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ABSTRACT :This paper exploited the results in Ukwu [1 ] to obtain the cardinalities, computing complexity
and alternative optimal expressions for the determining matrices of single — delay autonomous linear neutral
differential systems through a sequence of theorems and corollaries and the invocation of key facts about
permutations. The paper also derived a unifying theorem for the major results in [1].The proofs were achieved
using ingenious combinations of summation notations, the multinomial distribution, change of variables
techniques and compositions of signum and max functions. The computations were mathematically illustrated
and implemented on Microsoft Excel platform for some problem instances.
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l. INTRODUCTION

The importance of determining matrices stems from the fact that they constitute the optimal
instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets.
See Gabasov and Kirillova [2] and [3 and 4]. In sharp contrast to determining matrices, the use of indices of
control systems on the one hand and the application of controllability Grammians on the other, for the
investigation of the Euclidean controllability of systems can at the very best be quite computationally
challenging and at the worst mathematically intractable. Thus, determining matrices are beautiful brides for the
interrogation of the controllability disposition of delay control systems. See [1].However up-to-date review of
literature on this subject reveals that there was no correct result on the structure of determining matrices single —
delay autonomous linear neutral differential systems prior to [1]. This could be attributed to the severe difficulty
in identifying recognizable mathematical patterns needed for inductive proof of any claimed result. This paper
extends and embellishes the main results in [1] by effectively resolving ambiguities in permutation

infeasibilities and obviating the need for explicit piece-wise representations of Q, ( jh), as well as conducting

careful analyses of the computational complexity and cardinalities of the determining matrices, thus filling the
yawning gaps in [1] and much more.

I1.  On determining matrices and controllability of single-delay autonomous neutral

control systems
We consider the class of neutral systems:

%[x(t) —A x(t—h)]=Ax(t)+ Ax(t—h)+Bu(t), t=0 (1)
where A_;, Ay, Ay are nxn constant matrices with real entries and B is an nx m constant matrix with the
real entries. The initial function ¢ isin C ([, 0], R") equipped with sup norm. The control U is in

L, ([O, tl], R" ) Such controls will be called admissible controls. X(t) , X(t — h) eR" for te [0, t1] If
Xe C([—h, tl], Rn),then fort e [O, tl] we define X, € C([—h, 0], Rn) by

x(s)=x(t+s), se [— h, O].
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2.1 Existence, uniqueness and representation of solutions

If A, # 0 and ¢ is continuously differentiable on [— h, 0], then there exists a unique function X: [—h, oo)

which coincides with ¢ on [— h, O], is continuously differentiable and satisfies system (1) except possibly at

the points jh; j = 0,1, 2,.... This solution x can have no more derivatives than ¢ and continuously
differentiable if and only if the relation:

$(0)=A, ¢(-h)+Ap (0)+A, #(-h)+Bu(0) )
is satisfied. See Bellman and Cooke (1963) and theorem 7.1 in Dauer and Gahl (1977) for complete discussion
on existence, uniqueness and representations of solutions of system (1).
The process of obtaining necessary and sufficient conditions for the Euclidean controllability of (1) will be
initiated in the rest of the work as follows:
[1]  Obtaining a workable expression for the determining matrices of system (1):

Qk(jh) for j:t-jh>0, k=12,. (3)
[2] Showing that:
AXY (t, - jht) =(-1)' Q (i) (4)

for j:t,- jh>0, k=0,1,2,....,
[3] Showing that Q. (tl) is a linear combination of:
Q(s),Q(s),-+Q,.(s),s=0,h,....(n-1)h (5)

Sequel to [1], our objective is to embellish and unify the subtasks in task (i) as well as investigate the
cardinalities and computational complexity of the determining matrices. Tasks (ii) and (iii) will be prosecuted in
other papers.

We now define the determining equation of the nx n matrices, Q) (S) .
For every integer k and real number s, define Qy (S) by:

Q (s)=A.Q.(s—h)+A, Q. (s)+A Q. (s—h) (6)
for k=0,1,...;5s=0,h, 2h,..... subject to QO(O) = |, the nxn identity matrix and

Qu(s)=0 for k<0 or s<0.
Ukwu [1] obtained the following expressions for the determining matrices of system (1)

2.2 Theorem on explicit computable expression for determining matrices of system (1)
Let j and k be nonnegative integers.

Q,(Jh)
If j>k>1then = > A, AL+ > A, A
)

(VY € Poagyo00) (Vvi) € P
k-1
+ 2 A A

r=1 (Vi Vjer) € Poy(rsjok),0(r),1(ker)

If k> j>1,then
Q. (jh)
= Z All"'A/. + Z Afl"'A/k

j+k
(Vi Vi) € Pagyo) (V) € Pogsjyagy
j-1
+2 > A A

r=1 (Vp, - Vier) € Pa(ry, o(r +k=),1( j-r)
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The cases j >k and k > j, in the preceding theorem can be unified by using a composition of the max and
the signum functions as follows:

2.3 Theorem on computations of Q, (jh) of system (1) using a composite function

Let j and k be positive integers.

Then

Qi = Y AA,

(Vs € Py o

+{ S OA-A+YS S AAL }sgn(max{o,m—k})
(

Ve Vi) € Py ae) r=1 (v, Vi) € Poy(rijoi),o0r)1ker)

+ { > A, At JZ > A, A }Sgn(maX{O,k—j})
(

Ve Vie) € Pokojyag) r=1 (v, = Vier) € Poye),o(r+k-j)acjon)

Proof
If j >k, sgn(max{0,k — j}) annihilates the accompanying summations, and the summations accompanying

sgn(max{0, j +1—Kk})are preserved, in view of the fact that sgn(max{0, j +1—k}) =1. This coincides with
2.2for j>Kk.

If k> j, sgn(max{0, j +1—k})annihilates the accompanying summations, and the summations
accompanying sgn(max{0, k — j}) are preserved, since sgn(max{0,k — j}) =1.

This coincides with theorem 2.2 for K > j. The case j =K is embedded in ¢ j > K.’ This completes the proof.

2.4 Theorem on Computations of .. of system (1) using min and max functions
Let jand k be positive integers.

Qi = Y AA,

(Ve V) € oo

+ Z A’l o A’max{j,k}
(Ve Vimaxg j k) ) € Poamaxg j—k,03), 0(max{k—j,03), 1(min{ j k3)
min{j,k}-1
+ E E oo e
A’l A/max{j,k}rr
Proof r=1 (Vi3 Vicer ) € Pa(romax j—k,03),0(r +max{k—j,0pL(min{ j k})

If j >k, sgn(max{0, k — j}) annihilates the accompanying summations, and the summations accompanying
sgn(max{0, j +1—k})are preserved, in view of the fact that sgn(max{0, j +1—k}) =1. This coincides with
theorem 2.2 for j > K.

If K> J, sgn(max{0, j +1—k})annihilates the accompanying summations, and the summations
accompanying sgn(max{0, k — j}) are preserved, since sgn(max{0,k — j}) =1.
This coincides with theorem 2.2 for K > j. The case j =K is embedded in * j > K.’ This completes the proof.

2.5 First corollary to theorem 2.3

(i) IfA, =0, then, Q (jh)= A‘f + z AM Ak sgn(max{0,k +1- j})

(v i) eRogjyach

0, if min{j,k} > 1
(i) IFA, = A, =0, then, Q (jh)=1 0, if k=0, j#0

AL if =0,k 0
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Proof of (i)

A, = 0= no term survives in the expression for Q, (jh), for j > K, since that condition forces A , to
appear in every feasible permutation; infeasible permutation products are equated to zero. We are left with the

case j <k, for which only Alk + Z A,l .- A,k survives.

(v Vi) €R -y
Notice that sgn(max{0,k +1— j}) =0 if j>K, and 1 otherwise. This completes the proof of (i)
Proof of (ii)
A =A =0=Q(jh)=0,for min{j,k}>1.Then by an appeal to lemma 2.4 of [1], it is clear that only

Q. (0)= A'S survives. This completes the proof of (ii).

2.6 Second corollary to theorem 2.3
For all nonnegative integers j, k and real h >0,

Q ([i-1nA,+Q._(iNA, +Q  ([i-1h)A =A Q ([j-1h)+AQ_,(ih)+AQ , ([i-1]h)

Proof

We note from the determining equation (6) that Q, (jh) = A ,Q, ([j —1]h) + AQ, ,(jh) + AQ, ,([j—1]h).
From the proof of theorem 2.2, we deduce that

Q ([i-1UMA, +Q(JMA +Q([J -1 A,

0
S RS D Y
==L (vy,V i) € Plcoc Te{-L1} (vi,V ) € Pligi o000
1 k-1

2 2 A A

==1r=1 (vy, V) € P00 agken)

:Z z A\zl“'A\/M"‘ Z z A/l"'p\/j

i==1(vy, V) € Py ock Tel-L1 (vi, ¥ i) € PG o000

Z A\fl""%j”

i=—1r=1 (V1v"‘ij+r) € lei(rﬂ—k),o(r),l(k—r)
=Qc(ih)=AQ ([J-1n)+ AQ._.(ih)+ AQ([i -1]h),

as desired. The proof for the case k > j is similar, using the expression for Q, (jh).

1]
4N

k-1
+

M-

3. Computational complexity of Q, ( jh)
|Q, (jh)|=0,for min{j,k}<0,|Q (0)|=1 vk 21,|Q,(jh)| =1, j = 0. By theorem 2.2, for
min{ j, k} >1, integers, |Qk (jh)| is the number of nonzero terms (products) in Q, ( jh).
Let C, denote the number of terms in the i™ component summations in Q, (jh); let Q" (jh) denote the

i™ component summations, for i €{1, 2, 3}; let C = C,+C, +C,. Then, we have the following complexity
table:
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TABLE 1: Computing Complexity Table for Q, (jh) with respect to system (1)

Number of nonzero terms Number of Size of permutation
= Number of nonzero products additions = sum of powers of
the A,s
OGhy | L (k) (1K) (+k C,-1 j+k
ok L) Lk
QUM |« _ (D _(I)_[ C,-1 J
2 (j-k)k! Lk j—k
S (jh) =ki (j+n)! C,-1 j+re{l-- k-1}
U+ -K)Ir(k=r)! min size = j+1,
max= j+k-1
" ¢ C-1
QL) _ [tk () +"i (j+r)!
k k) &+ j-k)'rik-r)!
_[i+k N 1) &(i+r)(k
Lk k] &l k r

The complexity table for Q, (jh), K > j is obtained by swapping

jandk. Q,([k + p]h) and Q,., (kh) have the same complexity, for every nonnegative integer, p.

TABLE 2: Electronic Implementation of Computations of Q, (jh), j =K for selected inputs

EXCEL Computations for the number of terms in

[Q(ih), j>ke{2, 8 k<j<k+2]
5 6 7

r = 1 2 3 4 Cardinality

k J Cl+ C2| C3 components | T=C ratios
2 2 7 6 13

2 3 13 12 25 1.92
2 4 21 20 41 1.64
3 3 21 12 30 63 1.54
3 4 39 30 60 129 2.05
3 5 66 60 105 231 1.79
4 4 71 20 90 140 321 1.39
4 5 131 60 210 280 681 2.12
4 6 225 140 420 504 1289 1.89
5 5 253 30 210 560 630 1683 1.31
5 6 468 105 560 1260 1260 3653 2.17
5 7 813 280 1260 2520 2310 7183 1.97
6 6 925 42 420 1680 3150 2772 8989 1.25
6 7 1723 168 1260 4200 6930 5544 19825 2.21
6 8 3031 504 3150 9240 13860 10296 40081 2.02
7 7 3433 56 756 4200 11550 16632 12012 48639 1.21
7 8 6443 252 2520 11550 27720 36036 24024 108545 2.23
7 9 11476 840 6930 27720 60060 72072 45045 224143 2.06
8 8 12871 72 1260 9240 34650 72072 84084 51480 265729 1.19
8 9 24319 360 4620 27720 90090 168168 180180 102960 598417 2.25
8 10 43803 1320 13860 72072 210210 360360 360360 194480 1256465 2.10

Table 2 was generated using table 1 and an embedded Microsoft Excel sheet.
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TABLE 3: Q, (jh) Cardinality Summary Table with respect to system (1)

k ] _ No. of terl_ns in Q, (jh) Cardinality No. of terms

Q. (jh); ke{2,---,8}, jefk, k+1k+2}. ratios in
Q, (kh)

2 2 13 13

2 3 25 1.92

2 4 41 1.64

3 3 63 1.54 63

3 4 129 2.05

3 5 231 1.79

4 4 321 1.39 321

4 5 681 212

4 6 1289 1.89

5 5 1683 131 1683

5 6 3653 2.17

5 7 7183 1.97

6 6 8989 1.25 8989

6 7 19825 221

6 8 40081 2.02

7 7 48639 121 48639

7 8 108545 2.23

7 9 224143 2.06

8 8 265729 1.19 265729

8 9 598417 2.25

8 10 1256465 2.10

A glance at Table 3 is quite revealing. Notice how quickly the cardinalities of Q, ( jh) grow astronomically
from 13, for j+k =4, 101,256,465, for j+k =18. In particular, observe how the cardinalities of
Q, (kh) leap from 13, fork = 2 , to 1683, for K = 5. How, in the world could one manage 1683 permutations
for just Q5 (5h), not to bother about Q, (kh) , for larger k. it is clear that long-hand computations for Q, (jh),
even for j+k =10, are definitely out of the question.

Practical realities/exigencies dictate that these computations should be implemented electronically. These
challenges have been tackled headlong; the computations for Q, (jh) and their cardinalities have been achieved
onthe C* platform, for any appropriate input matrices, A ;, A,, A, and positive integers

j,k :min{j,k}=>1, using theorem 2.2; needless to say that the cases j,Kk : jk =0 have also been

incorporated in the code, using lemma 2.4 of [1].
Now we have adequate tools to establish necessary and sufficient conditions for the Euclidean controllability of

system (1) on [O,tl] .

1V .1llustrations of mathematical computations of __ with respect to system (1):
_ Q. (ih)
QUM= X AAF Y A A
(V1 Vjik) € Py, o) (Vi) € Py

k-1
Q. (jh= + ZZ AL Al...%,for J'Pvlkzbvk
(V- T NP Yy Pacr 000100 (V) € Pogejyacy
j-1
+Z Z A, A, for k2 j21

r=1 (V. Vier ) € Poagry,or sk j)a(j-r)
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QEN= Y AAE Y AAT Y AA

(Vir++Va) € P12 002) (v1,v2) € Py (Vi2++V3) € Py oy 1)
= AEIA)Z + A?Afl + Afl'AbAflA) + A)AflAOAfl + AflA(?Afl + AOAElAO + A12
+AAA T AAAAAA+TAAA TAAAFAALA (7)

= AUA + AR+ AAAL A+ AAA + A NN + AR AR+ AR A+ AN AA,
A AAAAHAANA AN NA AAA+RAA+RAA+ANA
+AAA+ANA+AAN AAN +AAAA + AN AR, +A AALA
FAAAA+AAAA, (8)

and replace 1 by 0 in those permutations involving only the indices 1 and 1. Therefore:

= AA + AR+ A AA+ AR A AR+ ARNA +AARA + AN AA,
+ AflA)zA—lA\)A—l + A\)A—ZlAbA—lAO + A—ZlA)zA—lAO + AJZA—ZlAOAl + AflAO'ALZlAO2 + ADA—lAOZAEl
+ A—ZlA)'A\—lAO2 + AfA—lpbA—zl + A—lA)A—lAOA—lAO + A)A—lAOA—lpbA—l + A—lAOZA—lAOA—l
+ AN AA A +A

To obtain Q, (2h), simply swap the indices 0 and —1 in the expanded expression for Q, (3h)

Q3 (2h) = A?A—Zl + A—ZIA\? + A.)zA—lA)A—l + A\)ZA—zlA) + AJA—ZlA)Z + Afl'A\)'A\—lAD2 + AflA\;;A—l
FAAALAHAAAAAHAANA AN KA+ AAA+AAA
FAAA FANA AN ANA T AAN AN HAAAA
FAAALA T AARA T AAAATAAAA ©)

QEN= Y A A+ Y ASALY Y AA,

(v, Vs) € P30 (v1,--V3) € By, r=l (v, Vs )eP_aryocr )0

FAAA AA A AN AN+ ARAA +AAAA+AAN +A AN
FAAALA +AAAA+ANA+ANA A AAA

4.2 lllustrations of Mathematical Computations of |Q, (jh)| with respect to system (1)
FALACA A AN AAAANAN A NA A A NAA HAANA,
AN AN+ AR AA+AAR A+ A AAA+AAAAA+AAA AA
+FA_1A;]A1A_1A2~0; AAAAA+ANK +ANA +AAA AN+ AAAN,
TRTARRREA A AA, + A AA A +AAALA + A AA, +AAAAA,

FAAAA A +AAAA A+ AAAAA +AAAAA L +AAAAA (0)
4) (2) &
1Q,(2h)| == (2]+[2j+2%:6+1+6:13. 1D
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_(6) (3) & (r+3p! 41 58 B
1Q,(3Nh)|= (3j+(3J+§—r!(r)!(3—r)!_20+1+2!+2!2! =33+30=63. (13)

jHk) (max{j k}) mindiit (r+max{j,k})!
il =], = ( j( k )+ 2 ri(r-+[j =k H(mingj, K}-1)!

(5 3) & (r+3)! 41
1Q,(3h)| = (2j+[2j+z;rl(r+l)l(2 =t =10+ 3+2|_25. (12)

These are consistent with the number of permutation products obtained in the computations of
Q. (jh),for j,k e{2,3} in subsection 4.1:

|Q,(4h)] = (;j+[g+i&=35+4+i+i=129. (14)

= ri(r+1)13-r)! 2121 213!
Above computations could be effected using the following established results:

Ifj2k22,|Qk(jh)|=[ 1+ ] ('}“ (i+r)!

S(j+r—k)ri(k—r)

(O -
neys o

It is clear that the mathematical implementation of is computationally prohibitive for
min{j,k}> 4.

KY (k) & j+r)!
sz ) S

1. CONCLUSION
The results in this article attest to the fact that we have embellished the results in [1] by deft application
of the max and sgn functions and their composite function sgn (max {.,.}) in the expressions for determining
matrices. Such applications are optimal, in the sense that they obviate the need for explicit piece—wise
representations of those and many other discrete mathematical objects and some others in the continuum.
We have also examined the issue of computational feasibility and mathematical tractability of our results, as
never been done before through indepth analyses of structures and cardinalities of determining matrices.
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