k– Hermitian Circulant, s-Hermitian Circulant and s – k Hermitian Circulant Matrices

Dr. N. Elumalai¹, Mr. K. Rajesh kannan²,

¹Associate professor, ²Assistant Professor

¹Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, TamilNadu ²Department of Mathematics, Annai College of Engineering and technology, Kovilacheri, TamilNadu.

ABSTRACT: The basic concepts and theorems of k-Hermitian Circulant s- Hermitian Circulant and s-k Hermitian Circulant matrices are introduced with examples.

Keywords: k- Hermitian Circulant matrix, s- Hermitian Circulant matrix and s-k- Hermitian Circulant matrix.

AMS Classifications: 15B57, 15B05, 47B15

I. INTRODUCTION

The concept of s- Hermitian matrices, k- Hermitian matrices and of s-k Hermitian matrices was introduced in [1], [2] and [3] Some properties of Hermitian matrices given in [5],[6]. In this paper, our intention is to define s- Hermitian circulant matrices, k- Hermitian circulant matrices and of s-k Hermitian circulant matrices and prove some results on Hermitian circulant matrices

II. PRELIMINARIES AND NOTATIONS

 Z^T is called Transpose of Z, Z^S is called secondary transpose of Z.Let k be a fixed product of disjoint transposition in S_n and 'K'be the permutation matrix associated with k, V is a permutation matrix with units in the secondary diagonal. Clearly K and V are satisfies the following properties. $K^2 = I$, $K^T = K$, $V^2 = I$, $V^T = V$

III. DEFINITIONS AND THEOREMS

Definition: 1For any given $z_0, z_1, z_2, z_3, ... z_{n-1} \in C^{n \times n}$ the Circulant matrix $Z = [Z_{ij}]$ is defined by

$$Z = \begin{bmatrix} z_0 & z_1 & z_2 & ... & z_{n-1} \\ z_0 & z_1 & z_2 & ... & z_{n-1} \\ z_0 & z_1 & z_2 & ... & z_{n-2} \\ z_{n-1} & z_0 & z_1 & ... & z_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ z_{n-1} & z_{n-2} & z_{n-3} & ... & z_0 \end{bmatrix}$$

Definition: 2 A matrix $Z \in C^{n \times n}$ is said to be Hermitian Circulant matrix if $Z = Z^*$

Example: 1

$$Z = \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \end{bmatrix} \quad \overline{Z} = \begin{bmatrix} 2 & 1-i & 1+i \\ 1+i & 2 & 1-i \end{bmatrix} \quad Z^* = \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \end{bmatrix}$$

$$\begin{bmatrix} 1+i & 1-i & 2 \\ 1-i & 1+i & 2 \end{bmatrix} \quad [1+i & 1-i & 2]$$

Result:

- (i) All Hermitian is not a Circulant matrix, $\begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$
- (ii) All Circulant matrix is not a Hermitian matrix, $\begin{bmatrix} 1 & 1+i \\ 1+i & 1 \end{bmatrix}$

Definition: 3 A matrix $Z \in C^{n\times n}$ is said to be k-Hermitian Circulant matrix if $z = K Z^* K$ **Example:** 2

$$Z = \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \\ 1+i & 1-i & 2 \end{bmatrix}, \quad \overline{Z} = \begin{bmatrix} 2 & 1-i & 1+i \\ 1+i & 2 & 1-i \\ 1-i & 1+i & 2 \end{bmatrix}, \quad Z^* = \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \\ 1+i & 1-i & 2 \end{bmatrix}, \quad K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Now,
$$KZ*K=\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}\begin{bmatrix} 2 & 1+i & 1-i \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}\begin{bmatrix} 2 & 1-i & 1+i \end{bmatrix}$$

 $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1-i & 2 & 1+i \end{bmatrix}\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 1+i & 2 & 1-i \end{bmatrix}=Z$

Result: (i) $KZ = \overline{ZK}$ (ii) $ZK = \overline{KZ}$

(i)
$$KZ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1+i & 1-i \\ 1+i & 1-i & 2 \\ 1-i & 2 & 1+i \end{bmatrix}$$

$$ZK = \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \\ 1+i & 1-i & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1-i & 1+i \\ 1-i & 1+i & 2 \\ 1+i & 2 & 1-i \end{bmatrix} \underbrace{ZK}_{} = \begin{bmatrix} 2 & 1+i & 1-i \\ 1+i & 1-i & 2 \\ 1-i & 2 & 1+i \end{bmatrix}$$

 $KZ = z\kappa$ Similarly $ZK = \kappa z$

Theorem: 1 Let $Z \in C^{n \times n}$ is k-Hermitian Circulant matrix if $z = K Z^* K$ **Proof:**

$$KZ*K = KZK$$
 where $Z* = Z$
 $= zK$ K where $KZ = zK$
 $= zK$ K
 $= zK^2 = z$ where $K^2 = I$

Theorem: 2 Let $Z \in C^{n \times n}$ is k-Hermitian Circulant matrix if $Z^* = K \times Z$

Proof:
$$K \ Z \ K = K \ Z \ K \ where \ K = K$$

$$= K \ ZK$$

$$= K \ KZ \ where \ ZK = KZ$$

$$= Z = Z* \ where \ Z* = Z$$

Theorem: 3 Let Z_1 and Z_2 are k-Hermitian Circulant matrices then Z_1 Z_2 is also k-Hermitian Circulant matrix

Proof: Let Z_1 and Z_2 are k-Hermitian Circulant matrices then $Z_1^* = K \ Z_1 K$, $Z_2^* = K \ Z_2 K$ and $Z_1 = K Z_1 K$, $Z_2^* = K Z_2 K$. To prove $Z_1 Z_2$ is k-Hermitian Circulant matrix

We will show that
$$Z_1 Z_2 = \overline{Z_2 Z_1} = K(Z_1 Z_2) * K$$

Now $K(Z_1 Z_2) * K = K Z_2 * Z_1 * K$
 $= K [(K Z_2 K)(K Z_1 K)] K$ where $Z_1 * = K Z_1 K, Z_2 * = K Z_2 K$
 $= K^2 Z_2 K^2 Z_1 K^2$
 $= Z_2 Z_1$

Theorem: 4 Let Z_1 and Z_2 are k-Hermitian Circulant matrices then $Z_1 + Z_2$ is also k-Hermitian Circulant matrix

Proof: Let Z_1 and Z_2 are k-Hermitian Circulant matrices then $Z_1^*=K$ Z_1K , $Z_2^*=K$ Z_2K and $Z_1=K$ Z_1^*K ,

$$z_2 = K Z_2 * K$$
. To prove $Z_1 + Z_2$ is k-Hermitian Circulant matrix

We will show that
$$(\overline{Z_1 + Z_2}) = K(Z_1 + Z_2) * K$$

Now $K(Z_1 + Z_2) * K = K(Z_1 * + Z_2 *) K$
 $= KZ_1 * K + KZ_2 * K$
 $= \overline{Z_1 + Z_2}$
 $= \overline{Z_1 + Z_2}$

Theorem: 5 Let $Z \in C^{nxn}$ is k-Hermitian Circulant matrix and K is the Permutation matrix, $k=(1)(2\ 3)$ then KZ is also k-Hermitian Circulant matrix

Proof: Let $Z \in C^{n\times n}$ is k-Hermitian Circulant matrix $z = K Z^* K$, $Z^* = K Z K$

To Prove KZ is k-Hermitian Circulant matrix

We will show that,
$$KZ = z_K = K(KZ)*K$$

Now
$$K(KZ)^* K = K[K(z_K)K]K$$

= $K^2 \overline{z_K} K^2 = \overline{z_K}$

Theorem: 5 Let $Z \in C^{n \times n}$ is k-Hermitian Circulant matrix then ZZ^T is also k-Hermitian Circulant matrix

Proof: Let $Z \in C^{n \times n}$ is k-Hermitian Circulant matrix $z = K Z^* K$, $Z^* = K Z K$

To Prove ZZ^T is k-Hermitian Circulant matrix. We will show that, $ZZ^T = \overline{z}^T \overline{z} = K(ZZ^T) * K$

Now
$$K(ZZ^T)*K = K[K(z^Tz)K]K$$

= $K^2(z^Tz)K^2$
= $K^2(z^Tz)K^2$

Result: Let Z_1 and Z_2 are k-Hermitian Circulant matrices for the following conditions are holds

- (i) $Z_1 Z_2 = Z_2 Z_1$ and also k-Hermitian Circulant matrix
- (ii) $Z_1^T Z_2 Z_1 = Z_2^T Z_1 Z_2$ are also k-Hermitian Circulant matrices

Theorem: 7 Let Z is k-Hermitian Circulant matrix then the following conditions are equal

- 1) $KZ^* = KZ$
- $2) \quad Z*K = ZK$
- 3) $(KZ)^* = Z^*K$
- 4) (Z*K) = KZ

Proof: (i)
$$KZ^* = KZ$$

Now,
$$KZ^* = K$$
 ($K \times Z \times K$) where $Z^* = K \times Z \times K$

$$= K (K \times Z \times K)$$

$$= K (K \times Z \times K)$$

$$= K (K \times K \times Z) = K^2 (K \times Z)$$

$$= KZ$$

(ii)
$$Z*K = ZK$$

Now,
$$Z*K = (K \ Z \ K) \ K$$
 where $Z*=K \ Z \ K$

$$= (K \ Z \ K) \ K$$

$$= (K \ Z \ K) \ K$$

$$= (K \ Z \ K) \ K$$

$$= (K \ K \ Z) \ K = K^2 \ (ZK)$$

$$= ZK$$

$$(iii) (KZ)^* = Z^*K$$

Now,
$$(KZ)^* = K(\underbrace{z_K}_{Z} \underbrace{)}_{K} \text{ where } Z^* = K \underbrace{z}_{K} K$$

$$= K(\underbrace{z}_{K} \underbrace{)}_{K} K$$

$$= K(\underbrace{z}_{K} \underbrace{)}_{K} K$$

$$= (K \underbrace{z}_{K} \underbrace{)}_{K} K$$

$$= Z^*K$$

(iv)
$$(Z*K)* = KZ$$

Now,
$$(Z*K)* = (ZK)*$$
 where (ii)

$$= K \left(\frac{KZ}{L} \right) K$$

$$= KZ* = KZ$$

Definition: 4 A matrix $Z \in C^{nxn}$ is said to be S-Hermitian Circulant matrix if z = VZ*V where V is Exchange matrix

Example: 3

$$VZ*V = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1-i & 2 & 1+i \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1-i & 1+i \\ 1+i & 2 & 1-i \\ 1-i & 1+i & 2 \end{bmatrix} = \begin{bmatrix} -1+i & 1+i \\ 1+i & 2 & 1-i \\ 1-i & 1+i & 2 \end{bmatrix}$$

Result: (i) $VZ = \overline{zv}$ (ii) $ZV = \overline{vz}$

(i)
$$VZ = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \\ 1 & 1-i & 2 \end{bmatrix} = \begin{bmatrix} 1+i & 1-i & 2 \\ 1-i & 2 & 1+i \\ 2 & 1+i & 1-i \end{bmatrix}$$

$$(ii) \ ZV = \begin{bmatrix} 2 & 1+i & 1-i \\ 1-i & 2 & 1+i \\ 1+i & 1-i & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1-i & 1+i & 2 \\ 1+i & 2 & 1-i \\ 2 & 1-i & 1+i \end{bmatrix}, \ \overline{ZV} = \begin{bmatrix} 1+i & 1-i & 2 \\ 1-i & 2 & 1+i \\ 2 & 1+i & 1-i \end{bmatrix}$$

 $\therefore VZ = zv \quad Similarly \ ZV = vz$

Theorem: 8 Let $Z \in C^{n\times n}$ is s-Hermitian Circulant matrix if $z = VZ^*V$

Proof:
$$VZ*V = V \subseteq V$$
 where $Z* = Z$

$$= zv \quad K \text{ where } VZ = zv$$

$$= z \quad V \quad V$$

$$= z \quad V^2 = z \text{ where } V^2 = I$$

$$= Z = Z* \text{ where } Z* = Z$$

Theorem:9 Let $Z \in C^{n \times n}$ is s-Hermitian Circulant matrix if $Z^* = V \times V$

Proof:
$$V \ Z \ V = V \ Z \ V$$
 where $V = V$

$$= V \ Zv$$

$$= V \ VZ \text{ where } Zv = VZ$$

$$= V \ VZ \text{ where } V^2 = I$$

$$= Z = Z^* \text{ where } Z^* = Z$$

Theorem:10 Let Z_1 and Z_2 are s-Hermitian Circulant matrices then $Z_1 Z_2$ is also s-Hermitian Circulant matrix **Proof:** Let Z_1 and Z_2 are s-Hermitian Circulant matrices then $Z_1 \stackrel{*}{=} V Z_1 V$, $Z_2 \stackrel{*}{=} V Z_2 V$ and $Z_3 \stackrel{*}{=} V Z_3 V$,

 $Z_2 = V Z_2 * V$. To prove $Z_1 Z_2$ is s-Hermitian Circulant matrix

We will show that
$$Z_1 Z_2 = \overline{Z_2 Z_1} = V(Z_1 Z_2) * V$$

Now $V(Z_1 Z_2) * V = V Z_2 * Z_1 * V$
 $= V[(V Z_2 V) (V Z_1 V)] V$ where $Z_1 * = V Z_1 V$, $Z_2 * = V Z_2 V$
 $= V^2 \overline{Z_2} V^2 \overline{Z_1} V^2$
 $= \overline{Z_1 Z_2}$
 $= \overline{Z_1 Z_2}$ where $\overline{Z_2 Z_1} = Z_1 Z_2$

Theorem:11 Let Z_1 and Z_2 are s-Hermitian Circulant matrices then $Z_1 + Z_2$ is also s-Hermitian Circulant matrix Proof: Let Z_1 and Z_2 are s-Hermitian Circulant matrices then $Z_1 *= V Z_1 V$, $Z_2 *= V Z_2 V$ and $Z_1 = V Z_1 *V$, $Z_2 *= V Z_2 V$. To prove $Z_1 + Z_2$ is s-Hermitian Circulant matrix

We will show that
$$(z_1 + z_2) = V(Z_1 + Z_2) * V$$

Now $V(Z_1 + Z_2) * V = V(Z_1 * + Z_2 *) V$
 $= VZ_1 * V + VZ_2 * V$

$$= Z_1 + Z_2$$

$$= Z_1 + Z_2$$

Theorem: 12 Let $Z \in C^{nxn}$ is s-Hermitian Circulant matrix and V is the Exchange matrix then VZ is also s-Hermitian Circulant matrix

Proof: Let Z is s-Hermitian Circulant matrix then $z = V Z^* V$, $Z^* = V z V$ To Prove VZ is s-Hermitian Circulant matrix

We will show that,
$$VZ = \overline{z_V} = V(VZ)^* V$$

Now
$$V(VZ)^* V = V[V(\overline{zv}) V] V$$

$$= V^2 \overline{zv} V^2$$

$$= \overline{zv} = VZ$$

Theorem: 13 Let $Z \in C^{n\times n}$ is s-Hermitian Circulant matrix then ZZ^T is also s-Hermitian Circulant matrix

Proof: Let $Z \in C^{n \times n}$ is s-Hermitian Circulant matrix $z = V Z^* V$, $Z^* = V Z V$

To Prove ZZ^T is s-Hermitian Circulant matrix. We will show that, $ZZ^T = z^T z = V(ZZ^T)^* V$

Now
$$V(ZZ^{T})*V = V[V(\overline{z^{T}z})V]V$$

$$= V^{2}(\overline{z^{T}z})V^{2}$$

$$= \overline{z^{T}z} = ZZ^{T}$$

Result: Let Z_1 and Z_2 are s-Hermitian Circulant matrices for the following conditions are holds

- (i) $Z_1 Z_2 = Z_2 Z_1$ and also s-Hermitian Circulant matrix
- (ii) $Z_1^T Z_2 Z_1$ and $Z_2^T Z_1 Z_2$ are also s-Hermitian Circulant matrices

Theorem: 14

Let Z is s-Hermitian Circulant matrix then the following conditions are equal

- 1) $VZ^* = VZ$
- $2) \quad Z^*V = ZV$
- 3) $(VZ)^*=Z^*V$
- 4) (Z*V) = VZ

Proof: (i)
$$VZ^* = VZ$$

Now,
$$VZ^* = V (V \overline{Z} V)$$
 where $Z^* = V \overline{Z} V$

$$= V (V \overline{Z} V)$$

$$= V (V \overline{Z} V)$$

$$= V (V V Z)$$

$$= V (V V Z)$$

$$= V (V Z)$$

(ii)
$$Z*V = ZV$$

Now,
$$Z*V = (V \ \overline{Z} \ V) \ V$$
 where $Z*=V \ \overline{Z} \ V$

$$= (V \ \overline{Z} \ V) \ V$$

$$= (V \ \overline{Z} \ V) \ V$$

$$= (V \ \overline{Z} \ V) \ V = (V \ \overline{Z} \ V) \ V = V^2 \ (Z \ V)$$

$$= Z \ V$$

$$(iii) (VZ)^* = Z^*V$$

Now,
$$(VZ)^* = V(z^v) V$$
 where $Z^* = Vz^v V$

$$= V(z^v) V$$

$$= V(z^v) V$$

$$= (Vz^v) V$$

$$= Z^*V$$

$$(iv)\ (Z*V)*=VZ$$

Now,
$$(Z*V)* = (ZV)*$$
 where (ii)
= $V(vz)V$

$$= V \begin{pmatrix} v & z \end{pmatrix} V$$

$$= V \begin{pmatrix} V & Z \end{pmatrix} V$$

$$= V \langle V & Z \rangle$$

$$= VZ*=VZ$$

Definition: 5 A matrix $Z \in C^{uxn}$ is said to be s-k Hermitian Circulant matrix if (i)Z = KVZ*VK (ii) Z = VKZ*KV (iii) Z = KVZ*VK (ii) Z = VKZ*VK (iii) Z = VKZ*VK (iii) Z = VKZ*VK where V is Exchange matrix and K is Permutation matrix $K = (1)(2 \ 3)$

Theorem: 15Let Z_1 and Z_2 are s-k Hermitian Circulant matrices then $Z_1 + Z_2$ is also s-k Hermitian Circulant matrix

Proof: Let Z_1 and Z_2 are s-k Hermitian Circulant matrices then $Z_1^* = KV Z_1 VK$, $Z_2^* = KV Z_2 VK$

To prove $Z_1 + Z_2$ is s-k Hermitian Circulant matrix

We will show that $(Z_1+Z_2)^* = KV(Z_1 + Z_2)^* VK$

Now $KV(Z_1 + Z_2) * VK = K[V(Z_1^* + Z_2^*) V] K$

$$= K (Z_1 + Z_2) K$$

= $(Z_1^* + Z_2^*)$

Theorem: 16 Let Z_1 and Z_2 are s-k Hermitian Circulant matrices then Z_1 Z_2 is also s-k Hermitian Circulant matrix

Proof: Let Z_1 and Z_2 are s-k Hermitian Circulant matrices then $Z_1^* = KVZ_1VK$, $Z_2^* = KVZ_2VK$

To prove $Z_1 Z_2$ is s-k Hermitian Circulant matrix

We will show that $(Z_1 Z_2)^* = KV (Z_1 Z_2)^* VK$

Now
$$KV(Z_1Z_2)*VK = K[VZ_2*Z_1*V]K$$

= $K(Z_1Z_2)*$
= $(Z_1Z_2)*$

Theorem: 17 Let $Z \in C^{n\times n}$ is s-k Hermitian Circulant matrix and V is the Exchange matrix and K is Permutation matrix $K = (1)(2\ 3)$ then VZ is also s-k Hermitian Circulant matrix

Proof: Let Z is s-k Hermitian Circulant matrix then Z*= KVZ*VK

To Prove VZ is s-k Hermitian Circulant matrix

We will show that, $(VZ)^* = KV (VZ)^* VK$

Now KV(VZ)*VK = K[V(VZ)*V]K

$$= K ZV K$$
$$= (VZ)*$$

Theorem: 18 Let $Z \in C^{n\times n}$ is s-k Hermitian Circulant matrix then ZZ^T is also s-k Hermitian Circulant matrix

Proof: Let $Z \in C^{n\times n}$ is s-k Hermitian Circulant matrix $Z^* = KVZ^*VK$

To Prove ZZ_{∞}^{T} is s-k Hermitian Circulant matrix. We will show that, $(ZZ^{T})^{*} = KV(ZZ^{T})^{*}VK$

Now $KV(ZZ^T)*VK = K[V(ZZ^T)*V]K$

$$= K(\overline{z}^{T}z)K$$

$$= (\overline{z}^{T}z)^{*}$$

Theorem: 19 Let $Z \in C^{n\times n}$ is s-k Hermitian Circulant matrix then the following conditions are equal

$$(i)Z^* = KVZ^*VK$$

$$(ii) Z^* = VKZ^*KV$$

(iii)
$$z = KVz VK$$

$$(iv) z = VKz KV$$

Proof:

(i)
$$KVZ*VK = \underbrace{K}(VZ*V)K$$

 $= KzK$
 $= Z*$
(ii) $VKZ*KV = V(KZ*K)V$
 $= VzV$
 $= Z*$
(iii) $KVzVK = K[VzV]K$
 $= KZ*K$

REFERENCES

- [1]. [2].
- Ann Lec. Secondary symmetric and skew symmetric secondary or thogonal matrices; (i) Period, Math Hungary, 7, 63-70 (1976). Elumalai.N, Rajesh kannan.K," k-symmetric Circulant, s- symmetric Circulant and s- k symmetric Circulant Matrices", Journal of Ultra Scientist of Physical Sciences, Vol. 28(6), 322-327 (2016).
- Gunasekaran. K., Mohana. N., "k-symmetric Double stochastic , s-symmetric Double stochastic Matrices" International Journal of Engineering Science Invention, Vol 3, Issue 8, (2014). [3].
- Hill, R.D, and Waters, S.R., On k-real and k-hermitian matrices; Lin. Alg. Appl., 169, 17-29 (1992). [4].
- Hazewinkel, Michiel, ed. (2001), "Symmetric matrix", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 [5].
- [6].
- Krishnamoorthy. S, Vijayakumar. R, Ons-normal matrices, Journal of Analysis and Computation, Vol 15, No 2, (2009).

 Krishnamoorthy. S, Gunasekaran. K, Mohana. N, "Characterization and theorems on doubly stochastic matrices" Antartica Journal [7]. of Mathematics, 11(5) (2014)