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Relationships among determining matrices, partials of indices of
control systems matrices and systems coefficients for single—delay
linear neutral control systems.
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Department of Mathematics
University of Jos P.M.B 2084 Jos, Nigeria

ABSTRACT: This paper obtained various relationships among determining matrices, partial derivatives of
indices of control systems matrices of all orders, as well as their relationships with systems coefficients for
single — delay autonomous neutral linear differential systems through a sequence of lemmas, theorems and
corollaries and the exploitation of key facts about permutations.

The proofs were achieved using appropriate combinations of summation notations, multinomial
distribution, change of variables techniques and deft deployment of skills in the differentiation of matrix
functions of several variables.
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. INTRODUCTION
The importance of the relationships among determining matrices, indices of control systems matrices
and systems coefficient stems from the fact that these relationships pave the way for the determination of
Euclidean controllability and compactness of cores of Euclidean targets. This paper brings fresh perspectives to
bear on such relationships.

The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) below on
the interval [0, t1]’ using determining matrices depends on

(i) Obtaining workable expressions for the determining equations of the nxn matrices @y (k). for
jit,—jh>0k=0,1,-

(ii) Showing that AX " (¢, — jh, t,)=(—1)%Q,(jh).for j: t, — jh = 0,k = 0,1, ..
where AX® (¢, — jht,) = X®((t, — jh).8,) — X ((t, — jh)7.8,)

(iiiy  showing that @ (t,) is a linear combination of Q,(S),Q,(S), -+, Q,4(s);s=0,h,---(n-1)h.

Our objective is to prosecute task (ii) and (iii). Tasks (i) has been prosecuted in Ukwu [1].

I1. IDENTIFICATION OF WORK-BASED DOUBLE-DELAY AUTONOMOUS CONTROL
SYSTEM

We consider the single-delay autonomous neutral control system:

x(t)=Ax(t—h)+Ax(t)+ Ax(t—h)+Bu(t);t=0 @
x(t)=¢(t),te[-h,0],h>0 (2)

where A |, A,, A, are NxN constant matrices with real entries, B isan NxmMm constant matrix with real

entries. The initial function ¢ isinC ([—h, O], R" ) , the space of continuous functions from [—h, 0] into the

real n-dimension Euclidean space, R" with norm defined by||¢|| = sup ‘¢(t)‘, (the sup norm). The
te[—h,O]
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control u is in the space L _ ([O, t1]1 R" ) the space of essentially bounded measurable functions taking [O, tl]

into R" with norm ||¢|| = esssup|u(t)|.
t [0, ;]

Any control ue L, ([O,tl], R”) will be referred to as an admissible control. For full discussion on the spaces

C*'and L, (orL”), pe{l, 2,...,0}, see Chidume [2 and 3] and Royden [4].

X (z, 1)
—k’k:
or

Lett, 7 € [O,tl]. For fixed t, let 7 — X(T, t)satisfy the matrix differential equation:

1.2 Preliminaries on the partial derivatives 0,1,

%X(r,t):%x(T+h,t)A_1—X(T,t)AO—X(T+h,t)A1 3)
for 0<z<t, 7 #t—kh k=0,1,... where X (7, t)={ (I)'.‘;TT;t

See Chukwu [5 and 6], Hale [7] and Tadmore [8] for properties of X (t, r) . Of particular importance is the
fact that 7 —)X(r,t) is analytic on the intervals(t1 - (] + 1)h, t, -] h), j=01..,t - (j + l)h > 0.
Anysuch 7 € (t1 - (j + 1)h, t, -] h) is called a regular point of 7 — X(t, r). Let X (r,t)denote
ak
ot
(tl - (] + 1)h, t,- ] h); j=0.1,..., r, for some integer r such that t; - (r+1h>0.

X(z,t,) . the k™ partial derivative of X(7,t,) with respect to z, where 7 is in

wiite X9 (2,8) = 2 X¥ (n.t,).
ot
Define:
ax® (- jh,t) = XY (6.t ih) 4 ) =X ((L-ih) L), (4)
for k=0,1,..;j=0,1..t - jh>0,
where X ((tl -] h)_ , tl) and X (tl,(tl -] h)+ ,tl) denote respectively the left and right hand limits

of X(k)('r,tl) at 7=1;— Jh. Hence:

; ()
X®(t—jhy.t)= lim X (r,tl) 5
((t—ijh)t) el ©)
t,—(i+Dh<z<t —jh
— ()
X®((t —jh)*,t )= lim X (T’tl) 6
(-imne)= 0, (6)

t - dh<r<t ~(i-Dh
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2.2 Definition, existence and uniqueness of Determining matrices for system (1)
Let Q, (S) be then Nx N matrix function defined

by: Q (S) =A.Q, (S - h) +AQ (S)+ AQ., (S - h) (7
for k=1,2,---; s> 0, with initial conditions:
QO (0) = In (8)
Q(s)=0;k <0 ors<0 9)

These initial conditions guarantee the unique solvability of (7). Cf.Gabasov and Kirillova [9].

1. MAIN RESULTS
The investigation in this section will be carried out through the following sequence of results.

3.1 Theorem relating AX “)((t, — jh), t,) to Q, (jh)
For all nonnegative integers j : t — jh >0, and for k €{0,1,---,}:

AXP(t - jht) = (-D)*Q,(jh) (10)
Proof

IFk =0,then AX®(t, ~ jht)) = AX (t, — jh.t) = A, =Q, (jh) = (-D¥Q, (jh), with k =O.
By lemma 2.7 of [1], AX (")((tl - jh),t) :—Zj:{zl: AX D ((t, = (] —(r+1)h),t)A }A_rl,

r=0[_i=0

k=1= AXO((t, - jh),t) = —i[zllAX (-(-(r+ i))h),tl)Af}Arl

r=0[ i=0

=3 AX (&~ (= ILA, +AX (G- (= (D). A A,

= —i[AX ((t,—(j=nh),t)A, A, - J [Ax ((t,—(j-r=Dh),t)A, |A",

=—i[AX (= (i—nh).t)A, A, - Z[Ax ((t,—(i—r-Dh)t)A, A,

r=0

(since AX((t, - (j—r-Dh,t) =0, for r = j)

- _Z[A_Jl“AO A, - Z[AJ A, A, (by vii of lemma 2.4 of [1] )
r=0

:_A_jerO_Zj:[A_jero:'Ar j]'I:Aj r-1 :|
r=1 r=0

——AI"A, —i[A}l"ﬂ)Ao e S [ ALA, AT, (by change of variables)
r=0 r=0

_ it _ i1 _ )
=-A"A _Z[A—Jl_(Hl) (AA, + Al)JA—rl =—AL"A - z AL (AA, + Al)A—Jl_(Hl) =Q,(jh)
r=0 r=0

(by change of variables F = j—(r +1) and then by iv, lemma 2.4 of [1])
Therefore, the theorem is true for k {0, 1}.
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The rest of the proof is by induction on
Assume that the theorem is valid for 2 <k < p, for some integer p, and for all j such that

t,—jh>0.
k. Then, AX ®((t, - jh),t1)=—i{iAx Ot~ (- (r+ i»h),toA.}Ail,

r=0[ i=0

(by lemma 2.7 of [1]).

= —i{i (=D°Q,([j—(r+iIn)A }Arl (by the induction hypothesis)

r=0 i=0

i{y 1 Q([J—(r+l)]h)A}Ar (1*’“2[@ (L~ I A, +Q, ([ —r -1 A, A,

r=0L i

= (P13 [Q, (i~ FIN) - Qpu ([~ ~TI)A, A, (by lemma 2.7 of [1])

r=0

()P [Q, (i - FIN A, +Q, (i - L A, A,

= (D" [ Qi ~ 1IN~ Qyua([i — F ~ W A, JAY, (by lemma 2.7 of [1])

Now we proceed to obtain the above sum by writing out the equivalent
exp ressions for each r and then summing the equivalents:

r=0= Q,(iNA, +Q,([J-1n)A, =Q,..(jh) - Q. ([i-1MA

r=1= Q,([i-UNA, +Q,([i-2INA)A,=Q,,([i-1NA, -Q,.([j-2In)A%)
r=2= (Q,([i-2INA, +Q,([i-3IN)A)A% =Q,..([i —2IN)A% -Q,..([j -3l A
r=3= (Q,([i-3INA,+Q,([j —4]h)Al)Afl =Quu([i—3INA% —Q, ([i —41h) A%,

The process continues up to r = j, yielding

r=j-1= (Qu(i—(i-DINA,+Q,([i- ilh)A)AL"
Qo ([i—(J—DINA—Q, ..([i— jIh) AL

r=j = (Q,([i—ilA,+Q,([i—(i+DIh)A)AL
Qua([i—NINAL —Q, . ([i— (i +DIn)AL*

Adding up the terms on the right-hand side for r =0,1,2,---, J , it follows that only the first term

corresponding to r =0 and the last term corresponding to ¥ = j survive the summation; all other terms cancel
out. Therefore:

3.2 Corollary to theorem 3.1

Let w(c,7)=c"X(t,7),ceR". Let w“(c,0) =Y (c,77)—w ¥ (c, ")
k

for 7 € (0,0), where ) (c,7) = aa_k‘/’(C,T). Then:

T

Ay (c,t,— jh) = (1) c"Q, (jh)B, 11)
for j:t,—jh >0, k=0,1,...

WWWw.ijmsi.org 4|Page



Relationships among determining matrices, partials of indices of...

Proof
The proof is immediate by noting that

Ap®(c,7)=c"AX ¥ (z,t)B. Hence Ay™ (ct, - jh)=(-1)"c'Q,(jh)B
for j:t,—jh > 0,k =0,1,... (by the preceeding theorem).
The following sequence of lemmas is needed in the proof of theorem 3.6

k
2
3.3First Corollary to Eq. 9: Expressing the partials of (Z ,uiAj in permutation form
i=0

Let j,k, r be any nonnegative integers, j, k fixed suchthatj>r, and k >r. Then
8k+|’ k+r
a
@ Op. lall'l0+k Ja o |:|—Z—‘1[u| }
=rl(r+k—j)I(j-r)! > A, ...A,_ ifj<k,

(Ve Vicar JEP-1(r), 0(r+k= ) (1)

O T[Sl

ou'y’ k@,u(;@,ul i=—1
=(r+j—k)!rik—r)! > A, A Tk

(V- Visr)EP 304 jok), 0(r)A(k-r)

Proof
(a) And (b) follow from (9) with i =2 replaced byi =—1 and noting that the superscript triples

r,r+k—j, j—r; r+ j—Kk,r,k—r areall nonnegative and therefore feasible. Moreover they are

consistent with (9) as they sumto k +r and j+r in (a) and (b) respectively. This completes the proof.
From above we have the following relations:

L il {Zu. } - > A A (2)

rir+k—jij—r)toy 16#0+k Ja - (Ve Vi JEP_1 (1), 0(r+k= )2 j=r)

L o {ZM} - > A A (3

r+j-k
(r+ j=ktrik =)t ou'y ogou™ L V- Viar SRy k). 0n) a(kr)

Now sumover r e{l,---, j—1} in (12) to get:

j-1 1 o k+r
2 NTE = {Zu. }

r=1 r!(r +k— J)I(J - r)l aﬂ—rlaﬂ0+k Ja - i=—1
-1
= > > A, A, (14)

r=1 (Vy,.. Virr JEP_1(1), 0(r k= )2 j=r)

Now sumover r €{l,---,k —1}, in (13) to get:

1

Z_: ; - '76 : k-r {Z ﬂip\}

1 (r+ J=ktri(k —n)tou'; ™ oo™ | 3
k-1
> > A, A (15)

= (Vi Vier )EP_g iy joky,0(r) A(k=r)
Therefore, we have proved the following lemma.
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2 k
3.4 Lemma expressing components of Q, ( jh) as a sum of partial derivatives of (z A j
i=0

Let j, k,r be any nonnegative integers, j and k fixed such that j >randk >r, j+k = 0.Then:

j-1 1 ak+r k+r
a
@ T DG Jaﬂ’{. “A }
j1

=2 > A, ..A,_ ik (16)

=1 (Vo Vi JEP_1(r) 0 (k= )2 j=r)

0 3 L aw {Zu. }

= (r+j-k)Irik—r)tou™*o

k-1

= > A, AL T2k 17)
r=1 (Voo Vier )P g (r1 jok), 0(r)2(k-r)
© 1 ik [Z :|J+k Z A LA 8
c) — A = LA
J'k' 6#1 aﬂo i=—1 (Vlw---Vj+k )Ep—l(j),o(k) Ik
k
1 . .
d) —— [ A } - A A, IF k=] (19)
(k- J)'J'auo Jaﬂl Z (V1v--<Vk);c;<kfj),1(j) ' ‘
1 Y :
©)— > A = A,..A,. if jzk (20)
(J—K) Ikt opl o) ieél} (V. Vi )EE(H),M) ' J

Proof
Analogous to the proof of corollary 3.6.9 of [10], the superscripts are all feasible and consistent with (9);

consequently the lemma is proved. Note that min{j, k} > 2 for explicit computational feasibility of (a) and (b).
Further, the following result is needed to achieve our objective:

1 k

iefi,i,}

summations

0 ‘ 1 ‘
(a) [.Z uiA.J =(Z #iA.]
i=—1 i=—1 2

=0
5l
2k 2 ~ :
=X T = Ao A kel
J:O r=0 ( V)epl(r+J k), 0(r),1(2k— J Zr) /,[1:0
1 ‘ 1 '
(b) D uA | = 2 A
i=0 i=1 #y =0
IS
2k 2 i
:NZ 3 ,U,HJ /—‘;/Ul j-2r > All Alk k=1
j=0 r=o0 Vo VI EP L, 00,202k F-21) #q=0
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2 ; .
o u p) A, A, k21

] 0 (Vi VD EP k) 0, 12k f-2r) ty =0

Proof

1 k
First, note from theorem 3.2 of [11] and theorem 3.6.8 of [10], that (Z yi/-\,j equals the right-hand side

i=—1
without the evaluations at U, =0, if 'i = 2" isreplaced by 'i =—1'and j is replaced by j.
(@) The proof is immediate, observing that 'z, =0 " annihilates all the terms containing

k
0
A, thereby yielding the equivalent expression for (Z yiAJ X
i—1

(b) 'z, =0" zeroes out all the terms containing « , A ,, thereby yielding the equivalent

k
1
expression for( ﬂiAij ;

i=0
(c) 'u, =0 "eliminates all the terms containing ,A,, thereby yielding the equivalent
k
expression for A |
ie{ 11}

In the sequel, set
By the generalized Cayley-Hamilton theorem,
n-1 1 k
Fr = kZ(;ak (u)(zﬂi/\j ,
Z i—
where the ¢, (1)s are polynomials of degree n+1—k with respect to the zS; 1 = (22, 4y, 14)-
The stage is now set to prove the equality of ranks of some concatenated determining matrices for finite and
infinite horizons, using lemmas 3.4, 3.5 and the generalized Cayley-Hamilton theorem.
3.6 Theorem on Rank Equality of some concatenated determining matrices
Let:
Q,(t) =[Q(9)B.Q(S)B,~,Q,,()B:s€[0,1),5=0,h,---,(n-Dh], (21
where Q, (S) is a determining matrix for the free part of (1) and is defined by (7)
Then:

rank| Q. (t) | =rank| Q,(t,) | (22)
F= Zl: A

i=—1
Generalized Cayley-Hamilton theorem, Lew (1966, pp. 650-3):

In the sequel, set
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AT

where the ¢, (1)s are polynomials of degree n+1—k with respect to the S; 11 = (14 4, 14y, 14)-
By lemma 3.4:

1 aHk 0 j+k 1 I
- M +— ,Ll, (23)
J 'kl 6,” 1aﬂo |:Z—l j| (J - k)lk' aﬂo ka:ul |:|€{zll} :|

k-1 1 ajﬂ’ 1 =T
+ - A
Z(r+j—k)!r!(k— R o {Zﬂ'p‘}

= Mol Ouoy

~ Y ALALE Y ALAY > A A

J+r

(V- Vi)EP (), 0k) (V1 V1)EP 151,200 r=1 (Voo Vier )P a0t jk),0(r)a(k-r)
= Qc(jh); j=k (24)
Also:

Lo {Zu} o {iw\} (25)

J'k'a/u 1a/u0 i=-1 J)'j'@,uo Jalul i=0

j-1 1 6k+r 1 k+r
+z P Ja i- r|:2ﬂ|A:|

=ri(r+k= DI —r)tou 0w, i

j—1
= > Ay AT > A A+ > A, A
(V- Vi )Py 000) (V- Vi) EPo i) () r=1 (Vioo- Vieer JEP 10y, 0(r+k- ) a(jr)
= Qu(ih); k=j (26)
Hence for every non-negative integer P, we have:
) 1 an+p+] n+p+]
Qs M) =y B0 {Zﬂ. } (27)

1 o {ZM

" G-I+ pD1n+ Pt ow PO | iy

+”§ - - I o - |:le‘,,u|Ai:|

= (r+i=[n+pDirtn+ p—r)!op' " Popgom

- > A, ALt > A, --A,
(V1r~--Vj+n+p)epfl(j),0(n+p) (Vl""VJ')EP*l(J'{WP])vl(n*P)
n+p-1
+Z Z A\,l.../\,w, if j>n+p, (28)

r=t (V- Vigr)EPog(rs jne p]),0(r) A(np-r)
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on+p+i | 0 Pl 1 N 1 n+p
Qn+p(ih)= I(n+p)|a Jaﬂ(r)Hp /U'Aj +(n+p_1)!1!8y8+p_jaﬂlj Eo'uiAi (29)
+j—l 1 P [%/,ﬁ N+ p-+r
r 1(r'(r+n+p DI r)'aﬂ 8lur+n+p Jaﬂlj r{ i
_(Vl"“"J'+n+p)zep—l(n.omw)All Npinen (g, Vj)epoap—j),l(j)/\/lm/\/k
+§ > A A, ifnepz] (30)

r=1 (Vll"'Vk+r)ep—l(r),o(r+n+p—j),l(j—r)
Now, using the generalized Cayley-Hamilton theorem in the same spirit as in theorem 3.6, we can prove that

rank[@w (t)]=rank [(jk (t)]. Indeed, by the generalized Cayley- Hamilton theorem:
(iﬂiAj = nzlﬂ(ﬂ)(iﬂipﬁj ' (iﬂ.pﬁj = nz:ﬂk(ﬂ)(Zﬂ.Aj (31
(__leﬂi/%] = an@(ﬂ)[iMAj (32)

for some polynomials y, (u), A, (1), & (u) of degrees n+p+ j—k, n+p—-k, n+p+r—-k
respectively, if n+p > |.

Hence:
Q,., (Jh)
Nl GNP+ 0 k
= l(n+p)|25 o 7 (1) LZ_;MA}
1 n-1 an+p 1 k
e p—J)'J'kZ;@u“*” 8 ’Mﬂ){;ﬂﬁ}
n-1 j-1 1 MR k
+ 33
S (r(r+n+ p— DI -1 oudus ™ op ffk(”){z"' } 9
if n+p> j.
By lemma3.5,

WWWw.ijmsi.org 9|Page



Relationships among determining matrices, partials of indices of...

Q..,(ih)
n-1 ampﬂ 2k ke
- — %] (34)
i+ p)lic 6 y”*p ; f+j-k T 2k-j-2F %
HA0Hy DA
F=0 =0
A A,
(V- VOEP_ g p Tk 0(r)1(2Kk-] -27) |
1 g 2k 2k—iﬂ
+ A (1)) [[ Z Fej-k T ok-j-2¢
(+p-)itis o " 'ou o ) 2 A Ay
P=0 (V) € Pyes o .00maek-j-2n) u, =0

[[f’ﬂ -
Z i- i-2f %

i=0 =

n-1 j-1 1 6n+p+v

2k
+ mEZD)
renep-j o jor

o e (Fr e+ p= DG -n)ou oo

1

2 Ay Ay
(Vg v )€EP

L k7S P +§k),0(F),1(2k-]-2F)

if n+p>j.
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1=
1 6”+P+i n-1 2k 2

H F+j-k [ 2k—j—2Fr %
Q... (ih) = = — ) > >
’ PN+ p)l o ou? ;k {Zo oo
,u,l:O
> A, A
L (Vl""Vk)e P1(f+]—k),0(?),1(2k—]—2|’) i
[
1 amp n-1 2k 2 . o Iy
+ — > AWy X A el (35)
(n+p—N'iton, " 'on | k= i_o F=o0
z A A ]|l =0
L (Vi) € P T 00022k 26 |
=
N it 1 6"‘”” ié (‘u) % i ‘uFJr]fkluf’lqu—J—Zr *
- - r renep-j j-r K -1 0/
= (rir+n+p— DG -t ou o™ op " | T i_o F=o
2 A, A
L (Vv ) € Pfl(FJr]—k),O(F),l(Zkfjvfzf) i

if n+p=>j.
It follows immediately that the sum of the powers of A,, A, and A, in every permutation involving

A, A, and A, is at most n—1.Consequently rank[Q,, , (t,)]=rank[Q, (t,)].t, >0 and for

every integer p > 0, leading to the conclusion that rank[Q t)]= rank[(jn (t,)], as desired.

n+p

IV CONCLUSION
This paper exploited the results in [1] to establish appropriate and relevant relationships among determining
matrices, indices of control systems matrices and systems coefficients with respect to single-delay autonomous linear neutral
control systems. In the sequel the paper used these relationships in conjunction with the generalized Caley-Hamilton theorem
to prove that the associated controllability matrices for finite and infinite horizons have the same rank. The utility of these
results can be appreciated in the proof of necessary and sufficient conditions for the Euclidean controllability of system (1)

on the intervals [0, t1]’ 0<t, <oo; this will be discussed in a subsequent paper.
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