On The Properties Shared By a Simple Semigroup with an Identity $\zeta(S)$ and Any Semigroup with an Identity S^1

^{1,} L.N.Ezeako ,EZE Everestus Obinwanne and ²Agwu Emeka Uchendu

^{1, 2,} Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.

ABSTRACT: *R. H. Bruck's theorem* [1] *established the fact that any semigroup S can be embedded in a Simple Semigroup which posses an identity element* $\zeta(S)$ *. In this paper, we discuss some of the properties which* $\zeta(S)$ *shares with any semigroup which posses an identity element* S^1 *. Thus we establish the following results*

- *i.* Any regular (inverse) semigroup can be embedded in a Simple regular (Inverse) semigroup with an identity element
- ii. There exist simple inverse (and hence, regular) semigroups with an identity element which have an arbitrary cardinal number of D classes.

These results are new extensions arising from [1].

KEYWORDS: *Green's Relations; L, R, D, H and J, Simple Semigroups, Regular Semigroups, Inverse Semigroups.*

I. DEFINITIONS AND PRELIMINARIES

The elements of a Semigroup S, are said to be L - (R -) equivalent if and only if they generate the same principal left (right) ideal of S. We write $H = L \cap R$ and $D = L^{\circ}R = R^{\circ}L$. Thus L, R, D, H and J are equivalence relations on S, such that $H \subseteq L \subseteq D$ and $H \subseteq R \subseteq D$. We denote for each $a \in S$, L-class, R-class, H-class, D-class of a by La, Ra, Ha and Da respectively.

For any $a, b \in S$, aJb if $SaS \cup Sa \cup aS \cup \{a\} = SbS \cup Sb \cup bS \cup \{b\}$. (See [2] and [7])

- a. S is a Simple Semigroup \Leftrightarrow S consists of a single J-class.
- b. S is left [right] simple \Leftrightarrow S consists of a single L-[D-] class.
- c. S is a Regular Semigroup if for each $a \in S \Rightarrow a \in aSa$.
- d. S is an Inverse Semigroup if for each $a \in S$ there exists a unique element $x \in S$ such that xax = x and axa = a. Thus an inverse semigroup is a regular semigroup in which each element has a regular conjugate.

Comments

Every semigroup consists of a collection of mutually disjoint D-classes. Each D-class can be broken down in the following way called the egg-box picture. Imagine the elements of a D-class, arranged in a rectangular pattern so that the rows correspond to R-classes and the columns to L-classes contained in D. Each cell of the egg-box correspond to an H-class. A typical D-class looks like:

H ₁₁	H ₁₂	H ₁₃	H ₁₄	
				R ₂
				R ₃
L ₁	L ₂	L_3	L ₄	

Figure 1: A typical D-class

Then a typical semigroup can be broken down as follows:

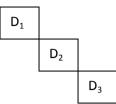


Figure 2: A typical semigroup

Remarks

- a. S is simple [right simple] $\stackrel{\Rightarrow}{\underset{\leftarrow}{\Rightarrow}}$ S is bisimple $\stackrel{\Rightarrow}{\underset{\leftarrow}{\Rightarrow}}$ S is simple
- b. The following conditions on a semigroup are equivalent
 - i. S is regular and any two idempotents of S commute.
 - ii. Every L-[R-] class of S contains a unique idempotent.
 - iii. S is an inverse semigroup. (See [8] for proof)
- c. For a semigroup S, we write; $S = \begin{cases} s, if \ s \ has \ an \ identity \ element \\ s \cup 1, otherwise \end{cases}$ d. Every semigroup consists of a collection of mutually disjoint D-classes. In a D-class each H-class is equally full of elements. Any two H-classes in the same D-class, have the same cardinal number.
- In an inverse semigroup of idempotents, each D-class consists of a single idempotent (See [6]) e.

S^1 can be embedded in $\zeta(S)$

Proof: Let $\zeta(S)$ be the semigroup generated by $S \cup \{a, b\}$ where $a, b \in S$, such that ab = 1, as = a, sb = s for every $s \in S^1$. Let $a^0 = 1, b^0 = 1$. Then the element of $\zeta(S)$ are of the form $b^i s a^j (s \in S, i \text{ and } j \text{ are nonnegative numbers}).$

Hence $b^i s a^j = b^m t a^n \Leftrightarrow i = m, s = t$ and j = n. Now, let $\alpha = b^i s a^j, \beta = b^m t a^n$, be any two elements of $\zeta(S)$, then $\alpha = b^i s a^{m-1}$, $\beta = b^{n-1} t a^j$.

Thus, $\zeta(S)$ is simple. Also 1 is an identity for $\zeta(S)$. Hence S^1 can be embedded in $\zeta(S)$. (See also, [1])

The L-, R- and D- classes of $\zeta(S)$ in terms of those of S^1

Let A and B be subsemigroups of $\zeta(S)$ such that $A = \{a^i, i = 0, 1, 2, 3, ...\}$ $B = \{b^i, i = 0, 1, 2, 3, ...\}$

Then

Conjecture1: (See also, [3] and [4])

If $\{L_{\lambda}: \lambda \in \Lambda\}$ are the L-classes of S^1 , then $\{BL_{\lambda}a^n: \lambda \in \Lambda, n = 0, 1, 2, 3, ...\}$ are the L-classes of $\zeta(S)$.

Proof: The elements $b^i s a^j$ and $b^m t a^n$ are L-equivalent in $\zeta(S) \Leftrightarrow$ there exists $b^p x a^q$ and $b^u v a^v$ in $\zeta(S)$ such that:

- a. $b^p x a^q b^i s a^j = b^m t a^n$ b. $b^u v a^v b^m t a^n = b^i s a^j$

Thus, we have the following possibilities:

 $b^{p}xa^{q}b^{i}sa^{j} = \begin{cases} b^{p}xa^{j+q-1}, if q > i\\ b^{p}xsa^{j}, if q = i\\ b^{p+1-q}sa^{j}, if q < i \end{cases}$

and

$$b^{u}ya^{v}b^{m}ta^{n} = \begin{cases} b^{u}ya^{n+v-m}, if \ v > m\\ b^{u}yta^{n}, if \ v = m\\ b^{u+m-v}ta^{n}, if \ v < m \end{cases}$$

Suppose that q > i. Then from (a) we have that j + (q - i) = n and (b) $n \le j$. This is impossible! Hence $q \le i$, and similarly $v \le m$. Furthermore, each of them implies that j = n.

Since $q \le i$, from (a), we have either p = m and xs = t or p + (i - q) = m and s = t. Since $v \le m$, from (b) we either u = i and yt = s or u + (m - v) = i and t = s. For any non-negative integers i, m, we can find non-negative integers p, q, u, v satisfying these conditions. Hence we have shown that $b^i s a^j$ and $b^m t a^n$ are L-equivalent in $\zeta(S)$ if and only if n = j and sLt in S^1 .

Conjecture 2

If { $Ri: i \in I$ } are the R-classes of S^1 then { $b^m RiA: i \in I, m = 0, 1, 2, 3, ...$ } are the R-classes of $\zeta(S)$.

Proof: This is the left – right dual of Conjecture1.

Conjecture 3

If $\{D_{\delta}: \delta \in \Delta\}$ are the D-classes of S^1 then $\{BD_{\delta}A: \delta \in \Delta\}$ are the D-classes of $\zeta(S)$.

Proof:

The elements $b^i sa^j$ and $b^m ta^n$ are D-equivalent in $\zeta(S)$ if and only if there exists $b^p xa^q$ such that $b^i sa^j L b^p xa^q R b^m ta^n$. By Conjectures 1 and 2 above, this obtains if and only if j = q, p = m and sLxRt in S^1 . Hence $b^i sa^j D b^m ta^n$ in $\zeta(S)$ if and only if sDt in S^1 .

Theorem

 $\zeta(S)$ is a regular [inverse] semigroup if and only if S^1 is a regular [inverse] semigroup.[9]

Proof:

Let $b^i s a^j$ and $b^m t a^n$ be any two elements in $\zeta(S)$ with $s, t \in S^1$. Then we assert that

$$(b^{i}sa^{j})(b^{m}ta^{n})(b^{i}sa^{j}) = \begin{cases} b^{i}s^{2}a^{j}, if j > m, n + (j - m) = i\\ b^{i}stsa^{j}, if j = m, n = i \end{cases}$$

We also assert that these are the only cases for which the product on the left is equal to $b^i x a^j$ for any $x \in S^1$. Thus the inverse of $b^i s a^j$ in $\zeta(S)$ are the elements $b^j t a^i$ where t is an inverse of s in S^1 . So $b^i s a^j$ has a unique inverse in $\zeta(S)$ if and only if s has a unique inverse in S^1 . Hence the theorem is proved.

Extensions/Conclusion

a. Any regular [inverse] semigroup can be embedded in a simple regular [inverse] semigroup with identity.

Proof:

In view of the above theorem and the fact S^1 is a regular [inverse] semigroup if and only if S is a regular [inverse] semigroup, this extension is tenable.

b. There exist simple inverse [and hence, regular] semigroups with an identity, which contain an arbitrary number of D-classes.

Proof:

In view of the theorem above as well as Conjecture 3, it suffices to observe that in an inverse semigroup of idempotents, each D-class consists of a single idempotent. We also refer to Green's Theorem [7].

Green's Theorem: Let *a* and *c* be the D-equivalent elements of a semigroup S. Then there exists $\in S$ such that *aRb* and *bLc* and hence $as = b, bs^i = a, tb = c$, for some $s, s^i, t, t^i \in S^1$.

The functions $f: Ha \to Hc$ and $g: Hc \to Ha$ defined by f(x) = txs and $g(y) = t^1ys^1$ are 1-1, onto, and mutually inverse. Hence, any two H-classes in the same D-class have the same cardinal number (See [5] and [10]). Thus this extension is tenable.

REFERENCES

- [1]. Bruck, R. H., 1959, A Survey of Binary Systems, Ergebnisse der Math., Nene folge, Vol. 20, Berlin.
- [2]. Clifford, A. H. and Preston, G. B., 1961 and 1967, The algebraic Theory of Semigroups, Amer. Math. Soc., Vol. 1 and 2, Providence, R. I.
- [3]. Ezeako, L. N.,2007, On An Inverse Semigroup Which is Simple but Not Completely Simple, Leonardo Journal of Sciences, Issue 11, p. 25 – 32
- [4]. Ezeako, L. N.,2007, On Primitive Abundant Semigroups and PA Blocked Rees Matrix Semigroups, Leonardo Journal of Sciences, Issue 11, p. 61 – 68
- [5]. Fountain, J. B., 1982, Adequate Semigroups, Proc. London Math. Soc., 44 (3), p 103 129.
- [6]. Howie, J. M., 1976, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [7]. Hogan, J. W., 1973, Bisimple Semigroups with Idempotents well-ordered, Semigroup Forum, 6, 1973, p 298 316
- [8]. Madhavan, S., 1978, Some Results On Generalised Inverse Semigroups, Semigroup Forum, 16, p. 355 367
- [9]. Reily, M. R., and Clifford, A. H., 1968, Bisimple Inverse Semigroups as Semigroups of Ordered Triples, C and J. Math., 20, p. 25 39.
- [10]. Reily, M. R., and Clifford, A. H., 1968, Bisimple Inverse Semigroups as Semigroups of Ordered Triples, C and J. Math., 20, p. 25 39.
- [11]. Schein, B. M., 1979, On The Theory of Inverse Semigroups and Generalised Groups Amer. Math. Soc. Trans. (2) 113, p. 89 122