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Abstract: In this paper ,we discuss on probabilistic diameter and some  of its basic properties. 
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I. Introduction 

Probabilistic metric spaces were first introduced by K. Menger in 1942 and reconsidered by him in the early 

1950’s  B. Schweizer and A. Sklar have been studying these spaces, and have developed their theory in depth. In 

probabilistic metric spaces the notion of distance between two points x  and y is replaced by a distribution 

function Fxy. Thus, the distance between points as being probabilistic with Fxy(t) representing the probability that 

the distance between x and y is less than t.   

Definition: 1.1. Let (S, F,T) denote a Menger space with a continuous t-norm and A be a nonempty subset of S. 

The function DA, defined by 

 DA (x) = 
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, is called the probabilistic diameter of A. 

Properties of the probabilistic diameter. 

Defenition.1.2.A nonempty subset A of S is bounded if Supx DA(x) = 1,  

                        semi-bounded if 0 < Sup DA(x) < 1, and unbounded if DA = 0. 

      P1 ) The function DA is a distribution function 

P2 )  If A is a nonempty subset of S, then DA = H if and only if A consists of a single point. 

P3 ) If A and B are nonempty subsets of S and A


B, then DA 


DB. 

    Theorem.1.3. If A and B are two nonempty subsets of S such that  A  B = ,  

                                           then  DAUB(x + y)T(DA(x), DB(y))…………. (1.1) 

 Proof. Let x and y be given. To establish (1.1) we first show that 
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There are two distinct cases to consider: 

Case (1). 
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Now for any triple of points p,q and r in S, we have 

Fpq(x + y)  T(Fpr(x), Frq(y)). 

Taking the Infimum of both sides of this inequality as p ranges over A, q ranges over B and r ranges over A  B  
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However, since T is continuous and non decreasing ,we obtain, 
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Case (2).              
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In this case  of the equalities,  
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must hold. If the first equality holds, we 

have
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The same argument works for the second equality.  

This establishes (1.2.). 

Finally using the fact that the rectangle 

{(s, t): 0 
ytx  0,

} 

is contained in the triangle {(s, t): s, t 0, s + t < x + y}, 

 the inequality (1.2) and the continuity of T. we have 
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                   = T(DA(x), DB(y)). 

Theorem.1.4. If A is a nonempty subset of S, then DA = D A , where A  denotes the closure of A in the ε – λ 

topology on S. 

Proof. Since A 
A

, if follows from property P1 that DA A
D

. 

Let  > 0 be given. In view of the uniform continuity of  with respect to the Levy metric L there exists an  

 ε > 0  and a  λ > 0 such that for any four points p1, p2, p3 and p4 in S,     L(Fp1p2, Fp3p4) <  

When ever Fp1p3 (ε) > 1 – λ and Fp2p4(ε) > 1 – λ. 

Next, with each point P  and A  associate a point P(
p

) in A  such that  

Fp
   pp

 > 1 – λ. 

 Then, in view of the above for any pair of points 
p

and 
q

A, 

      L(F
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In particular, for all t  we have,  F
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Now, taking the suprimum for t < x of the above inequality yields 
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Since the above inequality is valid for all  and, 

        since DA is left continuous. 

It follows that A
D

(x) DA(x).Hence A
D

(x) = DA(x), 
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Hence, the proof is complete. 

 

Definition.1.5. Let A and B be nonempty subsets for S. The probabilistic distance between A and B is the 

function FAB defined by  

                      FAB(x) = 
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The following are the properties of FAB. 

P4. FAB is a distribution function. 

P5. If A and B are nonempty subsets of S, then FAB = FBA. 

P6. If A is a nonempty subset of S, then FAA = H. 

Theorem.1.6. If A and B are nonempty subsets of S, then FAB = F BA . 

Proof. It is sufficient to show that FAB = F BA  since this result together with property P5 yields. 

    Hence,       FAB = FA
BAABABB

FFF 
. 

Now, we first show that 
BBSinceFF

ABBA
 .

 for all t, 
























)()( tFSupInftFSupInf
qp

ApBq

pq

ApBq
………….. (1.5) 

Let  > 0 be given. The argument given in the proof of Theorem( 1.4) establishes that for each point 
Bq 

, 

there exists a point q(
q

) in B such that for all t,   
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      Let B  = {q(
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}. Since B   B we have, 
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Now ,taking the supremum on t < x of the above inequality,yields for any , 
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since both f and g are left-continuous and    is arbitrary, it follows that 

 f(x)   g(x). This together with (1.2.5), and the continuity of T yields. 
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A similar argument shows that F BA    FAB.  

Theorem.1.7. If A and B are nonempty subsets of S, 
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 then FAB = H,    if and only if 
BA 

. 

 

 

Proof. Suppose FAB = H and let ε > 0 be given. Then 

1 = FAB (ε) = T 
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So that for any q  B and every λ > 0 there exists a point p in A for which Fpq  (ε) > 1 – λ. Consequently, q is an 

accumulation point of A and we have B 


A . A similar argument shows that A 
B

. Conversely, suppose 

BA 
. 

 Then in view of P6 and Theorem 1.7 

We have, FAB = AABA
FF 

= H. 

Theorem.1.8. If A, B and C are nonempty subsets of S, then for any x and y FAB (x - y) 


 T(FAC(x), 

FBC(y)). 

Proof. Let u and v be given. Then for any triple of points p, q and r in S we have Fpq(u+v) 


 T(Fpr(u), Fqr(v)). 

Making use of the continuity and monotonicity of T we have the following inequality :

 




























)(),()( vFSupInfuFSupTvuFSup
qr

BqCr

pr

Cr

pq

Bq 

. 

     Consequently, 















































)(,)()( vFSupInfuFSupInfTvuFSupInf
rq

BqCr

pr

CrAp

pq

BqAp

. 

 Similarly, 















































)(,)()( vFSupInfuFSupInfTvuFSupInf
rq

CqBr

pr

ArCp

pq

AqBp

 

Therefore, since T is associative, 
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