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ABSTRACT: The aim of this paper is to calculate entropy of shift spaces which are lookalike to golden mean 

shift space. The golden mean shift space has alphabet of two members.  We consider golden mean lookalike 

shifts by taking the alphabets having more than two members.  We have found some interesting result that shift 

space having even number of alphabets have same entropy. Whereas shift space having odd numbers of 

alphabets are divided into two groups and each group has distinct entropy. 
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I. INTRODUCTION 

We calculate the entropies of the shift space which lookalike the golden mean shift space. Before 

defining what a golden mean lookalike shift space is, we define briefly the terminology of symbolic dynamical 

systems. Alphabet is a finite set A of symbols. Elements of A are called letters and they will be typically denoted 

by a,b,c,..., or sometimes by digits like 0,1,2,3,… Although in real life sequences of symbols are finite, it is 

often extremely useful to treat long sequences as infinite in both directions (or bi-infinite) i.e., 

… … where  or . The collection of all such sequence is denoted by A
Z
 

, where  denotes the set of integers.A  block ( or word ) over A is a finite sequence of symbols from A. We will 

write blocks without separating their symbols by commas or other punctuation, so that a typical block over A = 

{a,b} looks like aababbabbb. It is convenient to include the sequence of non-symbols, called the empty block 

(or empty word) and denoted by Ɛ. The central block of length  is denoted by , which is defined by 

A collection of blocks over A, which are not allowed to occur in a subset  

of A
Z
 are called Forbidden block of the subset . A Shift map “” on full shift A

Z
  maps a point x to a point y = 

(x) whose  co-ordinate is   .AShift space is a subset X of a full shift A
Z
 such that , where F 

is a collection of forbidden blocks over A
Z
. These forbidden blocks may be finite or infinite, but atmost 

countable. Full shift X is A
Z
, where we can take F = , which means there are no constraints.  Let A = { e, f, g} 

and let X be the set of point in the full A- shift for which e can be followed only by e or f, f can be followed only 

by g and g can be followed only by e. Therefore the forbidden block is .  If X is the set of 

all binary sequences, i.e., the alphabet is A = { 0,1} , so that between any two 1‟s there are an even number of 

0‟s. Here F = . This shift is called even shift. Let X be a set of all binary sequences with no 

two 1‟s next to each other. This shift is called Golden mean shift. Thus Golden mean shift has forbidden block 

A shift of finite type is a shift space that can be described by a finite set of forbidden blocks, i.e., a 

shift space X  having the form  for some finite set F of blocks. Golden mean shift is shift of finite type.Let X 

be a shift space over the alphabet A, and  be the collection of all allowed N-blocks in X. Form the 

full shift  Define the N-th higher block code   by . Then the Nth 

higher block shift denoted by  is the image  in the full shift over  . Let  be a subset of a full 

shift, and let  denote the set of all words that occur in points in The  of  is the 

collection  The full 2-shift has language   

Let X be the full shift  A metric   is defined on  by 

. 

 

Then it is well known that  is a compact metric space. The shift function on  with respect to the above 

metric is a continuous function. Therefore   is a dynamical system [4]. In this context, there is an 

equivalent definition of shift space, i.e., a shift space is a pair   in which  is a closed invariant subset of 

. Thus the name shift space comes from the shift function. A  consists of a finite set  of 
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vertices (or states) together with a finite set  of edges. Each edge  starts at a vertex denoted 

by  and terminates at a vertex  (which can be the same as   and in this case the edge 

 is called a loop or self loop). We can always represent a shift of finite type by a directed graph. This 

representation can be done either with edges denoted as (G)  or vertex (G) of a graph G. It is well known that 

every shift of finite type can be represented by a graph and vice versa [2]. 

The edge shiftXG or XAof a graph is the shift space over the alphabet  specified by  { = 


Z
 : t( ) = i( ) for all i Z, i(e) is the initial state of edge „e‟ and t(e) is the terminal state of edge 

„e‟}. 

 
Fig. 1.Graph for full r-shift. 

 

A graph G is irreducibleif for every ordered pair of vertices I and J there is a path in G starting at I and 

terminating at J.If G is a graph with vertex set . For every I,J, let  denote the number of edges in G with 

the initial state I and terminal state J. Then the adjacency matrixof G is .An equivalent definition of 

irreducible graph is that its adjacency matrix  is irreducible, i.e., for each pair  of vertices, there 

exists a non-negative integer  such that .A shift of finite type is M-step if it can be described by a 

collection of forbidden blocks all of which have length M+1. If  is a graph with adjacency matrix A, then the 

associated edge shift =  is a 1-step shift of finite type [2].This can be proved as follows. Let be the 

alphabet of . Consider the finite collection 

 

 
 
of 2-blocks over . According to the definition, a point  lies in exactly when no block of  occurs in . 

This means that = ,so that XG has finite type. Since all blocks in F have length 2,  is 1-step. 

 

Theorem1.1[2]: If X is a M-step shift of finite type then there is a graph G such that  =  

A path π=e1e2…..em on a graph is a finite sequence of edges ei from  such that  for 

. The path  starts at vertex  and terminates at 

vertex  and  is a path from to . The length of is , the number 

of edges it traverses.A cycle is a path that starts and terminates at the same vertex.  

 

Proposition 1.2[2]: Let G be a graph with adjacency matrix A, and let m ≥ 0.( i ) The number of paths of length 

m from I to J is , the I,J
th

 entry of A
m
. ( ii ) the number of cycles of length m in G is the trace of A

m
, tr(A

m
), 

and this equals the number of points in  with period m. 

Let B be an r x r matrix of 0‟s and 1‟s, or equivalently the adjacency matrix of a graph G such that 

between any two vertices there is atmost one edge. The vertex shift   is the shift space with alphabet A = 

{ 1,2,3, ... , r } defined by  for all i Z} 

 

Example1.3: . The vertex shift   is the golden mean shift. 

 

Proposition 1.4.[2]:( i ) Up to renaming of symbols, the 1-step shifts of finite type are the same as the vertex 

shifts(ii)Up to renaming of symbols, every edge shift is a vertex shift (on a different graph).   (iii ) If X is a M-

step shift of finite type, there is a graph G such that  and  

Let X be a shift space. Entropy measures the complexity of X. denotes the number of -blocks appearing 

in points of X. It gives us the idea of complexity of X. The topological entropy of a shift space X is defined as   

[2]. One can see the definition of topological entropy of a continuous map in [6]. 

Baldwin and Slaminka [1],  estimated topological entropy as the logarithmic growth rate of the one dimensional 

variation of -composition map of  with . Their method was generalized by Nwehouse and Pignataro [5]. 
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Gary, F., et al., give a rigorous upper bound for the entropy of a multidimensional system with respect to a fixed 

partition [3]. If  has alphabet A, then . Hence     for all n. 

So, . It is well known that  . Let  be a full r-shift, then . 

Then  Therefore we have  . If G has k – vertices and 

there are exactly r-edges starting at each vertices, then ,so 

that Hence, we see that here also (Full r-shift is the case where k = 

1). In the calculation of entropy for shift space, we shall be using the theorem 1.5 & theorem 1.6.  A precise 

proof is available in [2]. 

 

Theorem 1.5(Perron Frobenius theorem)Let the matrix A ≠ 0 be an irreducible matrix. Then A has a positive 

eigenvector  with corresponding eigenvalue A> 0  that is both geometrically and algebraically simple. If   

is another eigenvalue of A, then . Any positive eigenvector for A is a positive multiple of . 

The greatest positive real eigen value is called Perron eigen value. If    is an irreducible graph, then by   

we denote the corresponding Perron eigen value of the adjacency matrix . 

 

Theorem 1.6 (i) If  is irreducible graph, then . (ii) If  is irreducible M- step shift of finite 

type and G is the essential graph for which , then . 

Now we define the golden mean lookalike shifts. Let the alphabet be  and the corresponding 

forbidden block be  then the corresponding shift space  is called golden mean 

lookalike shift (GMLS3) with alphabet . Similarly we define GMLS for higher alphabet 

 and so on.The aim of this paper is to calculate entropy for various GMLS.  We have found some 

interesting result that shift space having even number of alphabets have same entropy. Whereas shift space 

having odd numbers of alphabets are divided in to two groups and each group has distinct entropy. 

 

II. ENTROPY OF GMLS 
2.1 GMLS3 with alphabet  

Let  be an alphabet and the corresponding forbidden block be . Then  the 

resulting shift is a golden mean lookalike shift (GMLS3)with alphabet The corresponding  graph is 

shown in Fig.3.1. 

 
Fig. 2. Graph of GMLS3 with alphabet  

 

The Adjacency Matrix is given by 

  

and  

 therefore is irreducible. 

The characteristic equation , is given by  and the Eigen values are 

. The PerronEigen value is 2, therefore the required entropy is  = . 

2.2 GMLS4 with alphabet  
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 Let  be an alphabet and the corresponding forbidden block be 

. Then  the resulting shift is a golden mean lookalike shift (GMLS4)with 

alphabet  

Adjacency matrix  is given by 

  and  , therefore is irreducible. The characteristic equation 

is given by . The eigen values are  and the Perron 

Eigen value is  therefore the entropy is  = . 

2.3GMLS5 with alphabet  

 We take the alphabet as   and the corresponding forbidden block be  taken as 

. Then  the resulting shift is a golden mean lookalike 

shift (GMLS5) with alphabet The adjacency Matrix is given by 

   and   therefore  is irreducible. 

The characteristic equation , becomes  . The roots are 

.  The entropy is  = . 

 

2.4.GMLS6 with alphabet  

In this case the forbidden block is taken as 

. Then the resulting shift 

is a golden mean lookalike shift (GMLS5) with alphabet  

 

The adjacency Matrix is . It can be shown as above that it is also irreducible matrix. 

The characteristic equation is  

 and roots are .  Therefore the entropy is  = . 

 

2.5. GMLS7 with alphabet  

In this case the forbidden block is taken as 

. Then the resulting shift is a golden mean lookalike shift (GMLS6) with alphabet  

 

The adjacency Matrix is . It is also irreducible matrix. The characteristic equation 

is  and the roots are Therefore entropy is  =  

 

2.6. GMLS8 with alphabet  
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The forbidden block is 

 

. The adjacency matrix is 

  , which is an irreducible matrix. 

The characteristic equation is  and the Eigen values are given by 

. Therefore the entropy is  =  

 

 

 

2.7. GMLS9 with alphabet  

The forbidden block is 

 

. In this case 

also, the adjacency matrix  is irreducible and the characteristic equation is . The roots 

are  Therefore the entropy is  

Table 

Alphabet Characteristic Equation Greatest 

positive Eigen 

value 

           Entropy   Remarks 

  
               2 

 
No. of alphabet  

3, odd  

  

  

No. of alphabet  

4,  even 

  

 

. No. of alphabet  

    5,  odd 

  

 

. 

 

No. of alphabet 

 6,  even 

  
        2 

 
No. of alphabet  

    7,  odd 

  

 

. 

 

No. of alphabet  

    8,  even 

  

 

. No. of alphabet  

    9,  odd 

 

III. CONCLUSIONS 
Baring the case of alphabet , the characteristic equation for GMLS  is  

, for all , where  denotes the right hand side expression of the 

characteristic equation of GMLS  If  is even then  is the only non-trivial factor. If  is 

odd and it is of the form  where  is a non-negative integer, then the only non-trivial factor is 

whereas if  is of the form , then  is the only non-trivial factor.  We can 

conclude that GMLS with alphabet having even number of symbols have entropy  . There are two 
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groups for alphabets having odd number of symbols. The first group has alphabets having numbers of 

symbols, where  is a non-negative integer. Each member of this group has entropy . The second odd 

group has alphabet in which there are  numbers of symbols, where  is a non-negative integer, and 

each member of this group has entropy     . 
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