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ABSTRACT In this paper , for the estimation of P, the prevalence of a disease ,results of a study made have 

been presented and applied to simulated as well as actual data  using a Two-Stage approach. Properties of the 

proposed procedure are also studied to know the significance and importance of the procedures under 

symmetrized relative squared estimation error appropriate for prevalence of a diseases close to  0 and the 

aggregate cost of selecting observations. Asymptotic characteristics for the risk and the moments are studied for 

the two stage sampling procedure. 
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I. INTRODUCTION 
      The estimation of prevalence of a disease at a certain point of time and/or location has always  been a 

challenging task for researchers. Many studies  have and are being carried out to improve on the available 

methods to estimate the prevalence of a disease. For planning, coordination, and evaluation of control activities, 

it is essential to process and obtain reliable disease prevalence estimates at any time or place in this fast 

changing world.  

II. THE SET UP OF THE PROBLEM 
Let be a sequence of independent and identically distributed (i.i.d.) random variables representing 

sampling units who are selected for studying certain disease in a population with    P(Xi=1) =  p, representing 

presence of a disease   and   P(Xi=0)  =  q, representing absence of the disease.  Then 0<p<1, p+q=1. 

Given a sample of size n, one wishes to estimate p, by the sample mean where subject 

to the loss function  

                                                                                                 (2.2.1)                                                                                     

where  is a known weight and  is the known cost per observation. Note that loss is modelled as the 

sum of a multiple of the symmetrised relative squared estimation error approximate when p close to 0  and the 

aggregate cost of observations. The case where A = 1 has been considered by Robbins and Siegmund [1]. Cabilo 

and Robbins [2] and Cabilo [3], among others. Baran and Magiera[4]have also studied and proposed an 

estimation procedure for p under Linex loss function. For any value of A , Liu[5] under loss function (2.2.1) has 

proposed a two stage and a Bayesian procedure for estimation of p and this paper has been prepared along his 

lines with added applications to study of disease prevalence. 

For fixed n and p, the risk for (2.2.1) is  

                           

which is minimised by using the optimal fixed sample size 

                                                                                                                            

(2.2.2) The corresponding optimal risk  for fixed sample size is  

                 (2.2.3) 
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Since p is unknown, the required sample size  is indeed unknown, and there is no fixed sample size rule that 

will achieve the risk  . In the case of A=1, Robbins and Siegmund [1] proposed a purely sequential 

procedure for the problem of approximating the optimal risk . The stopping rule for the proposed 

procedure  is  

                                               N= inf {n  ,                                                                    (2.2.4) 

where . , Robbins and Siegmund [1] showed that for any fixed 0<p<1, as  

 and    so that the procedure (2.2.4) is asymptotically as 

good as the optimal fixed sample size rule  

The plan of this paper  is as follows. Section 2.3 propose a two-stage sampling and point estimation procedure 

and then states the main result of this  concerning its asymptotic properties. Section 2.3.1 presents some results 

of the moderate sample size performance of the procedure using the Monte-Carlo method and study prevalence 

of certain diseases affecting children in age group of 0 to 6 in Jammu District, J and K State.  

III.   A TWO-STAGE PROCEDURE AND ITS PROPERTIES 
The two- stage procedure is constructed as follows. Let m be a positive integer and we start the 

experiment with a sample of size m, say . Based on the sample, let  

                                                             (2.3.1) 

where  is a given constant. Note that the tuning of the term  in (2.3.1) is essential so that  becomes 

finite with probability 1. Sample size is defined as 

                                                                                              

(2.3.2) 

where  is the indicator o ,  stands for the largest integer smaller than x, 

and U is uniformly distributed on (0, 1) and independent of Note that (2.3.2) is a randomised stopping 

rule first introduced by  Woodroofe [6]and, M= m, if  and M = + D otherwise. When M=m, we do 

not take any more samples in the second stage. If however,  then we obtain more M – m observations, 

say,  Finally, we estimate p b  and the corresponding loss is s usual, the regret of the 

two-stage procedure (2.3.2) is defined as . 

In the rest of this paper , we assume that the pilot sample size m is chosen such that  

                                                                            (2.3.3) 

Using (2.2.2), m is always less than  since  for all  but they have the same order of 

magnitude. This is why we need only two sampling operations.  

Before providing  the main results  we present some Lemmas. 

Lemma 2.3.1: For  Then there exists a  such that   as 

  

                                                                                                        (2.3.4) 

where   stands for the complement of  . 

Proof : Using the Chernoff  bound for a binomial random variable, it follows that 
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                              P( )   = P[  

                                                                                                            (2.3.5)                        

 . 

In particular, taking t=  the right hand side of (2.3.5) is less than or equal to exp(-m ) where 

 

 A similar argument works for estimating the probability that . 

Putting the two results together yields 

                                     

This completes the proof. 

Lemma2.3.2: Let q(x) be a real function such that its second derivative,  is continuous at p. Then, for 

small , we have as   

                                                 (2.3.6) 

In particular for every real number s, 

                            (2.3.7) 

Proof: By Taylor’s theorem, 

             g(  

where  is some random variable between p and . Then, it follows that  

P( ,             (2.3.8) 

where .   As  using (2.3.4),the first term of the right hand side in (2.3.8) is 

g(p)   and the second term is  ,so from (2.3.8) we shall complete the proof of (2.3.6) by 

showing that   as  Note that  convergs in distribution to  

denotes a chi square random variable with 1 degree of freedom, hence it suffices to show that  is 

uniformly integrable. 

Observe that, for small  

,                                                                               (2.3.9)                                                                                  

where B is a bound for |  on . It follows that  is uniformly integrable since the right hand side 

in (2.3.9) is bounded. This completes the proof. 

The main results in this section are given in the following theorems, which separate  and p=1/2. 

Theorem2.3.1. If  and (2.3.3) holds, then as  we have  

1. For every positive integer k, 

                                      (2.3.10) 
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In particular,  

   ,                                       (2.3.11) 

and the variance of M is  

                                 V(M) =m  

2. The regret of the two-stage procedure (2.3.2) is given by 

                                                                           (2.3.12) 

Proof: For (2.3.10 ) using (2.3.2) 

 

 = ,                                                                    (2.3.13) 

where  Since  it follows that there exists a  such that [M=m] for all 

large values of m. Thus , using (2.3.4) and (2.3.1), (2.3.13) becomes 

(  

     =  .                                                                                                          

(2.3.14) 

Now from (2.3.4) for some  , (2.3.7) with s= , and Taylor’s theorem, we get 

  

                                         =  

                                         =                               (2.3.15) 

Using (2.3.14) and (2.3.15), (2.3.10) follows if we show that 

 = o(1), 

and so it suffices to show that  are asymptotically uncorrelated because 

(  This is easily accomplished since, using (2.3.15), 

(  

 

                                       = o(1). 

This completes the proof of (2.3.10). 

For (2.3.12), using (2.2.1) and (2.2.3) 
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                                =c[                                                                    

(2.3.16) 

Conditioning on , the generated by U, , gives 

|  

    =  

                               =  

                                = I+II +o(1), say .                                                                                                           (2.3.17) 

The fourth equality holds by making use of (2.3.4) since there exists a  such that [M=m]  for all 

large values of m. To evaluate the first term I in (2.3.17), we write 

         I   =  

             = , say .                                                                                                                                   (2.3.18) 

It follows from (2.3.1) and (2.3.3) that 

 

              = -pq] . 

Since, 

V[  

It follows that 

-pq]   and    are asymptotically uncorrelated. Thus, 

             ,                                                                                                                                         (2.3.19) 

because -pq] .  Using (2.3.1), the first term in (2.3.18) becomes  

 

                  =  

                   =                                                                       (2.3.20) 

Since is a polynomial in , it can be shown , by finding the moments of a binomial 

distribution with parameters m and p, that 



A Two-Stage Approach for Estimation… 

www.ijmsi.org                                                          29 | Page 

=  

This, together with (2.3.20), gives 

 .                                                                                               (2.3.21) 

To evaluate the second term in (2.3.17), we write 

                     II = -                                                                          (2.3.22) 

An argument similar to (2.3.19) shows that 

                    - ] 

                          =o(1)                                                                                             (2.3.23) 

It follows from (2.3.22),(2.3.23) and (2.3.15) with k=-1 that 

                      II  =  

                           =  

                            =                                                            (2.3.24) 

Putting (2.3.16), (2.3.17),(2.3.18),(2.3.19), (2.3.21), (2.3.24) and (2.3.11) together, we get  

 c  

                             = c  

Thus, (2.3.12) follows and completes the proof. 

Theorem 2.3.2. If   and (2.3.3) holds, then as   through multiples of 1/4, we have 

1. For every positive integer k 

                        (2.3.25) 

 

where . 

In particular  

                                                        (2.3.26) 

and V(M)=O(m) 

2. The regret of the two- stage procedure (2.3.2) is given by 

w=                                              (2.3.27) 
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Proof : Let  be defined as in the proof of  Theorem 2.3.1. Then , since m=2  and  if and only 

if | , so 

  

  =                                                                                        (2.3.28) 

where . It follows from (2.3.1 )and (2.3.3) and Taylor’s  theorem that 

 

 

                               =-2k                        (2.3.29) 

Since p= ½, it follows from vonBahr’s [7] extension of the central limit theorem and Markov’s inequality that 

for j=0,1,2,.... 

                                                                (2.3.30) 

Using (2.3.30) with  j=0,1,2, (2.3.29) becomes 

 

=                                                                              (2.3.31) 

Putting (2.3.28) and (2.3.31) together, we get (2.3.25). 

For (2.3.27), using (2.3.16) with p=1/2, 

                                                                     (2.3.32) 

From the third inequality in (2.3.17) 

        

       = I+II, say.                                                                                                 (2.3.33) 

It follows from (2.3.22) and (2.3.1) that 

I=  

   =4  

Now, using (2.3.30) with j=0,1,2, we get 
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I=                                                                                       (2.3.34) 

To evaluate II, it follows from (2.3.26) and Taylor,s theorem that 

II =  

      = m+2  

which, together with (2.3.30) for j=0,1, gives 

II=                                                                                     (2.3.35) 

Combining (2.3.32),(2.3.33), (2.3.34) ,(2.3.35)  and (2.3.26), we get (2.3.27) and  completing the proof. 

IV. MODERATE SAMPLE SIZE PERFORMANCE 
In this section we conducted a series of Monte Carlo trials to examine the moderate sample size performance of 

the two-stage procedure (2.3.2). To this end, we specified 

under the loss function (2.2.1) 

with c=1, and then considered the values of  for the two-stage procedure (2.3.2). note that 

for the given values of , p and c, the weight A and the starting sample size m can be computed from (2.2.2) 

and (2.3.2). Simulation results are presented in Tables 1 and 2.  

Each simulation based upon 10000 repetitions. Tables 1 and 2 display results for p =0.02,0.15 and of 

 for each row of the tables, we computed the mean  and the standard deviation  of 

the 10000 simulated values of , the corresponding mean  and standard error  of , and the estimated 

regret  of  we also give the asymptotic values of  and  obtained after omitting the 

remainder terms from (2.3.11) and (2.3.12). 

Table 1 

Moderate Sample Size Performance of Two- Stage Procedure for Acute Gastro Enteritis data with p=0.028 

( Data Collected from Hospitals of Jammu District) 

 
 Results of 10000 simulations with c = 1. 

 Quantities in brackets are asymptotic values based on (2.2.9) and (2.2.10). 
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Table 2 

Moderate Sample Size Performance of Two- Stage Procedure for Anaemia Data with p=0.0067 

( Data Collected from Hospitals of Jammu District) 

 
 

 Results of 10000 simulations with c = 1. 

 Quantities in brackets are asymptotic values based on (2.2.9) and (2.2.10). 

The results shown in Tables 1 and 2 indicate that the two-stage procedure (2.3.2) tends to oversample if 

and oversample if for p in the range 0.15 -0.5, varying   from 0.75 to 1.5 leads to no appreciable 

change in risk. When p is reduced to 0.02, however  = 0.75 and  =1.5 shows a slightly increased risk when the 

optimal sample size,  is less than or equal to 500. This is due to a tendency toward poor estimate for  when 

m is relatively small. In this situation,  is a reasonable choice for practical implementation.  

 

V. CONCLUSION 
The proposed  two-stage methodology is better than the existing sequential or three stage procedures, especially 

when time and/or  cost are important factor designs in point estimation of prevalence of diseases affecting  

human beings in  our society besides in case fixed sample size procedures fail because of their dependence on 

nuisance parameters this method is the only way by which some type of  robust estimates are possible 

.Moreover this proposed method can  be applied widely in different areas globally to synthesise available 

information and provide better estimates of  prevalence of diseases affecting human population. 
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