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ABSTRACT : If the number of factors is more, only a few factors are important and underlying phenomena is of 

interest to study, moreover it is possible to eliminate the insignificant factors from the model, which are not affecting 

much the response, resulting to reduction of size of the model. It also reduces time, cost, effort and complexity of 

analysis of the model. Very few authors made attempts on reduction of response surface design.  In this paper, an 

attempt is made to find the best choice model by selecting the factors by reducing the size of the first order response 

surface design model in nested approach and is illustrated with suitable examples.   
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I. INTRODUCTION 

Let Y be the vector of response corresponding a design matrix X = ((xu1, xu2, …, xuv)), where xui be the 

level of the i
th

 factor in the u
th

 treatment combination. Assume the functional form of the response surface design 

model can be expressed as  

Y = Xβ + ε      (1.1) 

where YN 1 =(Y1, Y2,  … , YN)' is the vector of observations, X N p be the Design matrix, β p 1 be the vector of 

parameters and ε N 1 = (ε1, ε2, ... εN)' be the vector of random errors and assume that  ε ~ N(0,σ 
2
I).  The factor-

response relationship is given by E(Y) = f (x1, x2, … , xv) is called the „Response Surface‟. Design used for fitting the 

response surface models are termed as „Response Surface Design‟. The least square estimate of β is ̂ = (X'X)
-1

X'Y 

and  the variance–covariance is V( ̂ ) = (X'X)
-1

σ
2
   

If the number of factors is more, only a few factors are important and underlying phenomena of interest, 

and assume that it is possible to eliminate the insignificant factors from the model, which are not affecting much the 

response. As a result the time, cost, effort and data complexity can be minimized with the reduction of 

dimensionality of the model. Dimensionality reduction has enormous applications in various fields like, in 

agricultural, pharmaceutical, biological and computer sciences, mechanical and chemical engineering etc. 

High-dimensional data sets/models make many mathematical challenges are bound to give rise to new 

theoretical developments. Very few articles can be found on the reduction of the dimensionality of response surface 

design model. But there is no significant work done on reduction of response surface design model.    

 

II. REDUCTION OF FIRST ORDER RESPONSE SURFACE DESIGN MODEL 
Consider the linear functional relationship between the responses and „v‟factors. 

Yu = β0+ β1X1u+ β2X2u+……..+ βvXvu+εu    (2.1) 

where Yu  be the u
th

 response at the design point Xu (u = 1, 2, …N),   

Xu = (1, Xu1, Xu2, … Xuv) be the u
th

  treatment combination of „v‟ factors,  

β= [β0, β1, β2, … βv]‟ is the vector of parameters and  

εu be the random error corresponding to u
th

 response Yu .  Assume  ε ~ N(0,σ 
2
I). 

In this section, an attempt is made to fit a response surface design model in an iterative nested approach. 

The step by step procedure for finding the best model with selected factors is presented below. 

Step 1: Let (Y1, Y2, … , YN)′ be the vector of N observations, and  XNxv be the design matrix,  F1, F2, … , Fv  are v 

factors. Assume initially Y= ε1. 

Step 2: Choose the maximum correlation coefficient factor as X1 with Y and assume the nested model as Y = β01 + 

β1X1  + ε2.   

Step 3: Evaluate the estimated responses and residuals (εi+1 = εi- ̂ for i = 1,2,..v-1).  

Step 4: Choose the maximum the correlated factor as Xi in the i
th

 step, between the residual and unselected factors, 

and assume the nested model as εi+1= β0i+1 + βi+1Xi+1 + εi+2.  
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Step 5: Estimate the nested model as 
1

ˆ
i

  =
10

ˆ
i

 +
1

ˆ
i

 Xi+1. Test the significance of the model. 

Step 6: Repeat the steps 3-5, if the model is significant and the resulting model is the best model with the selected 

factors can be expressed in the form  






k

m

mm
XY

1

0

ˆˆˆ   where 
k002010

ˆ...ˆˆˆ    and kv. 

Note:  

1. At each step the estimation of value of the parameter is uses least square method.  

2. It reduces the size of the original model by selecting a subset of variables from the original set of variables 

iteratively in a forward approach. 

3. The nested approach avoids the problem of multicollinearity by selecting single variable at each step.  

4. The choice of selection of variables in the model is same when compared with Forward and Step wise 

regression approach.  

5. It is a time consuming process due to estimation of parameters and testing its significance in each step of 

iteration. 

The method for reducing the size of first order response surface design model (non-orthogonal design) is 

illustrated in the example 2.1 is presented below. 

 

EXAMPLE 2.1: Consider the design and analysis strategy illustrated with a 27 run experiment (Taguchi (1987, 

P.423) ) to study the problem of PVC insulation for electric wire, to understand the compounding method of 

Plasticizer, Stabilizer, and filler for avoiding embrittlement of PVC insulation, and finding the most suitable process 

conditions.  Among the nine factors, two are about Plasticizer: DOA (X1) and DOP (X2); two about stabilizer: 

Tribase (X3) and Dyphos (X4); three about Filler: Clay (X5), Titanium white (X6), and Carbon (X7); the remaining 

two about process condition: number of revolutions of screw (X8) and cylinder temperature (X9). All nine factors are 

continuous and their levels are chosen to be equally spaced.  The measure is the embrittlement temperature (Y).  The 

27 runs of experimental values and the respective design points are presented below.  

Y=[5,2,8,-15,-6,-10,-28,-19,-23,-13,-17,-7,-23,-31,-23,-34,-37,-29,-27,-27,-30,-35,-35,-38,-39,-40, -41]‟  

X=[(0,0,0,0,0,0,0,0,0),(0,0,0,0,1,1,1,1,1),(0,0,0,0,2,2,2,2,2),(0,1,1,1,0,0,0,2,2), (0,1,1,1,1,1,1,0,0), (0,1,1,1,2,2,2,1,1), 

(0,2,2,2,0,0,0,1,1), (0,2,2,2,1,1,1,2,2), (0,2,2,2,2,2,2,0,0), (1,0,1,2,0,1,2,0,1), (1,0,1,2,1,2,0,1,2), (1,0,1,2,2,0,1,2,0), 

(1,1,2,0,0,1,2,2,0), (1,1,2,0,1,2,0,0,1), (1,1,2,0,2,0,1,1,2), (1,2,0,1,0,1,2,1,2),(1,2,0,1,1,2,0,2,0), (1,2,0,1,2,0,1,0,1), 

(2,0,2,1,0,2,1,0,2), (2,0,2,1,1,0,2,1,0), (2,0,2,1,2,1,0,2,1), (2,1,0,2,0,2,1,2,1), (2,1,0,2,1,0,2,0,2), (2,1,0,2,2,1,0,1,0), 

(2,2,1,0,0,2,1,1,0), (2,2,1,0,1,0,2,2,1), (2,2,1,0,2,1,0,0,2) ]′ respectively.  

 

 Correlations Nested model Mean Squares & R
2
 values 

1  -0.762, -0.601, -0.124,  -0.108, 

0.052, -0.039,   0.114,   0.007,     

-0.026 . 

Y(=ε1)= -8.830 - 13.343X1 +ε2 

 

MSR=3019.919, MSE= 87.283, 

R
2
 =0.581 

Significant 

2 ( -0.861, -0.124, -0.099,  0.148,     

0.007,  0.244,  -0.057, -0.108. 

ε2 = 9.481 + -9.481X2+ ε3 

 

MSR=1617.990, MSE=22.564, 

R
2
 = 0.741, 

Significant 

3   -0.245,  -0.195,  0.291,  0.013,   

0.480, -0.113,  -0.212. 

ε3 = - 2.685 + 2.686X7+ ε4 MSR= 129.836 

MSE = 17.370, R
2
 =0.230, 

Significant 

4 -0.279,  -0.222,  0.332,  0.015,     

-0.128,  -0.241. 

ε4 = - 1.631 + 1.630X5+ ε5 MSR= 47.834 

MSE = 15.457, R
2
 =0.110, 

Insignificant 

 

The nested reduced model is Y = - 2.034 - 13.343 X1 - 9.481 X2 +2.686 X7, with error sum of squares 

431.513 with 23 degrees of freedom and with an R
2
 value is 0.917.  The general least square fitted model is Y = 

0.256 – 12.996 X1 – 9.5 X2 – 1.389 X3 – 1.111 X4 + 1.611 X5 + 0.055 X6 + 2.666 X7 – 0.611 X8 – 1.166 X9 with 

error sum of squares 296.629 with 17 degrees of freedom and with an R
2
 value is 0.943 . The stepwise, Forward and 

backward equations obtained are Y = - 2.408 – 12.940 X1 - 9.503 X2 + 2.663 X7 with error sum of squares 431.513 

with 23 degrees of freedom with an R
2
 value is 0.917. It can be noted that the values of parameters β3, β4, β5, β6, β8, 

β9 are insignificant in nested and other regression approaches. The mean square error values for full and nested 

reduced  models are 17.449 and 18.761. 
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The method for reducing the size of orthogonal first order response surface design model is illustrated in 

the example 2.1 is presented below. 

EXAMPLE 2.2: Consider the 2
4
 factorial experimental design illustrated in Khuri and Cornel (1996, page 79), in 

the study of the hydrogenolysis of Canadian lignite using carbon-monoxide and hydrogen mixtures as reducing 

agents, the input variables studied were X1 = Temperature; X2 = CO (H2 ratio); X3 = Pressure; and X4 = Contact 

time.  One of the response variables under investigation was Y = Percentage lignite conversion.  The levels of four 

factors are with, X1: Reaction temperature: 380
 o

c ,460
 o

c; X2: Initial CO / H2 ratio (molar ratio) is ¼: ¾ ; X3: Initial 

Pressure (MPa) 7.10, 11.10;  X4:  Contact time at reaction temperature (min) 10, 50.   

Y = [ 53.3,78, 62.4, 78.9, 75.9, 75.4, 71.3, 84.4, 64.5, 67.5, 72.8, 85.3, 71.4, 83.3, 82.9, 81.7 ] ′ be the vector of 

responses at the design points [ (-1,-1,-1,-1), (1,-1,-1,-1), (-1,1,-1,-1), (1,1,-1,-1),       (-1,-1,1,-1), (1,-1,1,-1), (-1,1,1,-

1), (1,1,1,-1), (-1,-1,-1,1), (1,-1,-1,1), (-1,1,-1,1), (1,1,-1,1), (-1,-1,1,1), (1,-1,1,1), (-1,1,1,1), (1,1,1,1)]′ respectively.  

 

 Correlations Nested Model Mean Squares & R
2
 values 

1 (  0.574,   0.361,    0.456, 

0.214 ) 

Y(=ε1) = 74.313+5.0 X1 +ε2 MSR=400, MSE= 58.278 

R
2
 =0.329, Significant 

2 ( 0.441,   0.557,   0.261) ε2=  -0.001 + 3.975 X3 + ε3 MSR=252.810,MSE=40.221 

R
2
 =0.310, Significant 

3 ( 0.531, 0.314 ) ε3=  0.0000+  3.15X2+ ε4 MSR=158.76, MSE =28.881 

R
2
 =0.282, Significant 

4 (0.371 ) ε4=  0.001.+ 1.862 X4+ ε5 MSR=55.502, MSE =24.916 

R
2
 =0.137, Insignificant 

 

The nested reduced model is Y = 74.312 + 5 X1 + 3.15 X2 + 3.975 X3, with error sum of squares 404.328 

with 12 degrees of freedom and with an R
2
 value is 0.667.  The backward elimination procedure also resulting to the 

same as that of nested approach. The full model  is Y = 74.313 + 5 X1 + 3.15 X2 + 3.975 X3 + 1.862 X4 with error 

sum of squares 348.825,  11 degrees of freedom and with an R
2
 value is 0.713 . The stepwise and forward 

approaches gives Y = 74.313 + 5 X1 + 3.975 X3  with error sum of squares 563.088, 13 degrees of freedom and with 

an R
2
 value is 0.537. It can be noted that the values of parameters β4 is insignificant in nested and β2, β4  are 

insignificant in other regression approaches. The mean square error values for full and nested reduced models are 

33.694 and 31.711. The percentage of loss of error due to the elimination of six components with respect to full 

model is 15.911 % . 
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