International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 — 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 4 Issue 5 || June. 2016 || PP-21-29

The Odd Generalized Exponential Log Logistic Distribution

K. Rosaiah!, G.Srinivasa Rao?, D.C.U. Sivakumar®and K. Kalyani®

!Department of Statistics, Acharya Nagarjuna University, Guntur - 522 510, India.
Department of Statistics, The University of Dodoma, P.O.Box: 259, Tanzania.
3UGC BSR Fellows, Department of Statistics, Acharya Nagarjuna University, Guntur - 522 510, India.

Abstract: We propose a new lifetime model, called the odd generalized exponential log logistic distribution
(OGELLD).We obtain some of its mathematical properties. Some structural properties of the new distribution are
studied. The maximum likelihood method is used for estimating the model parameters and the Fisher’s
information matrix is derived. We illustrate the usefulness of the proposed model by applications to real lifetime
data.
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I. Introduction

Statistical distributions are very useful in describing the real world phenomena.In the analysis of lifetime data, the
log-logistic distribution is widely used in practice and it is an alternative to the log-normal distribution, since it
presents a failure rate function that increases, reaches a peak after some finite period and then declines
gradually.According to Collet (2003), the properties of the log-logistic distribution make it an attractive
alternative to the log-normal and Weibull distributions in the analysis of survival data. This distribution can
exhibit a monotonically decreasing failure rate function for some parameter values. Ahmad et al.(1988), suggested
thatit shares some properties of the log-normal and normal distributions, i.e., if T has a log-logistic distribution,
then Y = log(T) has a logistic distribution. According to Kleiber and Kotz (2003),some applications of the log-
logistic distribution are discussed in economy to model the wealth, income.Ashkar and Mahdi (2006) given that,
ithas application in hydrology to model stream flow data. Collet (2003) suggested the log-logistic distribution is
useful for modelling the time following heart transplantation.It is known that exponential have only constant
hazard rate function and generalized exponential distribution can have only monotone increasing or decreasing
hazard rate. There are always urge among the researchers for developing new and more flexible distributions. As a
result, many new distributions have come up and studied. Recently, Tahir et al. (2015) propose a new class of
distributions called the odd generalized exponential (OGE) family and study each of the OGE- Weibull (OGE-W)
distribution, the OGE-Fréchet (OGE-Fr)distribution and the OGE-Normal (OGE-N) distribution. These models
areflexible because of the hazard shapes: increasing, decreasing, bathtub and upside subset of down bathtub.

A random variable X is said to have generalized exponential (GE) distribution with parameters 1,0 if the

cumulative distribution function (CDF) is given by
F(x) = [Le’“f ,X>0,4>0,0>0.(1)
The odd generalized exponential family suggested by Tahir et al. (2015) is defined as follows. If G (x;¢) is the
CDF of any distribution and thus the survival function is G_(x; £)=1-G(x;¢), then the OGE-X is defined by
G (x;¢)

replacing x in CDF of GE in equation (1) by — to get the CDF of the new distribution as follows:
G (x;¢&)
I’ 7467()(;6) "|H
F(x;4,6,0)=]1-e °™7| x>0,2>0,6>0,0>0.(2
L ]

In this paper, we define a new distribution using generalized exponential distribution and log-logistic distribution
and named it as “The odd generalized exponential log logistic distribution (OGELLD)” from a new family of
distributions proposed by Tahir et al. (2015). The paper is organized as follows. The new distribution is developed
in Section 2 and also we define the CDF, density function, reliability function and hazard functions of the odd
generalized exponentiallog logisticdistribution (OGELLD). A comprehensive account of statistical properties of
the new distribution is providedin Section 3.In Section 4, wediscuss the distribution of the order statistics for
OGELLD. In section 5, maximum likelihood estimation and Fisher’s information matrix are derived for the
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parameters.A real life data set has been analyzed and compared with other fitted distributionsin Section 6 and also
the concluding remarks are presented in Section 7.

2. The Probability Density and Distribution Function of the OGELLD

In this section, we define new four parameter distribution called odd generalized exponential log-logistic
distribution (OGELLD) with parameterso, 1,8,y onlineof El-Damceseet al. (2015). The probability density

function(pdf), cumulative distribution function (CDF), reliability functionR(x)and hazard functionh(x)of the new
model OGELLDare respectively defined as:

o (T ZET @)
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whereos, A are scale parametersand @, y are the shape parameters.

The graphs of f(x),F(x) and h(x) are given below for different values of the parameters. The graphs of h(x) show
that the proposed model is an increasing failure rate (IFR) model. Hence this model can be used for reliability

studies.
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Figure-1: The probability density function of the OGELLD
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Figure-3: The hazard function of the OGELLD
3. Statistical properties

In this section, we study some statistical properties of OGELLD, especially quantile, median, mode and moments.
Limit of the Distribution Function:
Since the cdf of OGELLD is

r
F(x;o0,2,0,7)=11-¢

1l—|7

10 %)
) |
]

We have, lim F (x;0,4,0,7)=0 and limF (x;0,4,0,y)=1

x—>0 X —> ©

, X>0,0,4,60,y >0

Quantile and median of OGELLD
The 100, percentile of X 0 OGELL(®) distribution is given by

1
o

r ( ERN
VJ| ,0<qg<1. )
]

X =o-IfﬂlnL17q

R
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Setting g = 0.5 in (7), we obtain the median of X 0 OGELL (o, 4,8,y) distribution as follows:

1

Median = o [—A In {1—(0.5)%j}8 (8)

The mode of OGELLD

|r 1(1])—1 10 x)
Inf(x,@):Iny+Ineflnﬂflna+(671)[In(x)7Ina:|+(771)ln 1—e J ;L;J
. %
din f ;
—n (X®)=O 3M0de=a( ar ©)
dx H J J

The moments
Moments are necessary and important in any statistical analysis, especially in applications. It can be used to study
the most important features and characteristics of a distribution (e.g., tendency, dispersion, skewness and

kurtosis). In this subsection, we will derive the r'™ moment of the X 0 OGELL (®) distribution as an infinite
series expansion.

Theorem3.1.1f X 1 OGELL(®), where(®) =(4,0,0,y), thenthe r™ moment of X is given

r-n (V)

pi= % vt |7
! (i+1)7°
Proof: The r'™ moment of the random variable X with pdf -f(x) is defined by
E(x) = ul =[xt (xi0) ax (10)

Substituting from (3) into (10), we get

[ BTk ®
15 | (7 —1) i
Zk J(,l) e
Substituting from (12) into (11), we obtain
(v -1\2 . (x\'" () =, ,
#—Zi( 1)L ﬂer;J e * \° dx:lzz‘g;o-'(—l)L i JIZ

o

—(|+1)Z

e * dz

where z = {i]
o

(rn,
Therefore, u/ —Z yo A/ﬂ( 1)i{7.1\Lng
o "Gyt

This completes the proof.
Moment generating function (MGF)

2 2 3.3
t'x t'x'

M (t) = E[e”}: E{l+tx+

Characteristic Function (CF)

IR B MO (e
=or-o M1 (k+1)e

Cumulant Generating Function (CGF)
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|F (1), T|
Kx(t):ln(Mx(t)):ln|£§:t—;f AT (- '”flJ LHJr | (15)
|Li=o ro I'! (i +1)a+1J

IV. Order Statistics
Let X,,X,,....,X  be a random sample of size n from OGELLD with  probability density function

f (x; ®)andcumulative distribution F (x;© )given by (3), (4) respectively. Let X, < X, <..<X

2:n n:n

denote the order statistics obtained from this sample. The probability density function of X _ is given by

f(x0) ! [F(x0)] [1-F(x0)]  f(x.0)(06)
. X, = X, - X, X,
o B(r,n—r+l)
B(.,.)is the beta function. Since 0< F (x,©)<1 for x>0, we can use the binomial expansion of

n-r

[1— F(x,0 )} given as follows:

- "(n-r) i i
[1—F(x,®)] _ZL i J(—l)[F(x,@))] (17)

Substituting from (17) into (16), we have

f . (x.0)= S (x,@)g(n_ r\(—1)i[|= (x,@)]mfl(lS)
o B(r.n-r+1) i:OL i J
Substituting from (3) and (4) into (18), we obtain
f (x;/l,cr,&,y):ir (_1)In! f(x;ﬂ,a,e,y(r+i)) (19)
Sir(r-1)1(n-r—i)t

Thus f_ (x;4,0,0,y) defined in (19) is the weighted average of the OGELLD.

V. Estimation and Inference
5.1 Maximum likelihood estimation
Let X,,X,,...., X be arandom sample of size n,which is drawn from OGELL(©® ), where® = (c,4,6,7),
then the likelihood function L of this sample is

” e xS T sy
LDH f(xi;i,a,e,y)zny_L;J |l_elLaJ ALGJ
i=1 i1 Ao o J
The log-likelihood function is
[ “10x

InL7n(lny+|n6—In&—n@lno-)+(9—l)zInx ——ZL J +(7—1)Z|n|l—e

The MLE’s of o,4,0,y are the simultaneous solutions of the following equations using numerical iterative
method:
—i0x0)
éIlnL  —n 1 " (r-1) "~ x’e” - (20)
o2 R I B P Ll | 10
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0%
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= +Zln|1—eit" 0(23)
o ol J
The ML equations do not have explicit solutions and they have to be obtained numerically from equation (23), the
MLE of » can be obtained as follows.

—n (24)

én 6 1, 6(5-1) xieils 26
é +iée+1éxi - ﬂro:é“ Er i(i\';1=0 ( )
l1_e a)
FEEER NG
EA—nInaAJrZE“In Xi—/ll—zn‘, (Z—TJ In{g\ (y;l)z": r LO:J(MU»-'LO;J=O @7
i} i} l1_eile) |

These equations cannot be solved analytically and statistical software can be used to solve the equations
numerically. We can use iterative techniques to obtain the estimate y .

5.2 Asymptotic confidence bounds
In this subsection, we derive the asymptotic confidence intervals of the unknown parametersc, 1,8 and y .

The simplest large sample approach is to assume that the MLEs (d 1,6 and ;7) are approximately multivariate

normal with mean (o, 4,6,y ) and covariance matrix I, ", where 1" is the inverse of the observed information

matrix which is defined as follows:
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The second partial derivatives included in 1" are given as follows:

2 2 n 2 n 2 n Ailn L\
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The asymptotic (1-a)100% confidence intervals of

é,1,0 and ;?area‘iz“/var(a‘),/{i z, var(i), étza,,var(é) andy + z_4[var(y)

2 2 2 2

respectively. Where z  is the upper {EJ percentile of the standard normal distribution.
by 2

VI. Data Analysis and Conclusions

In this section, we present the application of the proposed OELLD (and their sub-models: ELLog, LelLLog and
LLogetc., distributions considered by Lemonte [2014]) for a real dataset to illustrate its potentiality. The following
real data set corresponds to an uncensoreddata set from Nichols and Padgett (2006) on breaking stress of carbon
fibres (inGba):
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3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19,3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90,
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56,
3.15,2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98,2.76, 4.91, 3.68, 1.84, 1.59,
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12,1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38,
1.84,0.39, 3.68,2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82,2.05, 3.65.
We fitted the proposed OGELLD curve for the above datawhich is shown in the following graphs:

Empirical and Fitted PDFs Q-Q plot
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Figure-4: Estimated density and Q-Q plot for OGELLD.

We estimate the unknown parameters of proposed model by the maximum likelihood method. In order to compare
the models considered by Lemonte(2014) with the proposed OGELLD model, we consider the Cramér—von Mises
(W") and Anderson-Darling (A”) statistics. The statistics W™ and A" are described in details in Chen and
Balakrishnan (1995). In general, the smaller the values of these statistics, the better the fit to the data. Let H(x; 6)
be the c.d.f., where the form of H is known but 6 (a k-dimensional parameter vector) is unknown. To obtain the

statistics W™ and A", we can proceed as follows: (i) Compute v, = H (x,;0) where the x;’s are in ascending

order, and theny, = ¢ "(v,), whereg (-) is the standard normal c.d.f. and ¢ '(-) its inverse; (i) Compute

u =¢{(y,-¥)/s,}, where y = (/n)y y ands = (n-1)"Y (y,- Y)z ;
(iii) Calculate w* = y° {ui—(Zi—l)/(Zn)}z+1/(12n) and A*=-n-(1/n)Y {(2i-1)In(u)+(2n+1-2i)In(1-u)} and then

i=1 i=1
W =w?@+05/n)and A = A’(1+0.75/n+2.25/n?).

The followingTable lists the MLEs (and the corresponding standard errors in parentheses) of the parameters of all
the models for the data set (breaking stress of carbon fibres). The statistics W™ and A" are also listed in this table
for the models. As can be seen from the figures of this table, the new model OGELLD proposed in this paper
presents the smallest values of the statistics W™ and A’than most of the other models, that is, the new model fits
the breaking stress of carbon fibres data better than most of the other models considered. More information is
provided by a visual comparison from the above graph of the histogram of the data with the fitted OGELLD
density function. Clearly, the OGELLD provides a closer fit to the histogram. The Kaplan—Meier (K-M) estimate
and the estimated survival function of the fitted OGELLDand Q-Q plot are shown in the Figure 4. OGELLD has
four parameters. From this plot, note that the OGELLD model fits the data adequately and hence can be adequate
for this data.

Distribution Estimates W A

Beta log 0.09 0.2254 3.1486 25.417 0.03867 | 0.27763

logistic (a,b,a, | (0.1700) (0.4452) (0.1851) (46.670)

B)

Exponentiated | 0.3339 3.3815 7.4714 0.04627 | 0.3019

log (0.0998) (0.2270) (1.4975)

logistic(a,a,p)

Weibull(a, B) 0.049 2.7929 0.06227 | 0.41581
(0.0138) (0.2131)

LeLLog(b, a, 7.8795 5.6426 3.0234 0.06717 | 0.38989

B) (11.370) (3.3334) (0.3873)

KW (a, b, c, 1.9447 12.030 1.6217 0.0561 0.06938 | 0.40705

\) (5.7460) (146.64) (4.6401) (0.1776)
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I 0

OGELLD( L, | 1.2576 6.2003 2.4089 1.3173 0.07036 | 0.41314
0, 0, 0 (2.0610) (24.4799) (0.0607) (0.0598)
BW (a, B, a, 0.1013 | 2.4231(0.7389) | 1.3080(0.6133) | 0.8907(3.5611) | 0.07039 | 0.41325
b) (0.3160)
Exponentiated | 0.0928 2.4091 1.3168 0.07036 | 0.41313
Weibull(a, B, | (0.0904) (0.5930) (0.5969)
a)
Marshall- 0.6926 3.0094 0.0309 0.07052 | 0.43016
Olkin (0.8310) (0.7181) (0.0472)
Weibull(a, vy,
A)
Beta half- 15.194 5.5944 46.116 0.1386 | 0.70838
Cauchy (20.687) (0.8087) (70.775)
(9.a,b)
Log Logistic 2.4984 41179 0.23903 | 1.2409
(0, B) (0.1051) (0.3444)
Gamma(A, ) | 5.9526 2.2708 0.14802 | 0.75721
(0.8193) (0.3261)
Log- 0.8774 0.4439 0.27734 | 1.48332
normal(, 6) (0.0444) (0.0314)
Birnbaum- 0.4622 | 2.366 (0.1064) 0.29785 | 1.61816
Saunders(a, (0.0327)
)
The estimated asymptotic variance-covariance matrix of the parameters o, 4,6 and y
[ 424.7979  -5.44.2915 0.1148 —-0.1072]
., | ~544.2915 59926.8542 1.8202 —1.8134I
0.1148 1.8202 0.3685 —0.3463 |
-0.1072 -1.8134 -0.3463 0.3583 Jl

The approximate 95% two sided confidence intervals of the unknown parameters o, 4,6 and y are (0, 5.2972),
(0, 54.1810), (2.2899, 2.5278) and (1.1983, 1.4362) respectively.

VII1. Concluding Remarks

In this paper, we have studied a new probability distribution called odd generalized exponential log

logistic distribution. This is a particular case of distributions proposed byTahiret al.(2015). The structural
properties of this distribution have been studied and inferences on parameters have also been mentioned.
Theappropriateness of fitting the odd generalized exponential log logistic distribution has been established by
analyzing a real life data set.
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