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ABSTRACT: Statistical modelling is of prime importance in each and every sphere of data analysis. This
paper reviews the justification of fitting linear model to the collected data. Inappropriateness of the fitted model
may be due two reasons 1.wrong choice of the analytical form, 2. Suffers from the adverse effects of outliers
and/or influential observations. The aim is to identify outliers using the deletion technique. In | extend the result
of deletion diagnostics to the ex- changeable model and reviews some results of model analytical form checking
and the technique illustrated through an example.
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I. INTRODUCTION

In fitting a regression model to a given data set it is vital to know how good the t is. Use of the model,
and particularly predictions based on it, requires that the fitted model is compatible with the data. However,
there may often be observations which are different from the others. These outliers frequently havean inordinate
Influence on least squares estimates. And quite often an outlier may neither show large residuals nor exhibit any
influence on the regression line. But outliers need to be detected not only because they may affect the t but also
because they may lead to valuable information regarding the data. To this effect, diagnostics play an important
role in regression analysis (see for example Belsley, Kuh and Welsch (1980), Chatterjee and Hadi (1988) or Sen
and Srivastava (1990)). These diagnostics provide various ways of studying the residuals and assessing the
impact of the respective observations on the regression line. Initially, diagnostic studies used the deletion of
observation technique to assess this impact. In recent years Cook's (1986) method for assessing the local
influence through model perturbation has also been used by several authors. However, most of the studies thus
far conducted have been restricted to models having uncorrelated disturbances with constant variances. But as
has been frequently observed, the dispersion matrix may not be spherical. In such cases it is necessary to apply
the generalized least-squares method to estimate the parameters of the model. Hence the usual regression
diagnostics need to be modified too. [1] Beach and MacKinnon (1978) circumvent this problem by developing a
computationally efficient technique for maximizing the full likelihoodfunction for an auto correlated linear
regression model. In the generalized least-square context, Putterman (1988) studied the influence of the first
transformed observation on the parameter estimates. However, Kim and Huggins (1998) claim that the deletion
approach is inappropriate in studying the di- agnostics in a regression model with auto correlated errors. They
discuss the effects of simultaneous perturbation of the response vector on all the parameters as also the
autocorrelationcoefficient. Sharing their concern, Tsai andWu (1992) used the pro le likelihood function to
examine the diagnostics through the effects of small perturbations. Schall and Dunne (1991) use a similar tech-
nique to study a regression model where the disturbances follow the ARMA model.

and device some remedial procedure for estimation. Sen Roy & Guria (2009) We introduce the model and

outline parameter estimation in Section 2, their justifications are discussed in Section 3. Diagnostics for
exchangeable model are derived in Section 4. A numerical example is given in Section 5.

I1.  THE MODEL
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Consider the regression model

Yy =1 [T +uy, t=1,...,n. (2.1)
Wy

where y; is the response at time t, u; the disturbance term, g‘t the vector of
observations on the p explanatory variables and & the p x 1 parameter vector.
In general, it is assumed that w:’s are independent, but in any real life sit-
uation w#; may not be independent. Data sets often clustered or otherwise
correlated due to the way data were collected and intrinsic ecological pattern.
If standard Gauss- Markov model is assumed, the likelihood of tvpe I error is
increased. Here I assumed that observations are correlated among themselves
with correlation coefficient p.

le.u:’'s are:

FE(u,) =0 Vv ¢t

and Cov(us, 1) = 0?2 ¥ t=s and = po? Wt £ s.

(2.1) can be written in matrix form as
v =X B+ u, (2.2)

where ¥ and ¢ are n % 1 vectors and X is a 12 x p matrix.
Using the ordinarv least-squares, the parameter 3 is estimated as
b= (X)) XY,
However, owing to conditions satisfied by the disturbance term in (2.2) above,
b is not the best linear unbiased estimator (b.l.u.e.) of 3.
Since the dispersion of u is

D(u) = o2,

where
1 ya) o o
1 -
Q—o2| ” o g (2.3)
P yal o 1
the b.l.u.e of 5 is given by
b= (X'Q 1) X'ty (2.4)

In studying the regression diagnostics it is thus imperative that the residuals
considered are not

e=y — Xb
but er=yv — Xb".
Since £ is a positive definite matrix, there exists a nonsingular matrix P =
Q1! = P'P. Therefore, defining X* = PX, y* = Py and u*= P u, (2.5) can

be obtained from the transformed model
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v =X"G+ u” (2.5)
as
éa _ (X!PIP}{)—I}{!P?P}_
= (XTX) Xy (2.6)

Hence when the diagnostic relates to the deletion of one observation at a time
and observing the discrepancy it produces, the corresponding row and column
of £2 must be deleted. This would mean that the corresponding column of P
is deleted. Here we study the effect of this on the model (2.1)-(2.2).
1. JUSTIFICATION

It common practice in any experimental science and social science fitting
straight line to the collected data to understand what is happening in the
system and guess future behaviour of the system. Suppose we have collected
n data points on p + 1 variables y, 1, T2, . . ., T, Where y is random realisation
and subject to measurement error treated as dependent variable and obser-
ration on other p xr—variables are actually known, easily available or known
and highly correlated to y. If we assume that collected data are well explained

by their second moments. Let us define the wvariance-covariance matrix as

Syy  Syxr T Syzp
ley S;xl;rl " Szr;l:r _ _
C = | Where sy, = n 130 (u; — @) (v; — ©)
S:rpy S;z:p.rl T S:rp:r:,«_-,
r
and vector of unknown constants w= ( ag @i - Gy )

Then w' C w= n"'>T{aoly — ¥) + ai(z1 — T1) + - + ap(z, — )} = 0
" =" holds iff ag(y — ¥) + a1(xqy — 1) + --- + ay(x, — T,) = 0 corresponding
to 0 eigenvalue, eigenvector is normal to this plane. Which may be assumed
because of the dependence between ¥ and X. we are to some extent justifies
our linearity of the model.

As we mentioned that in any live data set observations are somehow correlated
using information criteria namely Akaike information eriterion (AIC) may be
used for model selection as advocated by Barnett, et.al.(2010). Variance-
Covariance matrix of the observation vector ¥ involves n(n + 1)/2 parame-
ters. To reduce the number of parameters equality of the variances (o2)are
assumed and four usually awvailable alternative covariance structures for mod-

eling different real life scenario. (i) Independent: all covariances are assumed
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to 0. (éi) exchangeable: covariance between any two observations are same
lLe.Covl(ug, ug) = o?p; Therefore, observations are exchanged (re-arranged) over
time and/or different segments. (iii) Autoregressive: current action depends
on the immediate past result. i.e. u, = pus—y + €. (iv) Unstructured: all the
covariances are different. Following is an extract of comparisons on the basis
of ATC wvalues. Cell values giving percentage successfuil selections, and bold

are percentage of correct choices.

Table 1: Showing AIC values for different choices of model

Selected covariance

True covariance Indep | Exch. | AR | Unst.
Independent 70 15 15 0
Exchangeable (p = 0.2) 0 97 2 1
Exchangeable (p = 0.5) 0 100 0 0
Autoregressive (p = 0.3) 0 3 97 0
Autoregressive (p = 0.7) 0 0 100 0
Unstructured 0 49 24 27
Hence, we proceed for the diagnostic results for exchangeable model.
For (2.2) let = ( B1 B2 - By ) and X may contain a column of uni-

ties and we minimise the sum of squares of errors i.e. (¥ —X ,@)’V_l(g —X 3).
v vty —yw vVoIX 1

i.e. minimise 1 B ) - - - or maximise 3’
X'V ly X'V oIX 8 -

XWX 3 Rao (1973). Estimator (2.6) satisfies this.

IV. The Main Results

The dispersion matrix corresponding to an individual /unit of the model takes

1 '0 '0 . .. p
1
the form V = o2 L L L = o2 {(1— )T+ pJ} where o2 = Jﬁ +
e p p -1

o2 and J be the square matrix of 1’s of order n again o2{npJ,+(1+(n—1)p)E,}
where T, = ((1/n)) and E,, = I,, — J, are idempotent matrices and hence we

got the result

Result 4.1 (Baltagi, 2005). For a maitric V. = kA + mB where A and B
are idempotent matrices and k,m are scalars such that A +DB =1 and AD =

— 1 1 : .
BA =0, V1 = A + B and in fact V7 = kA + m9B for any number q.

Proof. The result can be obtained by direct verification. O
Lct-:;j:(yj—naﬁjza}yanda:m, a;, = (—a,—a,...,1 —
a,...,—a) with j'* component is 1 — a.
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(X'VIX) X' ae; |

Result 4.2. When j'" is deleted from the data set, DFBETA; = FO—pl—a)—a'Ha;s €=
y;— o' B3 residual.
J
and DFFIT; = J?{I_P';il_ai;ia;ﬂaj; c; is the j' unit vector.
Proof.
XVIX — L xx - P X'11'X}
a?(1 —p) I1+n—1p =~~~
1 P
= —X'X;——F—— X' "X,
Jz(l—p){ i 1+ (n—1)p J“l’j“]:j i}
1 p
+—frr — (X122t 1" X+ x2
R N s 7 A
1 p
= —{X'X;, - ——MX/, "X
O—Q(l_p){ = 1"—(?1—2},0 J ;I:jlj “?}
+ ]. { .OQ X! 1 1!’ X _
o2(1—p) (1+(n—2)p) 1+ (n—1)p)" 77~
P atal ’ ’ ) 1+ ('?1 — 2)10 r
— X1l 4+ 1" X)) +———7r«x
1+ (n— 1},0{ P 1E L )T T (n—1)p ~5~5
_ 1 1+(n—1)p np — np _
=X'VIX; ay— —X)(z ———X)
iV At O’Q(l—p){(l—F(R—Q}p % 1+(n—2)p )(:}jj 1L+ (n—1)p '}
Using the identity 1 =1+ 1+£rf—2)p — 1+{If_2)p. Hence we get
XE.V._IX. — X*V_IX — 1 “r.“r*_
s AL—p(l-a)
1
Similarly ~ X,V;! = X'V'ly_— _ .
1milarly iV yj y 02(1—,0){1—&)“"?3

Where w; =2 —naX = ajX,
j

(X'VIX) 1X'ae; |

Therefore, DFBETA; =

¥ . .
c Haje;

Gz[l—p)[l—ﬂ)—B;.HElj ?

_ /3. ath N
e = 1j— ;I;j 3; 7" residual.

and DFFIT; =

cr':’(l—,o}(l—a)—a;. Ha; ;

c; is the j' unit vector.

If we consider the deletion of j** case that may arise in looking for an out-

lier. The corresponding results of DF BET A, DFFIT. It is more appropriate

and statistically justified to study standardised version of the above measures.

variances of the above measures given in following theorem.

Result 4.3.

Var(DFBETA;) —

Var(DFFIT;) =

When the 7" observation is deleted
(X’V—lX}—l}{’aja}X(X’V—lX}—l
(1 —a’Hay)

(a}Hﬂj}z
(1 —ajHa;)
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Var(DFBETA;) = Var(p — 3 ) = Var(8) + Var(8 ) — 2Cou(j3, 3 )
- i - ~i T

= {(X'VIX) T+ (X}VJ-_IXJ)‘I —2X'VIX) ' X'V ICou(Y, y;)V;lXJ—{X’V_lX)‘l}

Where Cov(y,y’) = V* obtained from V' by deleting j** column. X'V-1V* =
J
X'E; = X. Hence the result for Var(DF BET A;), and similarly for Var(DF FITj).

V. NUMERICAL RESULT

Let us consider the data set given in the following table whose first two columns

are (r; & rs)are independent variable and third column y the dependent vari-

able. For different values of p standardised values of DF FIT are calculated

and shown in last three columns. It is observed that corresponding to seventh

observation DF FIT values are high become more prominent as the model

approaches correct specification as with values of p.

Table 2: Calculated DFFITS values

T Tg Yy p=0 |p=03]p=05
355 36.5 | 30.6 | -0.6803 | -0.9005 | -0.9188
353379 | 304 | -0.0228 | -0.0322 | -0.0368
J6.4 | 386 | 376 0.1393 | 01811 | 0.1953

37 | 384 [ 398 | -0.1344 | -0.1675 | -0.1761
37T 382 404 | -0.5861 | -0.7141 | -0.7425
376384422 -0.3140 | -0.3764 | -0.3003
TR 372 103 | 3.5744 | 4.2480 | 4.4129
36.7 | 30.1 | 39.2 | 0.2855 | 0.3379 | 0.3530
383384 ) 44.1 | -0.5048 | 207064 | -0.7440
370 388 | 306 | -0.5279 | -0.6315 | -0.6729
39.5 | 38.7 | 48.7 | -0.8531 | -1.0334 | -1.1181
385 (384|419 -0.8877 | -1.0025 | -1.2061
4003 | 40.2 | 52.7 | -0.4186 | -0.5263 | -0.5966
405 [ 416 | 538 | 01256 | 0.1621 | 0.1904
304 (428 | 423 | 04258 | 05673 | 0.6988
4001 | 40.7 | 53.6 | -0.0215 | -0.0207 | -0.0392
40.7 | 41.5 | 53.3 | -0.0760 | -0.1102 | -0.1619
393 41 | 50 | 03221 | 04940 | 08830
41.2 [ 427 | 55 | 0.2538 | 04180 | 1.3201
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Further Study
As there 18 a concept of association between the observations specified by p it

would be better to have an estimator of p for unclustered observations.
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