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VALUE OF THE INFINITE SERIES 
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ABSTRACT: The value of the infinite series of the sum of reciprocals of the  cubes has 

remained unknown so far .It has not been expressed as a multiple of π
3
.  I have tried to find it 

by computation.  
 

KEYWORD: Infinite series 

NOTATIONS: Notations are very simple.  
 

I. INTRODUCTION 

A natural question is whether Zeta(3) is a rational multiple of π
3
. Although the values  of  
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are known to us, the value of 
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is unknown to us. I have tried to find out by computation. 

(π=22/7) has been taken into consideration.  

      

II. METHOD OF ANALYSIS 

                         Fourier sine series for x
2
 gives a well known result,    
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 is the difference of two infinite series. Here the difference of two infinite series is a multiple of 

3 .Hence the addition of these infinite series must be a multiple of 
3 .If we are able to express 

32

3
 

as the difference of two numbers precisely then we can find the value of 
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It has been found that  
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   Equating equal parts, we get  
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Adding (1) and (2),we get        
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III. CONCLUSION 

 

From this  method we find that 
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Also  
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becomes equal to Apery’s constant.
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