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ABSTRACT: In this paper, we introduce the solution of systems of linear and nonlinear partial differential 

equations subject to the initial conditions by using reduced differential transformation method. The proposed 

method was applied to three systems of linear and nonlinear partial differential equations, leading to series 

solutions with components easily computable. The results obtained are indicators of the simplicity and 

effectiveness of the method. 
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I. INTRODUCTION 
Partial Differential Equations (PDEs) have numerous applications in various fields of science and engineering 

such as fluid mechanic, thermodynamic, heat transfer and physics [1]. 

Systems of PDEs, linear or nonlinear have attracted much concern in studying evolution equations that describe 

wave propagation, in investigating shallow water waves and in examining the chemical reaction-diffusion model 

of Brusselator. The general ideas and the essential features of these systems are of wide applicability. 

The commonly used methods are the method of characteristics and the Riemann invariants among other 

methods. The existing techniques encountered some difficulties in terms of the size of computational work 

needed especially when the system involves several partial differential equations [2].  

To avoid the difficulties that usually arise from traditional strategies, the reduced differential transform method 

[3] form a reasonable basis for studying systems of partial differential equations. 

The method, as would be seen later, has a useful attraction in that solution is presented in a rapidly convergent 

power series with easily computable components. 

 

II. BASIC  IDEAS  OF REDUCED DIFFERENTIAL TRANSFORM METHOD 

Suppose that  txu ,  is a function of two variables which is analytic and timesk  continuously differentiable 

with respect to time t and space x in our domain of interest. 

Assume we can represent this function as a product of two single variable functions      ., tgxftxu   

From the definitions of differential transform method, the function can be represented as 
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Where  xU k  is the transformed function, which can be defined as  
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Thus from equations  1.2  and  ,2.2  we can deduce    
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                                                                                3.2                    

Considering equations    ,3.21.2   it is clear that the concept of the RDTM is derived from the power 

series expansion. 

The summary of the fundamental transformation properties of RDTM are shown in the table below: 
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Table 1:  Basic transformations of RDTM 
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III. APPLICATIONS 
In this section, we apply the RDTM to three numerical examples of system of linear and nonlinear partial 

differential equations to show the efficiency of the method. 

 

Example 3.1:  Consider the non-homogenous linear system of partial differential equations 
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Subject to the initial conditions 
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Where the exact solutions are [4] 
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Applying the basic properties of the RDTM to (3.1) and (3.2) we obtain the following recursive relations: 
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Where  xN k  is the transformed form of 2 vu  . The first few nonlinear terms are: 
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Where the  xU k ,  xVk  are the transform function of the t-dimensional spectrum. 

Now, substitute equation (3.5) into equation (3.4) to obtain the following: 
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Finally, the differential inverse transform of  xuk  ,   xvk  gives 
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Which is the exact solution.  

 

Example 3.2: Consider the nonlinear Boussinesq equation: 
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Subject to the initial conditions  
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Where the exact solutions are [5] 
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Applying the basic properties of the RDTM to equations (3.6) and (3.7), we obtain the recursive relations: 
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i.e.  
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    And        xxU 20  ,    .2

0 xxV                                                                                 10.3                                                                                                                         

                      

Now, substituting equation   10.3  into equation  9.3 , we obtain the following values successively: 
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   Finally, the differential inverse transform of  xU k ,   xVk   gives 
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 Which is the exact solution. 
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Example 3.3:  Consider the coupled Burger’s equation  
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Subject to the initial conditions  
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Where the exact solutions are [6] 

                                                 textxvtxu  .sin,,                                               13.3  

Applying the RDTM to (3.11) and (3.12) we obtain the following recursive relations: 
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i.e.  
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  And        xxU sin0  ,    .sin0 xxV                                                                                  15.3                                                                                                                         

                      

Now, substituting equation   15.3  into equation  14.3 , we obtain the following values successively: 
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   Finally, the differential inverse transform of  xU k ,   xVk   gives: 
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Which is the exact solution. 

 

IV. CONCLUSION 
In this paper, the RDTM was implemented for solving the non-homogenous linear system, the nonlinear 1+1 

dimensional Boussinesq equation and the coupled Burger’s equation. 

The exact solutions of the three systems of linear and non-linear partial differential equations were obtained by 

the application of RDTM, which constitute a significant improvement over existing techniques. This powerful 

method can be utilised to tackle complex situations arising in the real world. 
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