α-Ψ Contractive Type Mapping in Complex Valued G-Metric Spaces

Parveen Kumar¹, Sanjay Kumar²

^{1,2}, Department of Mathematics, Deenbandhu ChhotuRam University of Science and Technology, Murthal, Sonepat-131039, Haryana (India)

ABSTRACT: In this paper, we introduce the notion of α - ψ contractive type mappings in complex valued *G*-metric spaces and establish fixed point theorems for these mappings.

KEY WORDS: Complex valued G-metric space, α - ψ contractive mappings.

I. INTRODUCTION

In the last few year ,fixed point theory has been one of the most interesting research fields in nonlinear functional analysis.In2012 Samet et.al.[3] Introduced the notion of α - Ψ contractive mappings and α -admissible mapping in metric spaces.In2013,Alghamdi and Karapinar[4] introduced the notion of α - Ψ contractive mappings and α -admissible mapping in G-metric spaces Recently, Mustafa and Sims [1,2] have shown that most of the results concerning Dhage's D-metric spaces are invalid , therefore they introduced an improved version of the generalized metric space structure which they called G-metric spaces. In 2006, Mustafa and Sims [2] introduced the concept of G- metric spaces as follows:

Definition 1.1.[2] Let X be a non-empty set, and let G: $X \times X \times X \to \mathbb{R}^+$ be a function satisfying the following properties:

- (G1) G(x, y, z) =0 if x = y = z,
- (G2) $0 \le G(x, y, z)$ for all $x, y \in X$ with $x \ne y$,
- (G3) $G(x, x, y) \leq G(x, y, z)$ for all x, y, $z \in X$ with $y \neq z$,
- (G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (Symmetry in all three variables),
- (G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all x, y, z, $a \in X$ (rectangle inequality).

Then, the function G is called a generalized metric or, more specially, a G-metric on X, and the pair (X, G) is called a G- metric space. The idea of complex metric space was initiated by Azam et.al.[5] to exploit the idea of complex valued normed spaces and complex valued Hilbert spaces.

Definition 1.2.[5] Let \mathbb{C} be the set of complex numbers and $z_1, z_2 \in \mathbb{C}$. Define a partial order \leq on \mathbb{C} as follows:

 $z_1 \leq z_2$ if and only if Re $(z_1) \leq$ Re (z_2) and Im $(z_1) \leq$ Im (z_2)

That is $z_1 \leq z_2$ if one of the following holds

(C1): Re (z_1) = Re (z_2) and Im (z_1) = Im (z_2)

(C2): Re $(z_1) < \text{Re}(z_2)$ and Im $(z_1) = \text{Im}(z_2)$

(C3): Re $(z_1) = \text{Re}(z_2)$ and Im $(z_1) < \text{Im}(z_2)$

(C4): Re $(z_1) <$ Re (z_2) and Im $(z_1) <$ Im (z_2)

In particular, we will write $z_1 \nleq z_2$ if $z_1 \neq z_2$ and one of (C2), (C3) and (C4) is satisfied and we will write $z_1 \prec z_2$ if only (C4) is satisfied.

Remark 1. We obtained that the following statements hold:

- (i) a, b \in R and a \leq b \Rightarrow az \leq bz for all z \in C
- (ii) $0 \leq z_1 \leq z_2 \implies |z_1| < |z_2|$
- (iii) $z_1 \leq z_2$ and $z_2 \prec z_3 \Longrightarrow z_1 \prec z_3$.

In 2013, Kang et.al. introduce the notion of complex valued G-metric space [6] akin to the notion of complex valued metric spaces [1] as follows:

Definition 1.4.[6] Let X be a non-empty set. Let G: $X \times X \times X \to \mathbb{C}$ be a function satisfying the following properties:

- (CG1) G(x, y, z) =0 if x = y = z,
- (CG2) $0 \leq G(x, y, z)$ for all $x, y \in X$ with $x \neq y$,
- (CG3) G(x, x, y) \leq G(x, y, z) for all x, y, z \in X with y \neq z,
- (CG4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (Symmetry in all three variables)
- $(CG5) \quad G(x, y, z) \precsim G(x, a, a) + G(a, y, z) \text{ for all } x, y, z, a \in X.$

Then, the function G is called a complex valued generalized metric or more specially, a complex valued G-metric on X, and the pair (X, G) is called a complex valued G-metric space.

II. THE COMPLEX VALUED G-METRIC TOPOLOGY

A point $x \in X$ is called *interior point* of a set $A \subseteq X$, whenever there exists $0 \prec r \in \mathbb{C}$ such that

 $B_G(x, r) = \{ y \in X: G(x, y, y) \prec r \} \subseteq A.$

A point $x \in X$ is called *limit point* of a set A whenever there exists $0 \prec r \in \mathbb{C}$,

$$B_G(x, r) \cap (A/X) \neq \emptyset$$

A is called *open* whenever each element of A is an interior point of A. A subset $B \subseteq X$ is called *closed* whenever each limit point of B belongs to B.

Proposition 2.1.[6] Let (X, G) be complex valued G-metric space, then for any $\mathbf{x}_0 \in X$ and r > 0, we have

(1) If $G(x_0, x, y) \prec r$ then $x, y \in B_G(x_0, r)$,

(2) If $y \in B_G(x_0, r)$ then there exists a $\delta > 0$ such that $B_G(y, \delta) \subseteq B_G(x_0, r)$.

Proposition 2.2. [6] Let (X, G) be complex valued G-metric space, then for all $x_0 \in X$ and r > 0, we have,

$$B_{\mathcal{G}}\left(x_{0},\frac{1}{3}r\right) \subseteq B_{d_{\mathcal{G}}}(x_{0},r) \subseteq B_{\mathcal{G}}(x_{0},r).$$

where, $d_{G}(x, y) = G(x, y, y) + G(x, x, y)$.

III. CONVERGENCE, CONTINUITY AND COMPLETENESS IN COMPLEX VALUED G-METRIC SPACES

Definition 3.1.[6] Let (X, G) be a complex valued G-metric space, let $\{x_n\}$ be a sequence of points of X, we say that $\{x_n\}$ is complex valued G-convergent to x if for any $\epsilon > 0$, there exists $k \in N$ such that $G(x, x_n, x_m) \prec \epsilon$, for all n, $m \ge k$. We refer to x as the limit of the sequence $\{x_n\}$ and we write $x_n \xrightarrow{(G)} x$. **Proposition 3.1.[6]** Let (X, G) be complex valued G-metric space, then for a sequence $\{x_n\} \subseteq X$ and point $x \in X$, the following are equivalent:

- (1) $\{x_n\}$ is complex valued G convergent to x
- (2) $|G(x_n, x_n, x)| \to 0 \text{ as } n \to \infty$
- (3) $|G(x_n, x, x)| \to 0 \text{ as } n \to \infty$
- (4) $|G(x_m, x_n, x)| \to 0 \text{ as } n, m \to \infty$

Definition 3.2.[6] Let (X, G) and (X', G') be two complex valued G-metric spaces. Then a function $f: X \to X'$ is complex valued G-continuous at a point $\mathbf{x}_0 \in X$ if $f^{-1}(B_G (f(x_0), r)) \in \tau(G)$, for all r > 0. We say f is complex valued G-continuous if it complex valued G-continuous at all points of X; that is, continuous as a function from X with the $\tau(G)$ - topology to X' with $\tau(G')$ - topology.

Since complex valued G-metric topologies are metric topologies we have :

Proposition 3.2. [6] Let (X, G) and (X', G') be two complex valued G-metric spaces. Then a function $f : X \rightarrow X'$ is complex valued G-continuous at a point $x \in X$ if and only if it is complex valued G-sequentially continuous at x: that is whenever $\{x_n\}$ is complex valued G-convergent to x we have $(f\{x_n\})$ is complex valued G-convergent to f(x).

Proposition 3.3.[6] Let (X, G) be a complex valued G-metric spaces, then the function G(x,y,z) is jointly continuous in all three of its variables.

Definition 3.2.[6] Let (X, G) be a complex valued G-metric space, a sequence $\{x_n\}$ is complex valued G-Cauchy if given $\epsilon > 0$, there exists $k \in N$ such that $G(x_n, x_m, x_l) \prec \epsilon$ for all n, m, $l \ge k$.

Definition 3.3.[6] A complex valued G-metric space (X, G) is said to be complex valued G-complete if every complex valued G-Cauchy sequence is complex valued G-converg[ent in (X, G).

- **Proposition 3.4.[6**] Let (X, G) be a complex valued G-metric space. Then the following are equivalent:
 - (1) The sequence $\{x_n\}$ is a complex valued G-Cauchy in X.For every $\epsilon > 0$, there exists $k \in N$ such that $G(x_n, x_m, x_m) \prec \epsilon$, for all $n, m \ge k$.
 - (2) $\{x_n\}$ is a Cauchy sequence in the complex valued metric space (X, d_G) .

Proposition 3.5.[6] Let (X, G) be a complex valued G-metric space and $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is complex valued G- convergent to x if and only if $|G(x, x_n, x_m)| \to 0$ as n, $m \to \infty$.

Proposition 3.6.[6] Let (X, G) be a complex valued G-metric space and $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is complex valued G- Cauchy sequence if and only if $|G(x_n, x_m, x_l)| \to 0$ as n, $m \to \infty$.

IV. PROPERTIES OF COMPLEX VALUED G-METRIC SPACES.

Proposition 4.1.[6] Let (X, G) be a complex valued G-metric space. Then, for any x, y, z, a in X it follows that:

- (i) If G(x, y, z) = 0 if x = y = z
- (ii) $G(x, y, z) \preceq G(x, x, y) + G(x, x, z)$
- (iii) $G(x, y, y) \preceq 2G(y, x, x)$
- (iv) $G(x, y, z) \preceq G(x, a, z) + G(a, y, z)$
- (v) $G(x, y, z) \leq 2/3(G(x, y, a) + G(x, a, z) + G(a, y, z))$
- (vi) $G(x, y, z) \leq (G(x, a, a) + G(y, a, a) + G(z, a, a)).$

Proposition 4.2.[6] Let (X, G) be a complex valued G-metric space. Then, the following are equivalent:

- (i) (X, G) is symmetric.
- (ii) $G(x, y, y) \preceq G(x, y, a)$, for all x, y, $a \in X$.
- (iii) $G(x, y, z) \leq G(x, y, a) + G(z, y, b)$ for all x, y, a, $b \in X$.

Denote with χ the family of non decreasing functions of $\psi:[0,\infty) \to [0,\infty)$ such that $\sum_{n=1}^{\infty} \psi^n < +\infty$ for each t>0, where ψ^n is the nth iterate of ψ .

Lemma1. For every function $\psi:[0,\infty) \to [0,\infty)$ the following holds, if ψ is non decreasing, then each t>0, $\lim_{n\to\infty} \psi^n(t)=0$ implies $\psi(t) < t$.

Definition4.1. Let (X,G) be a G-metric space and T:X \rightarrow X be given mapping. We say that T is G- α - ψ contractive mapping of type I if there exists two function α :X \times X \rightarrow [0, ∞) and $\psi \in \chi$ such that $\alpha(x,y,z)G(Tx,Ty,Tz) \lesssim \psi(G(x,y,z))$ for all x,y,z \in X. (1)

Definition4.2. Let (X,G) be a G-metric space and T:X \rightarrow X be given mapping. We say that T is G- α - ψ contractive mapping of type A if there exists two function α :X \times X \times X \rightarrow [0, ∞) and $\psi \in \chi$ such that $\alpha(x,y,Tx)G(Tx,Ty,T^2x) \lesssim \psi(G(x,y,T^2x))$ for all x, y, z \in X. (2)

Definition4.3.[4] Let T:X \rightarrow X and α :X \times X \rightarrow [0, ∞). We say that T is α -admissible if x,y \in X, α (x,y,z) \geq 1 implies α (Tx,Ty,Tz) \geq 1. (3)

Example 2[4] Let X=[0, ∞) define T:X \rightarrow X and α :X×X×X \rightarrow [0, ∞) by Tx= $\begin{cases} 2\ln x & \text{if } x \neq 0 \\ e & \text{otherwise} \end{cases}$ and $\alpha(x, y, z) = \begin{cases} e & \text{if } x \geq y \geq z \\ o & \text{otherwise} \end{cases}$

V. MAIN RESULT

Now we prove our main results for α -vcontractive type mapping in complex valued G-metric space

Theorem 5.1 Let (X,G) be a complete G-metric space and T:X \rightarrow X be an α - ψ contractive mapping of type A and satisfying following condition:

(i) T is α -admissible,

- (ii) There exists, $x_0 \in X$ such that $\alpha(x_0, Tx_0, Tx_1) \ge 1$;
- (iii) T is G-continous. Then T has a fixed point, that is, there exists $x^* \in X$ such that $T x^* = x^*$.

Proof Let $x_0 \in X$ such that $\alpha(x_0, Tx_0, Tx_0) \ge 1$ Define a sequence $\{x_n\}$ in X as $x_{n+1} = Tx_n$ for all $n \in N$. If $x_n = x_{n+1}$ for some $n \in N$, then $x^* = x_n$ is a fixed point for T. Now we assume that $x_n \ne x_{n+1}$ for all $n \in N$, since T is a admissible, therefore we have $\alpha(x_0, x_1, x_1) = \alpha(x_0, Tx_0, Tx_0) \ge 1$ implies $\alpha(Tx_0, Tx_1, Tx_1) = \alpha(x_1, x_2, x_2) \ge 1$.

By induction we get, $\alpha(x_n, x_{n+1}, x_{n+1}) \ge 1$ for all n=0,1,2.... (4) Now $G(x_n, x_{n+1}, x_{n+1}) = G(Tx_{n-1}, Tx_n, Tx_n)$ $= G(Tx_{n-1}, Tx_n, T^2x_{n-1})$ $\le \alpha(x_{n-1}, x_n, x_n)G(Tx_{n-1}, Tx_n, T^2x_{n-1})$ $G(x_n, x_{n+1}, x_{n+1}) \le \psi(G(x_{n-1}, x_n, x_n)).$ Since ψ non decreasing, by induction, we have $G(x_n, x_{n+1}, x_{n+1}) \le \psi^n(G(x_0, x_1, x_1))$ for all $n \ge 1.$ (5) Using (G5) and (5), we have

 $\lim_{n,m\to\infty} |\mathsf{G}(x_n, x_m, x_m)| = 0.$

By Proposition 3.4, this implies that $\{x_n\}$ is a G-Cauchy sequence in G-metric space (X,G). Since (X, G) is complete, there exists, $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. From continuity of T, it follows that $x_{n+1}=Tx_n \to Tx^*$ as $n\to\infty$. By uniqueness of limit we get $x^*=Tx^*$, that is, x^* is a fixed point of T. In next theorem we omit the continuity hypothesis of T.

Theorem 5.2 Let (X, G) be a complete G-metric space and T:X \rightarrow X ba an α - ψ contractive mapping of type A satisfying the following conditions:

- (i) T is α -admissible,
- (ii) There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0, Tx_0) \ge 1$;
- (iii) if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}, x_{n+1}) \ge 1$ for all n and $x_n \to x \in X$ as $n \to \infty$. Then $\alpha(x_n, x_n, x_{n+1}) \ge 1$ for all n.

Then T has a fixed point.

Proof. Following the proof of 5.2 we know that $\{x_n\}$ is G-cauchy sequence in G-metric space (X,G). Then there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. On the other hand (4) and hypothesis (iii)

Letting $n \to \infty$, using Proposition 3.1 and since ψ is continuous at t=0, we get $\lim_{n\to\infty} |G(x^*, Tx^*, x^*)| = 0$. By Proposition 4.1, we obtain $x^* = Tx^*$.

Example 5.1 Let $X=[0,\infty)$ be the G- metric space , where G(x, y, z)=|x-y|+|y-z|+|z-x| for all $x, y, z \in X$ Define the mapping $T:X \to X$ by

$$Tx = \begin{cases} 5x - \frac{5}{3} & if \ x > 1 \\ \frac{x}{3} & if \ 0 \le x \le 1 \\ 0 & if \ x < 0 \end{cases}$$

(6)

At first we obtain that Banach contraction principal can not be applied, G(T1,T2,T2)=16>2=G(1,2,2)

Now we define the mapping $\alpha: X \times X \to [0,\infty)$

 $\alpha(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \begin{cases} 1 & \text{if } \mathbf{x}, \mathbf{y}, \mathbf{z} \in [0, 1] \\ \text{otherwise} \end{cases}$ Clearly, T is an α - ψ contraction mapping with $\psi(t) = t/2$ for all t ≥ 0 . Infact, x, y, z $\in X$, we have,

 $\alpha(x, y, z)G(Tx, Ty, Tz) \leq \frac{1}{2}G(x, y, z)$

Moreover, there exists \mathbf{x}_0 , $\in \mathbf{X}$ such that $\alpha(\mathbf{x}_0, T\mathbf{x}_0, T\mathbf{x}_0) \ge 1$ infact $\mathbf{x}_0 = 1$, we have $\alpha(1, T1, T1) = 1$. Obviously, T is continuous and so it remains to show that T is α -admissible.

Let x, y \in X such that $\alpha(x, y, y) \ge 1$ implies x, y $\in [0,1]$, by definition of T and α , we have Tx = $\frac{1}{2} \in [0,1]$, Ty $=\frac{y}{2} \in [0,1]$.Hence $\alpha(Tx,Ty,Tz) \ge 1$.

Then T is α -admissible. Now all hypothesis of theorem 5.1 are satisfied, consequently T has a fixed point but not uniqueness. Here, 0 and $\frac{5}{12}$ are two fixed point of T.

Now, we give example involving a function T that is not continuous.

Example 5.2 Let $X=[0,\infty)$ be the G- metric space, where G(x,y,z)=|x-y|+|y-z|+|z-x| for all $x,y,z\in X$ Define the mapping $T:X \rightarrow X$ by

$$Tx = \begin{cases} 5x - \frac{5}{3} & if \ x > 1 \\ \frac{x}{3} & if \ 0 \le x \le 1 \\ 0 & if \ x < 0 \end{cases}$$

It is clear that T is not continuous at 1. Then Banach contraction principle and also theorem 5.1 are not applicable in this case.

Define the mapping $\alpha: X \times X \to [0,\infty)$ by $\alpha(x,y,z) = \begin{cases} 1 & \text{if } x, y, z \in [0,1] \\ 0 & \text{otherwise} \end{cases}$ Clearly, T is an α - ψ contractive mapping with $\psi(t) = \frac{t}{2}$ for all $t \ge 0$. Infact, for all x, $y \in X$ such that $\alpha(x, y, y)G(Tx, Ty, Ty) \leq \frac{1}{2}G(x, y, y).$

Moreover there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0, Tx_0) \ge 1$ and so for $x_0=1$, we have $\alpha(1, T1, T1)=1$. Let $\{x_n\}$ be a sequence in X such that $\alpha(x_n, x_{n+1}, x_{n+1}) \ge 1$ for all n and $x_n \rightarrow x \in X$ as $n \rightarrow \infty$. Since $\alpha(x_n, x_{n+1}, x_{n+1}) \ge 1$ for all n, by definition of α , we have $x_n \in [0,1]$. Thus $\alpha(x_n, x, x) \ge 1$. To show T satisfies all conditions of Theorem 5.2, it is sufficient to show T is α -admissible.

For this, let x, $y \in X$ such that $\alpha(x, y, y) \ge 1$ implies x, $y, \in [0,1]$ and by definition of T and α we have $Tx = \frac{x}{2} \in [0,1]$,

Ty = $\frac{y}{2} \in [0,1]$ and $\alpha(T x, Ty, T z) = 1$ i.e T is α -admissible. Here 0 and $\frac{5}{12}$ are two fixed points of T.

To ensure the uniqueness of the fixed point, we will consider the following hypothesis (H): For all x, $y \in X$, there exists $z \in X$ such that $\alpha(x, z, z) \ge 1$ and $\alpha(y, z, z) \ge 1$.

Theorem 5.3 Adding condition (H) to the hypothesis of theorem 5.1 and theorem 5.2 we obtain uniqueness of the fixed point of T.

Proof Suppose x^*, y^* , are two fixed point of T. From (H) there exists $z \in X$ such that $\alpha(x^*, x^*, z) \ge 1$ $\alpha(\mathbf{y}^*, \mathbf{y}^*, \mathbf{z}) \geq 1$. Since T is α -admissible, we get by induction that $\alpha(\mathbf{x}^*, \mathbf{x}^*, \mathbf{T}^n \mathbf{z}) \ge 1$ and $\alpha(\mathbf{y}^*, \mathbf{y}^*, \mathbf{T}^n \mathbf{z}) \ge 1$ for all n=1,2,... (7)Using (7) and (2), we have $\mathbf{G}(\boldsymbol{x}^{\star},\mathbf{T}^{n}\mathbf{z},\boldsymbol{x}^{\star})=\mathbf{G}(\mathbf{T}\boldsymbol{x}^{\star},\boldsymbol{T}(\boldsymbol{T}^{n-1}\mathbf{z}),\mathbf{T}^{2}\boldsymbol{x}^{\star})$ $\leq \alpha(x^*, T^{n-1}z, Tx^*) \operatorname{G}(Tx^*, T(T^{n-1}z), T^2x^*)$

Thus, we get by induction that $G(x^*, T^nz, x^*) \preceq \psi^n(G(x^*, z, x^*))$ for all n=1,2,3 ... By (CG4), we get $G(x^*, x^*, T^nz) \preceq \psi^n(G(x^*, x^*, z))$ Letting $n \rightarrow \infty$, we get

 $|G(x^*, x^*, T^n z)|=0$. This implies that $\{T^n z\}$ is G-convergent to x^* . Similarly, we get $\{T^n z\}$ is G-convergent to y^* . By uniqueness of limit we get, we get $x^* = y^*$, that is , T has a unique fixed point.

REFERENCES

- [1] Mustafa,Z. and Sims,B. Some remarks concering D-metric spaces, International Conference on Fixed point Theory and Applications, 189-198, Yokohama Publ., Yokohama, 2004.
- [2] Mustafa,Z. and Sims,B. A new approach to a generalized metric spaces,J.Nonlinear Convex Anal.7(2006),289-297.
- [3] Samet, B., Vetro, C. And Vetro, P., Fixed point theorems for α - ψ -contractive type mappings. Nonlinear Anal.75 (4), 2154-2165 (2012).
- [4] Alghamdi,M.A.and Karapinar,E. G-β-ψ-contractive type mappings in G-metric spaces. Fixed point Theory and Applications 2013 2013:123.
- [5] Azam, A Fisfer, B, Khan, M: Common fixed point theorems in complex valued metric Spaces. Number. Funct. Anal. Optim.. 32(3), 243-253 (2011).
- [6] Kang, S. et al. Contraction Principle in Complex Valued G- Metric Spaces. Int. Journal of math. Analysis, vol.7, 2013, no. 2549-2556