼𝑪𝑻𝑰𝑶𝑵 

In 1982, P.R. Holland ([1][2]), studies a unified formalism that uses a nonholonomic 

frame on space-time arising from consideration of a charged particle moving in an external 

electromagnetic field. In fact, R.S. Ingarden [3]  was first to point out that the Lorentz force 

law can be written in this case as geodesic equation on a Finsler space called Randers space. 

The author Beil R.G. ([5][6]), have studied a gauge transformation viewed as a nonholonomic 

frame on the tangent bundle of a four dimensional base manifold. The geometry that follows 

from these considerations gives a unified approach to gravitation and gauge symmetries. The 

above authors used the common Finsler idea to study the existence of a nonholonomic frame 

on the vertical subbundle 𝑉 𝑇𝑀 of the tangent bundle of a base manifold 𝑀.  

Consider 𝑎𝑖𝑗 (𝑥), the components of a Riemannian metric on the base manifold 

𝑀,𝑎(𝑥, 𝑦) > 0 two functions on 𝑇𝑀 and 𝐵(𝑥,𝑦) = 𝐵𝑖(𝑥,𝑦)𝑑𝑥𝑖  a vertical 1-form on 𝑇𝑀. 

Then  

𝑔𝑖𝑗 (𝑥,𝑦) = 𝑎(𝑥,𝑦)𝑎𝑖𝑗 (𝑥)+ 𝑏(𝑥,𝑦)𝐵𝑖(𝑥)𝐵𝑗 (𝑥)                                            (1.1) 

is a generalized Lagrange metric, called the Beil metric . We say also that the metric tensor  

𝑔𝑖𝑗  is a Beil deformation of the Riemannian metric 𝑎𝑖𝑗 . It has been studied and applied by R. 

Miron and R.K. Tavakol in General Relativity for 𝑎(𝑥,𝑦) = exp 2𝜎(𝑥,𝑦) . The case 

𝑎(𝑥,𝑦) = 1 with various choices of 𝑏 and 𝐵𝑖  was introduced and studied by R.G. Beil for 

constructing a new unified field theory [6].  

In this paper, the fundamental tensor field might be taught as the result of two Finsler 

deformations. Then we can determine a corresponding frame for each of these two Finsler 

deformations. Consequently, a Finslerian nonholonomic frame for a Matsumoto 

(𝛼,𝛽) −metric and special (𝛼,𝛽) −metric i.e., 𝐹 = 𝑐1𝛽 +  
𝛼2

𝛽
 (𝑐1 ≥ 0) will appear as a 

product of two Finsler frames formerly determined. As if 𝑐1 = 0 then it takes form of 

Kropina metric case. 
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II. 𝑷𝑹𝑬𝑳𝑰𝑴𝑰𝑵𝑨𝑹𝑰𝑬𝑺 
An important class of Finsler spaces is the class of Finsler spaces with 

(𝛼,𝛽) −metrics [11]. The first Finsler spaces with (𝛼,𝛽) −metric were introduced by the 

physicist G. Randers in 1940, are called Randers spaces [4]. Recently, R.G. Beil suggested to 

consider a more general case, the class of Lagrange spaces with (𝛼,𝛽) −metric, which was 

discussed in [12]. A unified formalism which uses a nonholonomic frame on space time, a 

sort of plastic deformation, arising from consideration of a charged particle moving in an 

external electromagnetic field in the background space time viewed as a strained mechanism 

studied by P.R. Holland [1][2].If we do not ask for the function 𝐿 to be homogeneous of order 

two with respect to the (𝛼,𝛽) variables, then we have a Lagrange space with (𝛼,𝛽) −metric. 

Next we look for some different Finsler space with (𝛼,𝛽) −metrics.  
 

Definition 2.1. : A Finsler space 𝐹𝑛 =  (𝑀,𝐹(𝑥,𝑦)) is called (𝛼,𝛽) −metric if there exists a 

2-homogeneous function 𝐿 of two variables such that the Finsler metric  𝐹:𝑇𝑀 → 𝑅 is given 

by, 

𝐹2(𝑥,𝑦) = 𝐿(𝛼(𝑥, 𝑦),𝛽(𝑥,𝑦)), 
where 𝛼2 (𝑥,𝑦) = 𝑎𝑖𝑗 (𝑥)𝑦

𝑖𝑦𝑗 , 𝛼 is a Riamannian metric on 𝑀, and 𝛽(𝑥,𝑦) = 𝑏𝑖(𝑥)𝑦
𝑖  is a 

1 − 𝑓𝑜𝑟𝑚 on 𝑀 . 

  Consider 𝑔𝑖𝑗 =
1

2

𝜕2  𝐹2

𝜕𝑦 𝑖  𝜕𝑦 𝑗  
  the fundamental tensor of the Randers space (𝑀,𝐹), taking into 

account the homogeneity of 𝛼 and 𝐹 we have the following formulae: 

𝑝𝑖 =
1

𝛼
𝑦𝑖  = 𝑎𝑖𝑗

𝜕𝛼

𝜕𝑦 𝑗  
;           𝑝𝑖 = 𝑎𝑖𝑗 𝑝

𝑗 =
𝜕𝛼

𝜕𝑦 𝑖
;  

𝑙𝑖 =
1

𝐿
𝑦𝑖 = 𝑔𝑖𝑗

𝜕𝐿

𝜕𝑦 𝑗
;            𝑙𝑖 = 𝑔𝑖𝑗

𝜕𝐿

𝜕𝑦 𝑗
= 𝑝𝑖 + 𝑏𝑖 ; 

 

  𝑙𝑖 =
1

𝐿
𝑝𝑖 ;                      𝑙𝑖  𝑙𝑗 = 𝑝𝑖𝑝𝑖 = 1;          𝑙𝑖  𝑝𝑖 =

𝛼

𝐿
; 

 

                                           𝑝𝑖𝑙𝑖 =
𝐿

𝛼
;                 𝑏𝑖𝑝

𝑖 =
𝛽

𝛼
  ;       𝑏𝑖 𝑙

𝑖 =
𝛽

𝐿
. 

with respect to these notations, the metric tensors 𝑎𝑖𝑗  and 𝑔𝑖𝑗  are related by [13], 

𝑔𝑖𝑗 =
𝐿

𝛼
𝑎𝑖𝑗 + 𝑏𝑖𝑝𝑗 + 𝑝𝑖𝑏𝑗 + 𝑏𝑖𝑏𝑗 −

𝛽

𝛼
𝑝𝑖𝑝𝑗 =

𝐿

𝛼
 𝑎𝑖𝑗 − 𝑝𝑖𝑝𝑗  + 𝑙𝑖𝑙𝑗 . 

 
Theorem 2.1:  For a Finsler space (𝑀,𝐹) consider the matrix with the entries: 

𝑌𝑗
𝑖 =  

𝛼

𝐿
(𝛿𝑗

𝑖 − 𝑙𝑖𝑙𝑗 + 
𝛼

𝐿
𝑝𝑖𝑝𝑗 )                                                               (2.4) 

defined on 𝑇𝑀.  Then  𝑌𝑗 = 𝑌𝑗
𝑖  

𝜕

𝜕𝑦 𝑖
 , 𝑗 ∈ 1,2,… . ,𝑛 is an nonholonomic frame. 

Theore m 2.2:  With respect to frame the holonomic components of the Finsler metric tensor 

(𝑎𝛼𝛽 ) is the Randers metric (𝑔𝑖𝑗 ). 

𝑖. 𝑒                                                               𝑔𝑖𝑗 = 𝑌𝑖
𝛼𝑌𝑗

𝛽
𝑎𝛼𝛽 .                              (2.5) 

Throughout this section we shall rise and lower indices only with the Riemannian 

metric 𝑎𝑖𝑗 (𝑥) i.e.,  𝑦𝑖 = 𝑎𝑖𝑗𝑦
𝑗 , 𝑏𝑖 = 𝑎𝑖𝑗 𝑏𝑗 ,  and so on. For a Finsler space 

with (𝛼,𝛽) −metric 𝐹2(𝑥,𝑦) = 𝐿 𝛼(𝑥, 𝑦),𝛽(𝑥,𝑦)  we have the Finsler invarienrs  13 . 

𝜌1 =
1

2𝑎

𝜕𝐿

𝜕𝛼
;       𝜌0 =

1

2

𝜕2𝐿

𝜕𝛽2  
;     𝜌−1 =

1

2𝛼

𝜕2𝐿

𝜕𝛼𝜕𝛽
;      𝜌−2 =

1

2𝑎2  
𝜕2𝐿

𝜕𝛼2 −
1

𝛼

𝜕𝐿

𝜕𝛼
 :    (2.6) 

where, subscripts −2,−1,0, 1 gives us the degree of homogeneity of these invariants. For a 

Finsler  space with (𝛼,𝛽) −metric  
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we have:                                    𝜌−1𝛽 + 𝜌−2𝛼
2 = 0.                                                            (2.7) 

with respect to these notations, we have that the metric tensor 𝑔𝑖𝑗  of a Finsler space 

with (𝛼,𝛽) −metric is given by  13 : 

𝑔𝑖𝑗 (𝑥,𝑦) = 𝜌𝑎𝑖𝑗 (𝑥)+ 𝜌0𝑏𝑖(𝑥)+ 𝜌−1 𝑏𝑖(𝑥)𝑦𝑗 + 𝑏𝑗 (𝑥)𝑦𝑖 + 𝜌−2𝑦𝑖𝑦𝑗            (2.8) 

 
From (2.8) we can see that 𝑔𝑖𝑗  is the result of two Finsler deformations: 

𝑖)  𝑎𝑖𝑗 → 𝑖𝑗 = 𝜌𝑎𝑖𝑗 +
1

𝜌−2

(𝜌−1𝑏𝑖 + 𝜌−2𝑦𝑖)(𝜌−1𝑏𝑗 + 𝜌−2𝑦𝑗 ) 

    𝑖𝑖)  𝑖𝑗 → 𝑔𝑖𝑗 = 𝑖𝑗 +
1

𝜌−2
(𝜌0𝜌−2 − 𝜌−1

2 )𝑏𝑖𝑏𝑗 .                          (2.9) 

The Finslerian nonholonomic frame that corresponds to the first deformation (2.9) is, 

according to the Theorem 7.9.1 in  10 , given by: 

𝑥𝑗
𝑖 =  𝜌𝛿𝑗

𝑖 −
1

𝐵2
( 𝜌 ± 𝜌 +

𝐵2

𝜌−2
)    𝜌−1𝑏

𝑖 + 𝜌−2𝑦
𝑖 (𝜌−1𝑏𝑗+−2𝑦𝑗 )                   (2.10) 

where 

𝐵2 = 𝑎𝑖𝑗  𝜌−1𝑏
𝑖 + 𝜌−2𝑦

𝑖  𝜌−1𝑏
𝑗 + 𝜌−2𝑦

𝑗  = 𝜌−1
2 𝑏2 + 𝛽𝜌−1𝜌−2. 

The metric tensors 𝑎𝑖𝑗  and 𝑖𝑗  are related by: 

𝑖𝑗 = 𝑋𝑖
𝑘𝑋𝑗

𝑙𝑎𝑘𝑙                                                                                             (2.11) 

Again the frame that corresponds to the second deformation  (2.9) is given by: 

𝑌𝑗
𝑖 = 𝛿𝑗

𝑖 −
1

𝐶2  1 ± 1 +
𝜌−2𝐶2

𝜌0𝜌−2−𝜌−1
2  𝑏

𝑖𝑏𝑗 ,                                                         (2.12) 

where  

𝐶2 = 𝑖𝑗 𝑏
𝑖𝑏𝑗 = 𝜌𝑏2 +

1

𝜌−2

(𝜌−1𝑏
2 + 𝜌−2𝛽)

2. 

The metric tensors 𝑖𝑗  and 𝑔𝑖𝑗  are related by the formula: 

𝑔𝑚𝑛 = 𝑌𝑚
𝑖 𝑌𝑛

𝑗
𝑖𝑗  .                                                                               (2.13) 

 

Theorem 𝟐.𝟑: Let 𝐹2(𝑥,𝑦) = 𝐿 𝛼(𝑥,𝑦),𝛽(𝑥,𝑦)  be the metric function of a Finsler space 

with (𝛼,𝛽) −metric for which the condition (2.7) is true. Then 

𝑣𝑗
𝑖 = 𝑋𝑘

𝑖 𝑌𝑗
𝑘  

is a Finslerian nonholonomic frame with  𝑋𝑘  
𝑖  and  𝑌𝑗

𝑘  are given by (2.10) and (2.12) 

respectively. 

 

III. FINSLERIAN NONHOLONOMIC FRAME FOR (𝜶,𝜷) −metric 

In this section, we consider two Finsler spaces with (𝛼,𝛽) −metrics, such as Matsumoto 

metric and special (𝛼,𝛽) −metric 𝑖. 𝑒. ,𝐹 = 𝑐1𝛽 +
𝛼2

𝛽
  then we construct Finslerian 

nonholonomic frame for these. 

 

 
3.1 FINSLERIAN NONHOLONOMIC FRAME FOR MATSUMOTO  (𝜶,𝜷) −METRIC: 

In the first case, for a Finsler space with the fundamental function L = F2 =
α4

(α−β)2,  the 

Finsler invariants (2.6 ) are given by: 

ρ1 =
α2(α−2β)

(α−β)3 ,   ρ0 =
3α3

(α−β)4       ρ−1 =
α2(α−4β)

(α−β)4 , ρ−2 =
β(4α−β)

(α−β)4 .                          (3.1) 

B2 =
α2(α − 4β)2(b2α2 − β)

(α − β)8
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Using (3.1) in (2.10) we have, 

Xj
i =  

α2(α−2β)

(α−β)3 δj
i −

α2  

b2α2−β2  
  

α2(α−2β)

(α−β)3 ±  −
α2(−αβ2+2αβ2+2β3+b2α3−4b2α2β)

(α−β)4β
  bi −

βyi

α2   bj −
βyj

α2  .  (3.2) 

Again using (3.1) in (2.12) we have, 

Yj
i = δj

i −
1

C2  1 ±
 β(α−β)3C2

α2  bibj;                                                                         (3.3) 

where 

C2 =
α2(α− 2β)b2

(α− β)3
−
(α− 4β) b2α2 − β

2 
2

β(α− β)4
. 

Theorem 3.4: Consider a Finsler space L =
α4

(α−β)2 , for which the condition (2.7) is true. Then  

𝑉𝑗
𝑖 = 𝑋𝑘

𝑖 𝑌𝑗
𝑘   

 

is a Finslerian nonholonomic frame with Xk
i  and Yj

k  are given by (3.2) and (3.3) respectively. 

 

3.2 FINSLERIAN NONHOLONOMIC FRAME FOR SPECIAL (𝜶,𝜷) −METRIC 

 𝒊. 𝒆., 𝑭 = 𝒄𝟏𝜷+
𝜶𝟐

𝜷
: 

In the second case, for a Finsler space with the fundamental function  𝐿 = 𝐹2 =  𝑐1𝛽 +

𝛼2𝛽2, the Finsler invariants (2.6) are given by: 

𝜌1 =
2(𝑐1𝛽

2 + 𝛼2)

𝛽2
,       𝜌0 =

𝑐1
2𝛽4 + 3𝛼4

𝛽4
, 

                                    𝜌−1 = −
4𝛼2

𝛽3
, 𝜌−2 =

4

𝛽2
,                                                                  (3.4) 

𝐵2 =
16𝛼2(𝛼2𝑏2 − 𝛽2)

𝛽6
 

Using (3.4) in (2.10) we have, 

𝑋𝑗
𝑖 =  

2(𝑐1𝛽2 + 𝛼2)

𝛽2
𝛿𝑗
𝑖  

 

                                                    −
1

16

 
 
 
 
 
 
 

 
 
 

 
 𝛽6  

2 𝑐1𝛽
2+𝛼2 

𝛽2 ± 
2 𝛽4𝑐1−𝛼

2𝛽2+2𝛼4𝑏2 

𝛽4  

𝛼2(𝛼2𝑏2−𝛽2  )

 
 
 

 
 

  
4𝑦 𝑖

𝛽2 −
4𝛼2𝑏 𝑖

𝛽3   
4𝑦𝑗

𝛽3 −
4𝑎2𝑏𝑗

𝛽3    
 
 
 
 
 
 

               (3.5) 

 
Again using (3.4) in (2.12) we have, 

 

𝑌𝑗
𝑖 = 𝛿𝑗

𝑖 −
1

𝐶2
 1 ± 1 −

𝐶2𝛽4

𝛼4 − 𝑐1
2𝛽4

 𝑏𝑖𝑏𝑗              (3.6) 

𝑤𝑒𝑟𝑒 

𝐶2 =
2(𝑐1𝛽

2 + 𝛼2)

𝛽2
+

4(𝛼2𝑏2 − 𝛽2)2

𝛽4
. 
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Theorem 3.5: Consider a Finsler space L=  𝑐1𝛽 +
𝛼2

𝛽
 

2

,  for which the condition (2.7) is true.Then 

𝑉𝑗
𝑖 = 𝑋𝑘

𝑖 𝑌𝑗
𝑘   

is a Finslerian nonholonomic frame with 𝑋𝑘
𝑖  and 𝑌𝑗

𝑘   are given by  (3.5)and (3.6) respectively. 

 
IV. CONCLUSION 

Nonholonomic frame relates a semi-Riemannian metric (the Minkowski or the 

Lorentz metric) with an induced Finsler metric. Antonelli P.L., Bucataru I. ([7][8]), has been 

determined such a nonholonomic frame for two important classes of Finsler spaces that are 

dual in the sense of Randers and Kropina spaces [9]. As Randers and Kropina spaces are 

members of a bigger class of Finsler spaces, namely the Finsler spaces with (𝛼,𝛽) −metric, it 

appears a natural question: Does how many Finsler space with (𝛼,𝛽) −metrics have such a 

nonholonomic frame? The answer is yes, there are many Finsler space with (𝛼,𝛽) −metrics. 

In this work, we consider the two special Finsler metrics and we determine the 

Finsleriannonholonomic frames. Each of the frames we found here induces a Finsler 

connection on 𝑇𝑀 with torsion and no curvature. But, in Finsler geometry, there are many 
(𝛼,𝛽) −metrics, in future work we can determine the frames for them also. 
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