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Abstract—A fuzzy number is a normal and convex fuzzy subsetof the real line. In this paper, based on 

membership function, we redefine the concepts of mean and variance for fuzzy numbers. Furthermore, we 

propose the concept of skewness and prove some desirable properties. A fuzzy mean-variance-skewness 

portfolio se-lection model is formulated and two variations are given, which are transformed to nonlinear 

optimization models with polynomial ob-jective and constraint functions such that they can be solved 

analytically. Finally, we present some numerical examples to demonstrate the effectiveness of the proposed 

models. 
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I. INTRODUCTION 
                       The modern portfolio theory is an important part of financial fields. People construct efficient 

portfolio to increasereturn and disperse risk. In 1952, Markowitz [1] published the seminal work on portfolio 

theory. After that most of the studies are centered around the Markowitz’s work, in which the invest-ment return 

and risk are respectively regarded as the mean value and variance. For a given investment return level, the 

optimal portfolio could be obtained when the variance was minimized under the return constraint. Conversely, 

for a given risk level, the optimal portfolio could be obtained when the mean value was maximized under the 

risk constraint. With the development of financial fields, the portfolio theory is attracting more and more 

attention around the world. 

 

One of the limitations for Markowitz’s portfolio selection model is the computational difficulties in solving a 

large scale quadratic programming problem. Konno and Yamazaki [2] over-came this disadvantage by using 

absolute deviation in place of variance to measure risk. Simaan [3] compared the mean-variance model and the 

mean-absolute deviation model from the perspective of investors’ risk tolerance. Yu et al. [4] proposed a 

multiperiod portfolio selection model with absolute deviation minimization, where risk control is considered in 

each period.The limitation for a mean-variance model and a mean-absolute deviation model is that the analysis 

of variance andabsolute deviation treats high returns as equally undesirable as low returns. However, investors 

concern more about the part in which the return is lower than the mean value. Therefore, it is not reasonable to 

denote the risk of portfolio as a vari-ance or absolute deviation. Semivariance [5] was used to over-come this 

problem by taking only the negative part of variance. Grootveld and Hallerbach [6] studied the properties and 

com-putation problem of mean-semivariance models. Yan et al. [7] used semivariance as the risk measure to 

deal with the multi-period portfolio selection problem. Zhang et al. [8] considered a portfolio optimization 

problem by regarding semivariance as a risk measure. Semiabsolute deviation is an another popular downside 

risk measure, which was first proposed by Speranza [9] and extended by Papahristodoulou and Dotzauer [10]. 

When mean and variance are the same, investors prefer a portfolio with higher degree of asymmetry. Lai [11] 

first con-sidered skewness in portfolio selection problems. Liu et al. [12] proposed a mean-variance-skewness 

model for portfolio selec-tion with transaction costs. Yu et al. [13] proposed a novel neural network-based 

mean-variance-skewness model by integrating different forecasts, trading strategies, and investors’ risk 

preference. Beardsley et al. [14] incorporated the mean, vari-ance, skewness, and kurtosis of return and liquidity 

in portfolio selection model. 

All above analyses use moments of random returns to mea-sure the investment risk. Another approach is to 

define the risk as an entropy. Kapur and Kesavan [15] proposed an entropy op-timization model to minimize the 

uncertainty of random return, and proposed a cross-entropy minimization model to minimize the divergence of 

random return from a priori one. Value at risk (VAR) is also a popular risk measure, and has been adopted in a 

portfolio selection theory. Linsmeier and Pearson [16] gave an introduction of the concept of VAR. Campbell et 

al. [17] devel-oped a portfolio selection model by maximizing the expected return under the constraints that the 

maximum expected loss satisfies the VAR limits. By using the concept of VAR, chance constrained 

programming was applied to portfolio selection to formalize risk and return relations [18]. Li [19] constructed 

an insurance and investment portfolio model, and proposed a method to maximize the insurers’ probability of 

achieving their aspiration level, subject to chance constraints and institutional constraints.Probability theory is 
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widely used in financial fields, and many portfolio selection models are formulated in a stochastic en-vironment. 

However, the financial market behavior is also af-fected by several nonprobabilistic factors, such as vagueness 

and ambiguity. With the introduction of the fuzzy set theory [20], more and more scholars were engaged to 

analyze the portfolio 

 

Selection  models  in a fuzzy environment . For example, Inuiguchi and Ramik  [21] compared and the 

difference between fuzzy mathematical programming and  stochastic programming in solving portfolio selection 

problem.Carlsson and Fuller [22] introduced the notation of lower and upper possibilistic means for fuzzy 

numbers. Based on these notations. Zhang and Nie[23] proposed the lower and upper possibilistic variances and 

covariance for fuzzy numbers and constructed a fuzzy mean variance model. Huang [24] proved some 

properties of semi variance for fuzzy variable,and presented two mean semivariancemosels.Inuiguchi et al.[25] 

proposed a mean-absolute deviation model,and introduced a fuzzy linear regression technique to solve the 

model.Liet al [26]defined the skewness for fuzzy variable with in the framework of credibility theory,and 

constructed a fuzzy mean –variance-skewness model. Cherubini and lunga [27] presented a fuzzy VAR to 

denote the liquidity in financial market .Gupta et al .[28] proposed a fuzzy multiobjective portfolio selection 

model subject to chance constraintsBarak et al.[29] incorporated liquidity into the mean variance skewness 

portfolio selection with chance constraints.Inuiguchi and Tanino [30] proposed a minimax regret approach.Li et 

al[31]proposed an  expected regret minimization model to minimize the mean value of the  distance between the 

maximum return and the obtained return .Huang[32] denoted entropy as risk.and proposed two kinds of fuzzy 

mean-entropy models.Qin et al.[33] proposed a cross-entropy miniomizationmodel.More studies on fuzzy 

portfolio selection can be found in [34] 

 

 Although fuzzy portfolio selection models have been widely studied,the fuzzy mean-variance –skewness model 

receives less attention since there  is no good definition on skewness. In 2010,Li et al .[26]proposed the concept 

of skewness  for fuzzy variables,and proved  some desirable properties within the framework of credibility 

theory.However the arithmetic difficulty seriously hinders its applications in real life optimization 

problems.Some heuristic methods have to be used to seek the sub optimal solution, which results in bad 

performances on computation time and optimality. Based on the  membershipfunction,this paper redefines the 

possibilistic mean (Carlsson and Fuller [22]) and possibilistic variance(Zhang and Nie[23]) ,and gives a new 

definition on Skewness  for fuzzy numbers. A fuzzy mean-variance-skewnessportfolio selection models is 

formulated ,and some crisp equivalents are discussed, in which the optimal solution could be solved 

analytically.       

 This rest of this paper is Organized as follows.Section II reviews the preliminaries about fuzzy numbers.Section 

III redefines mean and variance,and proposes the definition of skewness for fuzzy numbers.Section IV  

constructs the mean –variance skewnessmodel,and proves some crisp equivalents.Section V lists some 

numerical examples to demonstrate the effectiveness  of the proposed models.Section VI  concludes the whole 

paper. 

 

II.  PRELIMINARIES 
In this  section , we briefly introduce some fundamental concepts and properties on fuzzy numbers, possibilistic 

means, and possibilistic variance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.membership function of Trapezoidal fuzzy number 𝜂 =  𝑠1 , 𝑠2  , 𝑠3 , 𝑠4 . 
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DefinationII.1  (Zadeh [20]) :   A fuzzy subset 𝐴  in X  is defined as  𝐴 =   𝑥, 𝜇(𝑥) ∶   𝑥 ∈ 𝑋 , Where  𝜇: 𝑋 →
[0,1], and the real  value  𝜇(𝑥) represents the degree of membership of 𝑥 𝑖𝑛 𝐴  
Defination II.2 (Dubois and Prade [35]) :  A fuzzy number 𝜉  is a normal and convex fuzzy subset of  ℜ .Here 

,normality implies that there is a point 𝑥0 such that   𝜇 𝑥0 = 1, and convexity means that  

 

𝜇 𝛼𝑥1 +  1 − 𝛼 𝑥2 ≥ min 𝜇 𝑥1 , 𝜇 𝑥2  …………… . .  1  

for  any𝛼 ∈  0,1 𝑎𝑛𝑑 𝑥1 , 𝑥2 ∈ ℜ 

 

Defination II.3 (Zadeh [20]) : For any 𝛾 ∈ [0,1] the  𝛾 − level set of a fuzzy subset𝐴  denoted by  𝐴  
𝛾
 is defined 

as  𝐴  
𝛾

=  𝑥 ∈ 𝑋: 𝜇(𝑥) ≥ 𝛾 . If 𝜉 is a fuzzy number there are an increasing function 𝑎1: [0,1] → 𝑥  and a 

decreasing  function 𝑎2: [0,1] → 𝑥  such that   𝜉 =  𝑎1 𝛾 , 𝑎2 𝛾   for all 𝛾 ∈ [0,1].Suppose that 𝜉  𝑎𝑛𝑑   𝜂   are 

two fuzzy numbers with   𝛾 − level sets   𝑎1 𝛾 , 𝑎2 𝛾   and  𝑏1 𝛾 , 𝑏2 𝛾  . For  any𝜆1, 𝜆2 ≥ 0 ,if  𝜆1𝜉 + 𝜆2𝜂 =
 𝑐1 𝛾 , 𝑐2 𝛾   
we have  

        𝑐1 𝛾 = 𝜆1𝑎2 𝛾 + 𝜆1𝑏2 𝛾        ,           𝑐2 𝛾 = 𝜆1𝑎2 𝛾 + 𝜆1𝑏2 𝛾  

 

Let 𝜉 =  𝑟1 , 𝑟2 , 𝑟3 ,    be a triangular fuzzy number ,and let 𝜂 =  𝑠1, 𝑠2  , 𝑠3 , 𝑠4  be a Trapezoidal fuzzy number 

(see Fig 1).  

It may be shown that 
 𝜉 𝛾 =  𝑟1 +  𝑟2 − 𝑟1 𝛾, 𝑟3 −  𝑟3 − 𝑟2 𝛾  and 
 𝜂 𝛾 =  𝑠1 +  𝑠2 − 𝑠1 𝛾, 𝑠4 −  𝑠4 − 𝑠3 𝛾  .  
Then ,For fuzzy numbers 𝜉 + 𝜂, its level set is  𝑐1 𝛾 , 𝑐2 𝛾    with   

 

       𝑐1 𝛾 = 𝑟1 + 𝑠1 + 𝛾 𝑟2 + 𝑠2 − 𝑟1 − 𝑠1 and 

  𝑐2 𝛾 = 𝑟3 + 𝑠4 − 𝛾 𝑟3 − 𝑟2 + 𝑠4 − 𝑠3  

 

Defination II.4 ( Carlsson and Fuller [22]): For a fuzzy number 𝜉 𝑤𝑖𝑡ℎ 𝛾-level set   
 𝜉 𝛾 =  𝑎1 𝛾 , 𝑎2 𝛾  0 < 𝛾 < 1the lower and upper possibilistic means are defined as  

𝐸− 𝜉 = 2  𝛾𝑎1

1

0

 𝛾 𝑑𝛾 𝐸+ 𝜉 = 2  𝛾𝑎2

1

0

 𝛾 𝑑𝛾 

 

Theorem II.1: (Carlsson and Fuller [22])  Let𝜉1 , 𝜉2 , 𝜉3, ……… . . 𝜉𝑛  be fuzzy numbers,and Let 

𝜆1, 𝜆2 , 𝜆3, ……… . . 𝜆𝑛   be nonnegative real  numbers ,we have 

 

𝐸−   𝜆𝑖𝜉𝑖

𝑛

𝑖=1

 =  𝜆𝑖𝐸
− 𝜉 

𝑛

𝑖=1

 

 

𝐸+   𝜆𝑖𝜉𝑖

𝑛

𝑖=1

 =  𝜆𝑖𝐸
+ 𝜉 

𝑛

𝑖=1

 

 

Inspired by lower and upper possibilistic means.Zhang and Nie [23]introduced the lower and upper possibilistic 

variances and possibilisticcovariances of fuzzy numbers. 

 

Defination II.5 ( Zhang and Nie [23]): For a Fuzzy numbers 𝜉 with lower possibilistic means 𝐸+ 𝜉  ,the lower 

and upper possibilistic variances are defined as 

 

𝑉− 𝜉 = 2  𝛾 𝑎1 𝛾 − 𝐸− 𝜉  
2

1

0

𝑑𝛾 

 

𝑉+ 𝜉 = 2  𝛾 𝑎2 𝛾 − 𝐸+ 𝜉  
2

1

0

𝑑𝛾 

 

Definition II.6 (Zhang and Nie [23]): For a fuzzy number𝜉with lower possibilistic mean 𝐸− 𝜉 and upper 

possibilistic mean 𝐸+ 𝜉 ), fuzzy number η with lower possibilistic mean 𝐸− 𝜂 and upper possibilistic 

mean𝐸+ 𝜂 , the lower and upperpossibilistic  covariances between 𝜉 and η are defined as 



A fuzzy mean-variance-skewness portfolioselection… 

www.ijmsi.org                                                              44 | Page 

 

𝑐𝑜𝑣− 𝜉, 𝜂 = 2  𝛾 𝐸− 𝜉 − 𝑎1 𝛾  
1

0

 𝐸− 𝜂 − 𝑏1 𝛾  𝑑𝛾 

 

 

𝑐𝑜𝑣+ 𝜉, 𝜂 = 2  𝛾 𝐸+ 𝜉 − 𝑎2 𝛾  
1

0

 𝐸+ 𝜂 − 𝑏2 𝛾  𝑑𝛾 

 

III.  MEAN,VARIANCE AND SKEWNESS 
 In this section based on the membership functions,we redefine the mean and variance for fuzzy  numbers ,and 

propose a defination of skewness. 

Defination III.1:  Let 𝜉 be a fuzzy number with differential  membership function 𝜇 𝑥 . Then its mean is defined 

as 

𝐸 𝜉 =  𝑥𝜇 𝑥 
+∞

−∞
 𝜇′ 𝑥  𝑑𝑥.........................(2) 

 

Mean value is one of the most important concepts for fuzzy number, which gives the center of its distribution 

 

Example III.1: For  a Trapezoidal fuzzy number 𝜂 =  𝑠1 , 𝑠2  , 𝑠3 , 𝑠4 , the shape of function  

𝜇 𝑥  𝜇′ 𝑥  is shown  in  Fig.2 according to defination 3.1, its mean value is  

 

𝐸 𝜂 =  𝑥
𝑥 − 𝑠1

𝑠2 − 𝑠1

  .
𝑠2

𝑠1

1

𝑠2 − 𝑠1

 𝑑𝑥 +  𝑥
𝑠1 − 𝑥

𝑠4 − 𝑠3

  .
𝑠4

𝑠3

1

𝑠4 − 𝑠3

 𝑑𝑥 

  

=
𝑠1 + 2𝑠2 + 2𝑠3 + 𝑠4

6
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Shape of function 𝜇 𝑥  𝜇′ 𝑥   for trapezoidal fuzzy number 𝜂 =  𝑠1 , 𝑠2 , 𝑠3, 𝑠4  

In perticular,if 𝜂 is symmetric with 𝑠2 − 𝑠1 = 𝑠4 − 𝑠3we have 𝐸 𝜂 =
𝑠2+𝑠3

2
 if 𝜂 is a  triangular fuzzy number 

 𝑟1, 𝑟2 , 𝑟3  we have 𝐸 𝜂 =
 𝑟1+4𝑟2+𝑟3 

6
 

 

Theorem III.1: Suppose that a fuzzy number 𝜉 has differentiable membership function 𝜇 𝑥  with 𝜇 𝑥 → 0 as 

𝑥 → −∞  and  𝑥 → +∞  then we have 

 

 𝜇 𝑥 
+∞

−∞
 𝜇′ 𝑥  𝑑𝑥 =    1.........................(3) 

 

Proof: without loss of generality, we assume  𝜇 𝑥0 = 1,  It is proved that 

 

 𝜇 𝑥 
+∞

−∞

 𝜇′ 𝑥  𝑑𝑥 =  𝜇 𝑥 
𝑥0

−∞

𝜇′ 𝑥 𝑑𝑥 −  𝜇 𝑥 
+∞

𝑥0

𝜇′ 𝑥 𝑑𝑥 
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=
1

2
 𝑑𝜇2 𝑥 

𝑥0

−∞

−  𝑑𝜇2 𝑥 
+∞

𝑥0

 

Further more , It follows from 𝜇 𝑥 → 0 𝑎𝑠 𝑥 → −∞ 𝑎𝑛𝑑 𝑥 → +∞ that  

 

 

 𝜇 𝑥 
+∞

−∞

 𝜇′ 𝑥  𝑑𝑥     

=
1

2
 𝜇2 𝑥0 − lim

𝑥→−∞
𝜇2 𝑥  =

1

2
 lim
𝑥→+∞

𝜇2 𝑥 −  𝜇2 𝑥0   

= 1 

 

The proof is complete  

Let  𝜉 be a fuzzy number with differentiable membership function 𝜇.Equation (3) tells us that the counterpart of 

a probability density function for 𝜉 is 𝑓 𝑥 =  𝜇 𝑥  𝜇′ 𝑥   
Theorem III.2: Suppose that a fuzzy number 𝜉 has differentiable membership function 𝜇 and 𝜇 𝑥 → 0  𝑎𝑠 𝑥 →
−∞  and 𝑥 → +∞ .If it has 𝛾 − 𝑙𝑒𝑣𝑒𝑙 𝑠𝑒𝑡 𝜉 𝛾 =  𝑎1 𝛾 , 𝑎2 𝛾    then we have  

𝐸 𝜉 =  𝛾𝑎1
1

0
 𝛾 𝑑𝛾 +  𝛾𝑎2 𝛾 𝑑𝛾

1

0
..............(4) 

Proof: Without loss of generality,we assume 𝜇 𝑥0 = 1 .According to Defination 3.1,we have 

𝐸 𝜉 =  𝑥𝜇 𝑥 
𝑥0

−∞

𝜇′ 𝑥 𝑑𝑥 −  𝑥𝜇 𝑥 
+∞

𝑥0

𝜇′ 𝑥 𝑑𝑥 

Taking 𝑥 = 𝑎1 𝛾 ,It follows from the  integration by substitution that 

 

 𝑥𝜇 𝑥 
𝑥0

−∞

𝜇′ 𝑥 𝑑𝑥 =  𝑥𝜇 𝑥 
𝑥0

−∞

𝑑𝜇 𝑥 𝑑𝑥 

 

=  𝑎1

1

0

 𝛾 𝜇  𝑎1 𝛾 𝑑𝜇 𝑎1 𝛾    

=  𝛾𝑎1 𝛾 𝑑𝛾
1

0

 

Similarly taking 𝑥 = 𝑎2 𝛾 ,It follows from the integration by substitution that 

 

 𝑥𝜇 𝑥 
𝑥0

−∞

𝜇′ 𝑥 𝑑𝑥 = − 𝛾𝑎2 𝛾 𝑑𝛾
1

0

 

The proof is complete 

Remark III.1: Based on the above theorem, it is concluded that Definition 3.1 coincides with the lower and 

upper possibilistic means in the sense of 𝐸 = 𝐸− + 𝐸+

2 , which is also defined as the crisp possibilistic mean 

by Carlsson and Fuller [22]. In 2002, Liu and Liu [36] defined a credibilistic mean value for fuzzy variables 

based on credibility measures and Choquet integral, which does not coincide with the lower and upper 

possibilistic means. Taking triangular fuzzy number 𝜉 =  0,1,3 for example, the lower possibilistic mean 

is2/3,the upper possibilistic mean is 10/3, and the mean is 2. However, its credibilistic mean is 2.5. 

 

Theorem III.3:Suppose that 𝜉 and 𝜂  are two fuzzy numbers.For any nonnegative real numbers   𝜆1  𝑎𝑛𝑑  𝜆2  we 

have 

 

𝐸 𝜆1𝜉 + 𝜆2𝜂 = 𝜆1𝐸 𝜉 + 𝜆2𝐸 𝜂  

 

 

Proof:For any 𝛾 ∈  0,1 ,denote 𝜉 𝛾 =  𝑎1 𝛾 , 𝑎2 𝛾  and  𝜂 𝛾 =  𝑏1 𝛾 , 𝑏2 𝛾  . According to 𝜆1𝜉 + 𝜆2𝜂 𝛾 =

  𝜆1𝑎1 𝛾  + 𝜆2𝑏1 𝛾 , 𝜆1𝑎2 𝛾 + 𝜆2𝑏2 𝛾  ,  It follows from Defination 3.1 and theorem 3.2 

 

𝐸 𝜆1𝜉 + 𝜆2𝜂 =  𝛾
1

0

 𝜆1𝑎1 𝛾 + 𝜆2𝑏1 𝛾  𝑑𝛾 +  𝛾
1

0

 𝜆1𝑎2 𝛾 + 𝜆2𝑏2 𝛾  𝑑𝛾 
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         = 𝜆1  𝛾
1

0

 𝑎1 𝛾 + 𝑎2 𝛾  𝑑𝛾 + 𝜆2  𝛾
1

0

 𝑏1 𝛾 + 𝑏2 𝛾  𝑑𝛾 

 

= 𝜆1𝐸 𝜉 + 𝜆2𝐸 𝜂  

                                      The proof is completes 

The linearity is an important property for mean value as an extension of Theorem 3.3 for any fuzzy numbers 

𝜉1 , 𝜉2, 𝜉3 , …… . . 𝜉𝑛   and  𝜆1 , 𝜆2, 𝜆3, …… . . 𝜆𝑛 ≥ 0 we have 𝐸 𝜆1𝜉1 + 𝜆1𝜉2 + ⋯… . 𝜆1𝜉2 = 𝜆1𝐸 𝜉1 + 𝜆2𝐸 𝜉2 +
𝜆3𝐸 𝜉3 …… . . 𝜆𝑛𝐸 𝜉𝑛  

 

Defination III.2: Let 𝜉 be a fuzzy numbers with differential e membership function 𝜇 𝑥  and finite mean value 

𝐸 𝜉 . Then its variance is defined as 

 

𝑉 𝜉 =   𝑥 − 𝐸 𝜉  
2

 𝜇 𝑥 
+∞

−∞

𝜇′ 𝑥 𝑑𝑥 

 

If 𝜉 is afuzzy number with mean 𝐸 𝜉  ,then its variance is used to measure the spread of its distribution about 

𝐸 𝜉  

Example III.2: Let  𝜂 =  𝑠1 , 𝑠2 , 𝑠3, 𝑠4  be a trapezoidal fuzzy number .According to Defination 3.2ita variance is  

 

  𝑥 − 𝐸 𝜂  
2

𝑠2

𝑠1

 .
𝑥 − 𝑠1

𝑠2 − 𝑠1

.
1

𝑠2 − 𝑠1

𝑑𝑥 +   𝑥 − 𝐸 𝜂  
2

𝑠4

𝑠3

 .
𝑠4 − 𝑥

𝑠4 − 𝑠3

.
1

𝑠4 − 𝑠3

𝑑𝑥 

 

=
𝑠2 − 𝑠1 − 2 𝑠2 − 𝐸 𝜂  

2
+ 𝑠4 − 𝑠3 + 2 𝑠3 − 𝐸 𝜂  

2

12
+

2 𝑠2 − 𝐸 𝜂  
2

+ 2 𝑠3 − 𝐸 𝜂  
2

12
 

 If 𝜂 is symmetric with  𝑠2 − 𝑠1 =  𝑠4 − 𝑠3,we have  

𝑉 𝜂 =
 2 𝑠2−𝑠1 2+3 𝑠3−𝑠2 2+4 𝑠3−𝑠2  𝑠2−𝑠1  

12
   If 𝜂 is a triangular fuzzy number   𝑟1 , 𝑟2, 𝑟3  we have  𝑉 𝜂 =

 2 𝑟2−𝑟1 2+2 𝑟3−𝑟2 2− 𝑟3−𝑟2  𝑟2−𝑟1  

18
 

 

Theorem III.4: Let 𝜉 be a fuzzy number with 𝛾 − 𝑙𝑒𝑣𝑒𝑙 𝑠𝑒𝑡 𝜉 𝛾 =  𝑎1 𝛾 , 𝑎2 𝛾    and mean value 𝐸 𝜉 .Then 

we have  

 

𝑉 𝜉 =  𝛾   𝑎1 𝛾 − 𝐸 𝜉  
2

+  𝑎2 𝛾 − 𝐸 𝜉  
2
 

1

0

𝑑𝛾 

Proof: without loss of generality, we assume  𝜇 𝑥0 = 1 then .according to Definition 3.2 we have  

 

𝑉 𝜉 =   𝑥 − 𝐸 𝜉  
2
𝜇 𝑥 𝜇′

+∞

−∞

 𝑥 𝑑𝑥 

=   𝑥 − 𝐸 𝜉  
2
𝜇 𝑥 𝜇′

𝑥0

−∞

 𝑥 𝑑𝑥 +   𝑥 − 𝐸 𝜉  
2
𝜇 𝑥 𝜇′

+∞

𝑥0

 𝑥 𝑑𝑥 

Taking 𝑥 = 𝑎1 𝛾  it follows  from the integration by substitution that  

 

  𝑥 − 𝐸 𝜉  
2
𝜇 𝑥 𝜇′

𝑥0

−∞

 𝑥 𝑑𝑥 =   𝑥 − 𝐸 𝜉  
2
𝜇 𝑥 𝑑

𝑥0

−∞

𝜇 𝑥  

 

  =  𝛾 𝑎1 𝛾 − 𝐸 𝜉  
2
𝑑𝛾

1

0

 

 

similarly taking 𝑥 = 𝑎2 𝛾  it follows  from the integration by substitution that  

 

  𝑥 − 𝐸 𝜉  
2
𝜇 𝑥 𝜇′

+∞

𝑥0

 𝑥 𝑑𝑥 =   𝑥 − 𝐸 𝜉  
2
𝜇 𝑥 𝑑𝜇 𝑥 

+∞

𝑥0

 

 

   = − 𝛾 𝑎2 𝛾 − 𝐸 𝜉  
2
𝑑𝛾

1

0
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The proof is complete 

RemarkIII.2: based on the above theorem we have 𝑉 =
 𝑉++𝑉− 

2
+

 𝐸+−𝐸− 
2

4
, Which implies that Defination 3.2 is 

closely related to the lower and upper possibilistic variance based on the credibility measures and Choquet 

integral, which has no relation with the lower and upper possibilistic variances 

DefinationIII.3 : Suppose that 𝜉 is a fuzzy number with 𝛾 − level set  𝑎1 𝛾 , 𝑎2 𝛾   and finite mean value 

𝐸1.  𝜂is another fuzzy  number with 𝛾 − level set  𝑏1 𝛾 , 𝑏2 𝛾   and finite mean value 𝐸2.The covariance 

between 𝜉 and  𝜂 is defined as 

 

𝑐𝑜𝑣 𝜉, 𝜂 =  𝛾  𝑎1 𝛾 − 𝐸1  𝑏1 𝛾 − 𝐸2 +  𝑎2 𝛾 − 𝐸1  𝑏2 𝛾 − 𝐸2  
1

0

 

 

TheoremIII.5: Let 𝜉 and 𝜂 be two fuzzy numbers with finite mean values. Then for any nonnegative real 

numbers 𝜆1 and 𝜆2 we have  

 

𝑉 𝜆1𝜉 + 𝜆2𝜂 = 𝜆1
2𝑉 𝜉 + 𝜆2

2𝑉 𝜂 + 2𝜆1𝜆2𝐶𝑜𝑣 𝜉, 𝜂  

Proof: Assume that   𝜉 𝛾 =  𝑎1 𝛾 , 𝑎2 𝛾  and  𝜂 𝛾 =  𝑏1 𝛾 , 𝑏2 𝛾  . According to 𝜆1𝜉 + 𝜆2𝜂 𝛾 =

  𝜆1𝑎1 𝛾  + 𝜆2𝑏1 𝛾 , 𝜆1𝑎2 𝛾 + 𝜆2𝑏2 𝛾  ,  It follows from theorem 3.4 

 

𝑉 𝜆1𝜉 + 𝜆2𝜂 =  𝛾
1

0

   𝜆1𝑎1 𝛾 + 𝜆2𝑏1 𝛾  −  𝜆1𝐸1 + 𝜆2𝐸2  
2

+   𝜆1𝑎2 𝛾 + 𝜆2𝑏2 𝛾  −  𝜆1𝐸1 + 𝜆2𝐸2  
2
 𝑑𝛾 

 

=  𝛾
1

0

   𝜆1𝑎1 𝛾 − 𝜆1𝐸1 +  𝜆2𝑏1 𝛾 − 𝜆2𝐸2   
2
𝑑𝛾 +  𝛾

1

0

   𝜆1𝑎2 𝛾 − 𝜆1𝐸1 +  𝜆2𝑏2 𝛾 − 𝜆2𝐸2   
2
𝑑𝛾 

 

= 𝜆1
2  𝛾 𝑎1 𝛾 − 𝐸1 

21

0
𝑑𝛾+ 

𝜆2
2  𝛾 𝑏1 𝛾 − 𝐸2 

21

0
𝑑𝛾 + 2𝜆1𝜆2  𝛾 𝑎1 𝛾 − 𝐸1  𝑏1 𝛾 − 𝐸2 

1

0
𝑑𝛾+𝜆1

2  𝛾 𝑎2 𝛾 − 𝐸1 
21

0
𝑑𝛾+ 

𝜆2
2  𝛾 𝑏2 𝛾 − 𝐸2 

2
1

0

𝑑𝛾 + 2𝜆1𝜆2  𝛾 𝑎2 𝛾 − 𝐸1  𝑏2 𝛾 − 𝐸2 
1

0

𝑑𝛾 

= 𝜆1
2𝑉 𝜉 +𝜆2

2 𝜂 + 2𝜆1𝜆2𝑐𝑜𝑣 𝜉, 𝜂  

The proof is complete 

 

DefinationIII.4 : let 𝜉 be a fuzzy number  with differentiable membership function 𝜇 𝑥  and finite mean value 

𝐸 𝜉  .Then ,its  Skewness is defined as 

 

𝑆 𝜉 =   𝑥 − 𝐸 𝜉  
3+∞

−∞
𝜇 𝑥  𝜇′ 𝑥  𝑑𝑥………………(7) 

 

Example III.4: Assume that 𝜂  is a trapezoidal fuzzy number  𝑠1 , 𝑠2  , 𝑠3 , 𝑠4  with finite mean value 𝐸 𝜂  Then 

we have 

 

𝑆 𝜂 =    𝑥 − 𝐸 𝜂  
3

𝑠2

𝑠1

 .
𝑥 − 𝑠1

𝑠2 − 𝑠1

.
1

𝑠2 − 𝑠1

𝑑𝑥 +   𝑥 − 𝐸 𝜂  
3

𝑠4

𝑠3

 .
𝑠4 − 𝑥

𝑠4 − 𝑠3

.
1

𝑠4 − 𝑠3

𝑑𝑥 

 

=
 𝑠2 − 𝐸 𝜂  

4

4 𝑠2 − 𝑠1 
−

  𝑠2 − 𝐸 𝜂  
5
−  𝑠1 − 𝐸 𝜂  

5
 

20 𝑠2 − 𝑠1 
2

−
 𝑠3 − 𝐸 𝜂  

4

4 𝑠4 − 𝑠3 
+

  𝑠4 − 𝐸 𝜂  
5
−  𝑠3 − 𝐸 𝜂  

5
 

20 𝑠4 − 𝑠3 
2

 

 

If𝜂 is symmetric with 𝑠4 − 𝑠3 = 𝑠2 − 𝑠1 we have 𝐸 𝜉 =
𝑠2+𝑠3

2
   and 𝑆 𝜂 = 0  If 𝜂 is a triangular fuzzy number 

 𝑟1, 𝑟2 , 𝑟3  we have 𝑆 𝜂 =
 19 𝑟3−𝑟2 3−19 𝑟2−𝑟1 3+15 𝑟2−𝑟1  𝑟3−𝑟2 2−15 𝑟2−𝑟1 2 𝑟3−𝑟2  

1080
 

 

Theorem III.6: For any fuzzy number 𝜉  with 𝛾 − level set  𝜉 𝛾 =  𝑎1 𝛾 , 𝑎2 𝛾   
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𝑆 𝜉 =  𝛾   𝑎1 𝛾 − 𝐸 𝜉  
3

+  𝑎2 𝛾 − 𝐸 𝜉  
3
 

1

0

𝑑𝛾 

 

 Proof: Suppose that  𝑥0 is the point withe  𝜇 𝑥0 = 1 then .according to Definition 3.4 we have  

 

𝑆 𝜉 =   𝑥 − 𝐸 𝜉  
3
𝜇 𝑥 𝜇′

𝑥0

−∞

 𝑥 𝑑𝑥 +   𝑥 − 𝐸 𝜉  
3
𝜇 𝑥 𝜇′

+∞

𝑥0

 𝑥 𝑑𝑥 

Taking 𝑥 = 𝑎1 𝛾  it follows  from the integration by substitution that  

 

  𝑥 − 𝐸 𝜉  
3
𝜇 𝑥 𝜇′

𝑥0

−∞

 𝑥 𝑑𝑥 =   𝑥 − 𝐸 𝜉  
3
𝜇 𝑥 𝑑

𝑥0

−∞

𝜇 𝑥  

 

  =  𝛾 𝑎1 𝛾 − 𝐸 𝜉  
3
𝑑𝛾

1

0

 

 

Similarly taking 𝑥 = 𝑎2 𝛾  it follows  from the integration by substitution that  

 

  𝑥 − 𝐸 𝜉  
3
𝜇 𝑥 𝜇′

+∞

𝑥0

 𝑥 𝑑𝑥 =   𝑥 − 𝐸 𝜉  
3
𝜇 𝑥 𝑑𝜇 𝑥 

+∞

𝑥0

 

 

   = − 𝛾 𝑎2 𝛾 − 𝐸 𝜉  
2
𝑑𝛾

1

0

 

The proof is complete 

Theorem III.7: Suppose that 𝜉 is a fuzzy number with finite mean value .For any real numbers  𝜆 ≥ 0 and b we 

have  

 

         𝑆 𝜆𝜉 + 𝑏 = 𝜆3𝑆 𝜉 ………..(8) 

Proof : Assume that 𝜉 has 𝛾 − level set  𝑎1 𝛾 , 𝑎2 𝛾   and mean value 𝐸 𝜉 .Then fuzzy number 𝜆𝜉 + 𝑏 has 

mean value  𝜆𝐸(𝜉) + 𝑏 and 𝛾 − level set  𝜆𝑎1 𝛾 + 𝑏, 𝜆𝑎2 𝛾 + 𝑏 . According to Theorem 3.6,we have  

 

 

𝑆 𝜆𝜉 + 𝑏 =  𝛾   𝜆𝑎1 𝛾 + 𝑏 −  𝜆𝐸(𝜉) + 𝑏  
3

+  𝜆𝑎2 𝛾 + 𝑏 −  𝜆𝐸(𝜉) + 𝑏  
3
 

1

0

𝑑𝛾 

 

= 𝜆3  𝛾   𝑎1 𝛾 − 𝐸 𝜉  
3

+  𝑎2 𝛾 − 𝐸 𝜉  
3
 

1

0

𝑑𝛾 

 

                 = 𝜆3𝑆 𝜉 . 

 

         The proof is complete. 

 

TABLE I 

FUZZY RETURNS FOR RISKY ASSETS IN EXAMPLE V.I 

 

Asset Fuzzy return Mean variance Skewness 

1  −0.26,0.10,0.36  8.67× 10−2 1.54× 10−2 −4.80× 10−4 

2  −0.10,0.20,0.45  1.92× 10−1 1.28× 10−2 −2.52 × 10−4 

3  −012,0.14,0.30  1.23× 10−1 8.00× 10−3 −2.95 × 10−4 

4  −0.05,0.05,0.10  4.17× 10−2 1.10× 10−3 −1.89 × 10−5 

5  −0.30,0.10,0.20  5.00× 10−2 1.67× 10−2 −1.30 × 10−3 

 

TABLE II 

OPTIMAL PORTFOLIO IN EXAMPLE V.I 

Asset 1 2 3 4 5 

Allocation(%) 13.88 55.42 18.11 12.59 0.00 
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IV-MEAN-VARIANCE-SKEWNESS PORTFOLIO SELECTION MODEL 
Suppose that there are 𝑛 risky assets .Let 𝜉 be the return rate of asset 𝑖,and let 𝑥𝑖  be the proportion of wealth 

invested in this asset 𝑖 = 1,2,3 … . 𝑛 . 

If 𝜉1 , 𝜉2 , 𝜉3, ……𝜉𝑛  are regarded as fuzzy numbers,the total return of portfolio  𝑥1 , 𝑥2 , 𝑥3 , ……𝑥𝑛  is also a fuzzy 

number 𝜉 = 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛 .We use mean value 𝐸 𝜉  to denote the expected return of the 

total portfolio, and use the variance𝑉 𝜉  to denote the risk of the total portfolio.For a rational investor ,when 

minimal expected return level and maximal risk level are given, he/she prefers a portfolio with higher skewness. 

Therefore we propose the following mean-variance-skewness model. 

 

Max   𝑆 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛  
s.t       𝐸 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛   
𝑉 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛  ……………………(9) 

𝑥1 + 𝑥2 + 𝑥3 ……… . +𝑥𝑛 = 1 

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,3, … . . 𝑛 

The first constraints ensures that the expected return is no less than 𝛼 ,and the second one ensures that the total 

risk does not exceed 𝛽.The last two constraints mean that there are  n risky assets and no short selling is allowed 

The first variation of mean –variance –skewness  model (9) is as follows: 

Min   𝑉 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛   
s.t       𝐸 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛   
𝑆 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛  ……………………(10) 

𝑥1 + 𝑥2 + 𝑥3 ……… . +𝑥𝑛 = 1 

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,3, … . . 𝑛 

 

It means that when the expected return is lower and 𝛼 and the skewness is no less than 𝛾,the investor tries to 

minimize the  total risk. The second variation of a mean- variance-skewness. 

 

TABLE III 

FUZZY RETURNS FOR RISKY ASSETS IN EXAMPLE V.2 

                  Asset Fuzzy return 

1  −0.15,0.15,0.30  

2  −0.10,0.20,0.30  

3  −0.06,0.10,0.18  

4  −0.12,0.20,0.24  

5  −0.10,0.08,0.18  

6  −0.45,0.20,0.60  

7  −0.20,0.30,0.50  

8  −0.07,0.08,0.17  

9  −0.30,0.40,0.50  

10  −0.10,0.20,0.50  

 

Model (9) is 

 Max   𝐸 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛   
s.t       𝑉 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛   
𝑆 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3𝑥3 ……… . +𝜉𝑛𝑥𝑛  ……………………(11) 

𝑥1 + 𝑥2 + 𝑥3 ……… . +𝑥𝑛 = 1 

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,3, … . . 𝑛 
 

The objective is no maximize return when the risk is lower than 𝛽 and the skewness is no less than 𝛾 

Now ,we analyze the crisp expressions for mean variance and skewness of total return 𝜉.Denote  𝜉 𝛾 =
 𝑎1 𝛾 , 𝑎2 𝛾  ,  𝜉𝑖 

𝛾 =  𝑎𝑖1 𝛾 , 𝑎𝑖2 𝛾    and 𝐸 𝜉𝑖 = 𝑒𝑖   𝑓𝑜𝑟 𝑖 = 1,2,3 … . 𝑛 .It is readily to prove that  

 

𝑎1 𝛾 = 𝑎11 𝛾 𝑥1 + 𝑎21 𝛾 𝑥2 + 𝑎31 𝛾 𝑥3 ……… + 𝑎𝑛1 𝛾 𝑥𝑛  

𝑎2 𝛾 = 𝑎12 𝛾 𝑥1 + 𝑎22 𝛾 𝑥2 + 𝑎32 𝛾 𝑥3 ……… + 𝑎𝑛2 𝛾 𝑥𝑛  

 

First  according to the linearity theorem of mean value ,we have 

𝐸 𝜉 = 𝑒1𝑥1 + 𝑒2𝑥2 + 𝑒3𝑥3 ……… . +𝑒𝑛𝑥𝑛 . Second ,according to Theorem III.4 the variance for fuzzy number 

𝜉 is  
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𝑉 𝜉 =  𝛾   𝑎1 𝛾 − 𝐸 𝜉  
2

+  𝑎2 𝛾 − 𝐸 𝜉  
2
 

1

0

𝑑𝛾 

 

=    𝑣𝑖𝑗 𝑥𝑖𝑥𝑗

𝑛

𝑗 =1

𝑛

𝑖=1

 

 

 Where  𝑣𝑖𝑗 =  𝛾  𝑎𝑖1 𝛾 − 𝑒𝑖  𝑎𝑗1 𝛾 − 𝑒𝑗  +  𝑎𝑖2 𝛾 − 𝑒𝑖  𝑎𝑗2 𝛾 − 𝑒𝑗   
1

0
𝑑𝛾  for  𝑖, 𝑗 = 1,2,3 … . . 𝑛 Finally, 

according to Theorem III.6.The skewness  for a fuzzy number 𝜉 is 

 

𝑆 𝜉 =  𝛾   𝑎1 𝛾 − 𝐸 𝜉  
3

+  𝑎2 𝛾 − 𝐸 𝜉  
3
 

1

0

𝑑𝛾 

=     𝑠𝑖𝑗𝑘 𝑥𝑖𝑥𝑗 𝑥𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

 

whereWhere𝑠𝑖𝑗𝑘 =  𝛾  𝑎𝑖1 𝛾 − 𝑒𝑖  𝑎𝑗1 𝛾 − 𝑒𝑗   𝑎𝑘1 𝛾 − 𝑒𝑘 +  𝑎𝑖2 𝛾 − 𝑒𝑖  𝑎𝑗2 𝛾 − 𝑒𝑗   𝑎𝑘2 𝛾 −
1

0

𝑒𝑘𝑑𝛾  for  𝑖,𝑗,𝑘=1,2,3…..𝑛 . 

 

TABLE IV 

OPTIMAL PORTFOLIO IN EXAMPLE  5.2 

 

 

Asset 1 2 3 4 5 6 7 8 9 10 

Credibilistic 

model this 

work 

Allocation% 0 0.00 41.67 0.00 0.00 0.00 0.00 0.00 0.00 58.33 

 Allocation% 9.50 10.24 8.89 9.99 8.60 10.09 12.01 8.65 11.12 10.91 

Based on the above analysis, the mean-variance- skewnessmodel(9) has the following crisp equivalent: 

 

                                  Max              𝑠𝑖𝑗𝑘 𝑥𝑖𝑥𝑗𝑥𝑘
𝑛
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1  

 

                                                    s.t     𝑒𝑖𝑥𝑖
𝑛
𝑖=1 ≥ 𝛼 

 

=    𝑣𝑖𝑗 𝑥𝑖𝑥𝑗

𝑛

𝑗 =1

𝑛

𝑖=1

≤ 𝛽 

𝑥1 + 𝑥2 + 𝑥3 ……… . +𝑥𝑛 = 1 

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,3, … . . 𝑛 

 

The crisp equivalent for model (10  and model (11) can be obtained similarly.Since this model has polynomial 

objective and constraint functions.It can be well solved by using analytical methods.In 2010,Li et al [26] 

proposed a fuzzy mean variance skewness model with in the framework of credibility theory, in which a genetic 

algorithm integrated with fuzzy simulation was used to solve the suboptimal solution.Compared with the 

credibilistic approach this study significantly reduces the computation time and improves the performance on 

optimality 

 

Example IV.I: Suppose that 𝜉 =  𝑟𝑖1 , 𝑟𝑖2 , 𝑟𝑖3  𝑖 = 1,2,3 … . 𝑛  

are triangular fuzzy  numbers. Then, model (9) has the following equivalent. 

 

max    19 𝑟𝑖3 − 𝑟𝑖2  𝑟𝑗3 − 𝑟𝑗2  𝑟𝑘3 − 𝑟𝑘2 − 19 𝑟𝑖2 − 𝑟𝑖1  𝑟𝑗2 −                              𝑟𝑗1  𝑟𝑘2 − 𝑟𝑘1 +𝑛
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1

15𝑟𝑖2−𝑟𝑖1𝑟𝑗3−𝑟𝑗2𝑟𝑘3−𝑟𝑘2−                               15𝑟𝑖3−𝑟𝑖2𝑟𝑗2−𝑟𝑗1𝑟𝑘2−𝑟𝑘1𝑥𝑖𝑥𝑗𝑥𝑘 

 

s.t   𝑟𝑖1 + 4𝑟𝑖2 + 𝑟𝑖3 
𝑛
𝑖=1 𝑥𝑖 ≥ 6𝛼 
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   2 𝑟𝑖2 − 𝑟𝑖1  𝑟𝑗2 − 𝑟𝑗1 + 2 𝑟𝑖3 − 𝑟𝑖2  𝑟𝑗3 − 𝑟𝑗2 

𝑛

𝑗 =1

𝑛

𝑖=1

−  𝑟𝑖2 − 𝑟𝑖1  𝑟𝑗3 −                                                            𝑟𝑗2  𝑥𝑖𝑥𝑗 ≤ 18𝛽 

𝑥1 + 𝑥2 + 𝑥3 ……… . +𝑥𝑛 = 1 

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,3, … . . 𝑛……………………… (13) 

 

Example IV.2: suppose that 𝜂𝑖 =  𝑠𝑖1 , 𝑠𝑖2 , 𝑠𝑖3 , 𝑠𝑖4  𝑖 = 1,2,3, …𝑛  are symmetric trapezoidal fuzzy numbers. 

Then model (10) has the following crisp equivalent 

 

min   2 𝑠𝑖2 − 𝑠𝑖1  𝑠𝑗2 − 𝑠𝑗1 + 3 𝑠𝑖3 − 𝑠𝑖2  𝑠𝑗3 − 𝑠𝑗2 +                                                      4 𝑠𝑖3 −𝑛
𝑗 =1

𝑛
𝑖=1

𝑟𝑖2𝑠𝑗2−𝑠𝑗1𝑥𝑖𝑥𝑗 

 

  𝑠𝑖2 + 𝑠𝑖3 

𝑛

𝑖=1

𝑥𝑖 ≥ 2𝛼 

 

𝑥1 + 𝑥2 + 𝑥3 ……… . +𝑥𝑛 = 1 

               0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,3, … . . 𝑛……………..(14) 

 

V. NUMERICAL EXAMPLES 
 In this section we present some numerical examples to illustrate  the efficiency of the proposed models. 

 

Example V.I: In this example ,we consider a portfolio selection problem with five risky assets. Suppose that the  

returns of these risky assets are all triangular fuzzy numbers (see table 1) According to model (13) ,if the 

investor  wants to get a higher skewness under the given risk level 𝛽 = 0.01 and return level 𝛼 = 0.12 we have  

 

max    19 𝑟𝑖3 − 𝑟𝑖2  𝑟𝑗3 − 𝑟𝑗2  𝑟𝑘3 − 𝑟𝑘2 − 19 𝑟𝑖2 − 𝑟𝑖1  𝑟𝑗2 −                              𝑟𝑗1  𝑟𝑘2 − 𝑟𝑘1 +𝑛
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1

15𝑟𝑖2−𝑟𝑖1𝑟𝑗3−𝑟𝑗2𝑟𝑘3−𝑟𝑘2−                               15𝑟𝑖3−𝑟𝑖2𝑟𝑗2−𝑟𝑗1𝑟𝑘2−𝑟𝑘1𝑥𝑖𝑥𝑗𝑥𝑘 

 

s.t   𝑟𝑖1 + 4𝑟𝑖2 + 𝑟𝑖3 
𝑛
𝑖=1 𝑥𝑖 ≥ 0.72 

 

   2 𝑟𝑖2 − 𝑟𝑖1  𝑟𝑗2 − 𝑟𝑗1 + 2 𝑟𝑖3 − 𝑟𝑖2  𝑟𝑗3 − 𝑟𝑗2 

𝑛

𝑗 =1

𝑛

𝑖=1

−  𝑟𝑖2 − 𝑟𝑖1  𝑟𝑗3 −                                                            𝑟𝑗2  𝑥𝑖𝑥𝑗 ≤ 0.18 

𝑥1 + 𝑥2 + 𝑥3 ……… . +𝑥𝑛 = 1 

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,3, … . . 𝑛 

By using the nonlinear optimization software lingo 11,we obtain the optimal solution.  Table II lists the optimal 

allocations to assets.It is shown that  the optimal portfolio invests in assets 1,2,3 and4.Assets 5 is excluded since 

it has lower mean and higher variance  than assets 1,2 and 3.For asset2, since it has the highest mean and better 

variance and skewness, the optimal portfolio invests in it with the maximum allocation 55.42% 

Example V.2. In this example ,we compare this study with the credibilistic mean-variance-skewness model Li et 

al.[26],Suppose that there are ten risky assets with fuzzy returns (see Table III) ,the minimum return level is 

𝛼 = 0.15, 

and the maximum risk level is 𝛽 = 0.02 .The optimal portfolios are listed by TableIV .It is shown that a 

credibilistic model provides a concentrated investment solution, While our study leads to a distributive 

investment  strategy, which satisfies the risk diversification theory. 

 

VI.CONCLUSION 
In this paper ,we redefined the mean and variance for fuzzy numbers based on membership functions .Most 

importantly.  We proposed the concept of skewness and proved some desirable properties. As applications,we 

considered the multiassets portfolio selection problem and formulated a mean –variance skewness model in 

fuzzy circumstance.These results can be used to help investors to make the optimal investments decision  under 

complex market situations  
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