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Probabilistic diameter and its properties.
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Abstract: In this paper ,we discuss on probabilistic diameter and some of its basic properties.
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I. Introduction
Probabilistic metric spaces were first introduced by K. Menger in 1942 and reconsidered by him in the early
1950’s B. Schweizer and A. Sklar have been studying these spaces, and have developed their theory in depth. In
probabilistic metric spaces the notion of distance between two points X and vy is replaced by a distribution
function F,y,. Thus, the distance between points as being probabilistic with F,(t) representing the probability that
the distance between x and y is less than t.
Definition: 1.1. Let (S, F,T) denote a Menger space with a continuous t-norm and A be a nonempty subset of S.
The function D, defined by

Sup [ Inf F (t)J
Da(x)= ' LPach , is called the probabilistic diameter of A.
Properties of the probabilistic diameter.
Defenition.1.2.A nonempty subset A of S is bounded if Supy Da(X) = 1,
semi-bounded if 0 < Sup Da(x) < 1, and unbounded if D = 0.
P.) The function D, is a distribution function
P,) If Ais a nonempty subset of S, then D, = H if and only if A consists of a single point.

Ps) If A and B are nonempty subsets of S and A= B, then Dp = Dg.
Theorem.1.3. If A and B are two nonempty subsets of S such that A N B = ¢,

then DAUB(X + y)_ZT(DA(X), DB(y)) ............. (11)
Proof. Let x and y be given. To establish (1.1) we first show that

Inf Fo(X+y) = T(Inf F_(x) Inf F_(y)

PacAB PacA pask . (1.2)
There are two distinct cases to consider:
Case (1).
Inf F o (x+y) = Inf F o (x+y)
p,ge AuB PeA
B (1.3)

Now for any triple of points p,q and r in S, we have
Fog(X +Y) LL T(For(X), Fro(¥)).
Taking the Infimum of both sides of this inequality as p ranges over A, q ranges over B and r ranges over A [J B

Inf  F (x+y)zInf T(F_(x), F,(y)
p.qge AUB peA

qeB
reAnB

However, since T is continuous and non decreasing ,we obtain,

Inf Fo(s+y) 2 T( Inf F_ (x), Inf Frq (Y))
y

p.qe AUB p,reA r,qeB
Inf qu(x+ y) < Inf qu(x+ y)
p.geAUB peA
Case (2). a<e ,
Inf F  (x+y)=Inf F_(x+y)
In this case of the equalities, °9<*“® PacA or
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Inf qu(x+ y)= Inf qu(x+ y)

p.qe AUB p.qeB

must hold. If the first equality holds, we

Inf F (x+ y)gT( Inf F__(x), H (y)) gT( Inf F, (X), Inf F_ (y)\
haVe p.deAuB p.aeA p.aeA p.qeB )
The same argument works for the second equality.

This establishes (1.2.).

Finally using the fact that the rectangle
{10 ==X 05ty

is contained in the triangle {(s, t): s, t= 0, s +t<x + y},
the inequality (1.2) and the continuity of T. we have

Y

Sup [Inf qu(x+t)}

p.qe AUB

Sup [ Inf F_, (s+t)}
DA &X"'y): S+t<x+y| p.qe AUB

S<X p,ge A t<v p,qeB

>T| Sup [ Inf F (s)},Sup L Inf F_, (t)}

= T(Da(x), Dg(y))-

Theorem.1.4. If A is a nonempty subset of S, then Do = D# , where A denotes the closure of A in the & — A
topology on S.

v

D -
Proof. Since A = A , if follows from property P, that DA =  ~ .

Let 1] > 0 be given. In view of the uniform continuity of 3 with respect to the Levy metric L there exists an

€>0 and a A > 0 such that for any four points ps, p,, psand p4in'S,  L(Fppe, FPsps) <M
When ever Fpips (g) > 1 — X and Fpyps(e) > 1 — A

Next, with each point P and A associate a point P( P )in A such that
Fp(p)p(g) >1-M

Then, in view of the above for any pair of points P and ¢ A,

L(FP(Mac. Fpp )<.
i e E=m) =n < F-(t)
In particular, for all t we have, FP(Pa(®) pa
LetA” = {p(P) " P <A) Thensince A” S A

Inf_F_o()z Inf_p(p)a(a)(t-n)-7

P.,qe A p.geA

Inf qu(tfn)fryélnf qu(tfn)fn

— P.acAp p.geA )
Now, taking the suprimum for t < x of the above inequality yields

;(x): Sup [Ianpq(t)}iSup [ Inf qu (t—n)J—n

D t<x p.geA t>x p.qeA

Sup [Inf F o (t)}
— t<x-n [ p.geA -n = DA (X'-n) -n

Since the above inequality is valid for all 1] and,
since D, is left continuous.

D- D-
It follows that ~ A (x) = Da(x).Hence ~ # (X) = Da(X),
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Hence, the proof is complete.

Definition.1.5. Let A and B be nonempty subsets for S. The probabilistic distance between A and B is the

function Fag defined by

Inf

peA

Sup T

t<x

[Sup qu (t)}
Fag(X) = e

The following are the properties of F ag.
P,. Fag is a distribution function.

, Inf

qe

:
L

B

Ps. If A and B are nonempty subsets of S, then Fag = Fga.

Pe. If A is a nonempty subset of S, then Faa = H.

Sup F (1)

peB

Theorem.1.6. If A and B are nonempty subsets of S, then Fag = F e

Proof. It is sufficient to show that FAB = F A& since this result together with property Ps yields.

B

_=F —
BA A AB

Hence, FAB = FAE:

F Since

AB *

1
J

Now, we first show that = a8 =
[ 1
LSup F oo (1)

J

Inf

qeB

2 Inf

Sup Fp;(t)

peA quL peA

B<c B

for all t,

Let M > O be given. The argument given in the proof of Theorem( 1.4) establishes that for each point ae B ,

there exists a point g( a ) in B such that for all t,

LetBy ={q(?): 9 ¢ B3 since B] B we have,
Sup F ~(t-n)-n<Sup (t)=Sup F (1) <Sup F (1)

qeB qeB qeB,
[ 1 [
Inf LS*UB FpE(t _U)J_n < Inf L
Consequently, P<*La<® peh

pe

B

Sup F . (t)

F o t=n)-n<F ()

qeB

1
|

Now ,taking the supremum on t < x of the above inequality,yields for any 1,

df

r
Sup F " (1)

= Sup [Inf 1] 2 Sup
f(X) t<x psAL qeB J X<x
[ 1
Sup | Inf [ Sup F -(t)||-ndf g(x-n)-n
- t>x-n qe A i\ Eeg pa J =

|

Inf

peA

r
L

Sup Fp;(t -7n)

qeB

I

since both f and g are left-continuous and 1| is arbitrary, it follows that
f(x) = g(x). This together with (1.2.5), and the continuity of T yields.

( [ ] [
T{Sup | Inf LSup qu (t)J ,Sup | Inf L
FAB(X): L t<x peA| qeB t<x qeB
(2o Lo mo)oe
>T {Sup | Inf LSﬁupﬁ Fp;(t)J ,Sup | Inf
[ 1 [
Sup T| Inf LS’UE Fpg(t)J,[ntLSup Fp;(t)
_ t<x peA qeB qeB peA

A similar argument shows that F 28 g Fag.

Theorem.1.7. If A and B are nonempty subsets of S,

r
L

pe

Sup Fp;(t)

A

peA

Sup F, (y)

|
)

B:FAB(X)
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then Fag = H, ifand only if A

Proof. Suppose Fag = H and let € > 0 be given. Then

{[Sup [Inf [Sup F o (t)H,Sup {Inf [Sup F o (t)ﬂ]}
1= FAB (8):TL t<e peA qeB t<e qeB peA J
Sup {Inf {Sup qu (t)D: Inf [Sup qu (5)}

t<e qeB peA qeB peA
So that for any g € B and every A > 0 there exists a point p in A for which Fyq () > 1 —A. Consequently, q is an

accumulation point of A and we have B S A Asimilar argument shows that A cB . Conversely, suppose
A = B
Then in view of Pg and Theorem 1.7

F- = F—
We have, Fag= "8 Ar=H.

Theorem.1.8. If A, B and C are nonempty subsets of S, then for any x and y Fage (X - V) = T(Fac(X),
Fac(y))-

Proof. Let u and v be given. Then for any triple of points p, g and r in S we have Fyy(u+v) z T(Fpr(u), Fg(V)).
Making use of the continuity and monotonicity of T we have the following inequality

r 1
Sup F, (u+Vv)=T|Sup F (u),Inf Sup F, (v)
B reC recC L qeB J

Consequently,

peA qeB peA reC reC qeB

Inf [Sup F o (u+v)};T[lnf [Sup Fo (u)},lnf [Sup Fr (V)D

Inf {Sup qu (u +v)JiT[Inf [Sup Fpr (u)]lnf [Sup Frq (V)H

Similar|y7 peB qe A peC reA reB qeC
Therefore, since T is associative,
[ |
T| Inf |—Sup qu (u+v)—|,lnf Sup qu (u_v)
peAL reB J reB L qeA J
we have

( r 1 T T]
2T 4T | Inf  Sup F or (u),Inf | Sup F or (u)
L [ peAL reC J reC L peA J

i
i [
]

Sup T[Inf [Sup qu (u+v)y, Inf LSup qu (u+v)ﬂ

U+v<x+y peA qeB qeB peA

qeB reC reC qeB

Inf |—Sup qu (v)—|,lnf |—Sup qu (v)
L |
0T

So, we have Fag(X+y) =

u<x
v<y

peA qeB qeB qeB

>Sup T [Inf [Sup Fo (U +V)J,Inf [Sup Fo (U +v)ﬂ

JSup T [mf [Sup Fo (u)},lnf [Sup Fo (u)D,

peA reC reC peA
=T L

u<x
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]
Sup T | Inf [Sup qu(u)J,lnf [Sup qu (u)} b
> ) =TERc, Facy).
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