International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 — 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 6 Issue 3 || March, 2018 || PP-09-20

A Non-Uniform Bound Approximation of Polya via Poisson, Using
Stein-Chen Method and © —Function and Its Application in
Option Pricing
Samson O. Egege’, Bright O. Osu? and Chigozie Chibuisi®
(1A research student in the Department of mathematics Abia state university Uturu)
?(Department of mathematics Michael Okpara University of Agriculture Umudike Abia State)

%(Department of Insurance Faculty Management Science, University of Jos, Plateau State, Nigeria)
Corresponding Author: Samson O. Egege

ABSTRACT : In this work, the Stein-Chen method and the w-function associated with Pélya random variable
are used to obtain a non-uniform bound approximation of Pélya by Poisson in terms of point metric and Pdlya
distribution applied in finance. Egege et al[11]found out that the upper bound may not be sufficiently enough
for measuring the accuracy of an approximation. Also, it was discovered that the results obtained for non-
uniform are better than the results obtained for uniform bound. This is in agreement with Egege et al,[11], that
for n < r, and if the upper bound is small, then a good approximation of Pdlya is obtained. And for n>r, it
will not give an appropriate approximation. And Polya combined with financial term is used to generate a
model for forecasting the price of a European call option. Which gives the same numerical with Osu ,et al[2].

KEYWORDS -Stein-Chen equation, Pdlya distribution, Option Pricing, Non-uniform Bound Approximation.

Date of Submission: 24-02-2018 Date of acceptance: 12-03-2018

I. INTRODUCTION
The aim of this work is to give a non-uniform bound approximation of Polya by Poisson in terms of
point metric in extension to Samson et al, and associating Polya distribution with financial terms to generate a
model for evaluating the price of an option.
This paper focuses on a particular type of derivative security known as an option. Determining an option value
is called option pricing. Cheng-Few et al [2] showed how the Binomial distribution is combined with some

basic finance concepts to generate a model for determining the price of stock option to be:
1

C = "o k‘(n k)‘p k1 - p)"*max[0,ukd"*s — K]. 1)
Osu et aI [2] develop a model using generalized binomial distribution of the form
Coy = Xm0 ey (A+§)(n) - Max[u¥d" S - K, 0], )
where thls can also be expressed as of the form
A gn —X
C(O) 0( ) (A+B)@) (A+B)(n—x) t(x) (3)

Where CT(x) = Max[u*d" ™S, — K,O0|,R is the interest rate ,ﬁ and — 9 are the neutral probability,u and

dare the rates at which the price move up and down respectively and k is the strike price.
Osu et al[2] used the generalized binomial model to evaluate the price of call and put options.
The proposed model is of the form

Clesg) Cless)

( r+E+r+b)
where Cr(x) = max[u*d" S, — K|, (1 + r) is the interest rate , +v and T is the neutral probabilities

ThePdlya distribution in this work was first studied and presented by G. P6lya(1923).1t is a discrete distribution
that depends on four parameters N, n,r, cwritten in the form IP,,(N,n, 7, c) where the integersn > 0,N,n,7,c

are real numbers ,0 < ﬁ < 1,b = N —randc > 0 are parameters

The details of the background of this distribution can been in Feller [5].Let Xbe Polya random variable, then its
probability function is of the form

Trx—1\ (YT e
P (x) = <C+x 1)< :_x 1)x =0,1,...n. (5)

(g%—n—l)
n

Co = G 2iao(?) Cr(x) (4)
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nr (N+cn)(N-r)
NZ(N+c)

special case of ¢ = 1, and showed that IP,,(N,n,, ¢) converges to Binomial distribution with parameters n,ﬁ

Then the mean and variance of X are p = % and o°= respectively.Samson et al[11] considered a

which is denoted byB (n, ﬁ)and its distribution function is of the form

B> ) (i) (Bl yp) VX =0L...n (6
In view of (2), it is clear that P,,(N,n, 7, c) can also be approximated byB (n, rﬁ) under appropriate conditions

on their parameters. For example K. Teerapabolan[7]used Stein-Chen method and w-function associated with
Pélya random variable to give a bound for total variation distance between the Binomial and Polya distribution

of the form
(1—Pn+1—qn+1)c(n_1)n
d ((B(HP)']P’Y(N '"'r'c))) = +D(N+1) )

Where N ,n,rc are non-negative valued integers and B(np) = (7)p"q"*,

(£+x—1) <N_r+n—x—1)
c c
x n—x

(¥+n—1)

n

is the Polya distribution.

It is a well-known fact that Poisson and Binomial distributions can be approximated by each other under
appropriate conditions on their parameters.

If Binomial distribution can be approximated by Poélya (4) under appropriate conditions on their parameters,
thus if the conditions on the parameters of Polya and Poisson are satisfied, then Po6lya can be approximated by
Poisson distribution. Egege et al[11] used Poisson to approximate Polya distribution, in terms of point metric of
the form

P,(N,n,r,c) =

r(r+b+c)—b(n—1)c
r+b)(r+b+c) ' (8)

, A =r'_'+—rband (n — 1)c < r.It can observed that the bound in (6) and the point

| By (x0) = 9a(x0) | < (1—e™?)
—2A7x

wherexeN, ,;(x) = ex—llo

0

metric does not depend on x,, Wherex, € {0,1 ... n},the above bound is with respect to x, where x, € {1,2...} /

{0}

The question here is what will happen if (8) depends on x, or with respect to x,?

The question is what the work seeks to ascertain. The bound (8) may not be sufficiently enough for measuring

the accuracy of the approximations.

I1l. METHODS
The tools for giving the results are, Pélya distribution, wealth equation, Stein-Chen equation, and
w —function.The Pélya distribution is given by G. Polya 1923 in connection with the so-called Pélya scheme.
The Polya distribution is a discrete distribution that depends on four parameters N, n, r, ¢ .Denoted by
P, (N, n,r, c)where N, n, rare non-negative values and ¢ = 1, that satisfies (n — 1)c < N.
Let X be the Pélya random variable, G. Polya gave its probability function of the form

(%+x—l)<$+n—x—l)
P (x) = <ﬁ+n—1) , x=01,...n 9)
The mean and variance of X are given respectively by p= % and o°= %
case of ¢ = 1, Maths Planet 2012 equation (1) can be expressed as of the form

_ (n (T,C)x_1(N—T,C)n_X—1 _
P (x) = (k) W ,x=01..n, (10)

where(r,¢)y_1 =r(r+¢) c...tr+(x—c, (N —=1,6)p—y_1=N—1r(N—7 +¢) ...... N—r+m-x-1)c
and (N,¢)p_1 =NWN+¢)...... N+ (n — 1)c.
Let N =r + band N — r = b we obtain
p _m [rr+¢)...tr+ (x—Dc][b(b+c)..b+(n—x—1)c]
(@ = () [F+b)r+b+c¢)...t+b+ (- 1)c]
[T e+ (x = Dc][b....b+ (n—x —1)c]
(x) [r+b...r+b+(n—1)c]
o\ e[ AEN[P P f et (=2 —1)]
- (x) [[+h/cn T+b/ 4 (n-1)] . @D

Considering a special

where
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_ 0 ifx=0 _( O0ifx=01,..n
¢= {(x -Difx=12,....n and & = {(n —x—1ifx=0
Equation (3) can further be simplified to give

§ b b )
U A r/r+b+/r+b/c U] fr+pt r+b/,

|
|

X

(12)

X

r+b)*(r+b)* % (r+b)"

Note that oy = o -1
Thus P, (x) = (1) [ b <r/r+b+§/"+b/c)]b/r+b""'(b/r+b+6 T+b/c)
[1 ...... 1+1 1r+b/c]

. . . . b .
Ifr,r + b —» oo, while L remains constant, implies 5 s constant then

PG = (" )M (13)

(r/‘r‘f'b r+b)

It can be seen below that the parameters in satisfy the following conditions
r b

r+b r+b
r b

r+b r+b
iii. 0< E < 1Type equation here.

In this wor rib
Thus Pélya distribution applied in finance is of the form
P, (x) = ( )[r(r +¢)... 7+ (x— 1)c][1§(5 + c) wh+(—x— 1)C]
[*+b)(F#+b+c).c.t+Db+ (n—1)]

|[V/V+B......... ff+5+€f+5/c [ey g b/f+v+6r+b/ Jl
= () | |
1o 1+n_1V+B |
- | g
= (")Mx =0,1,2..n. (14)

b
( r+b+r+b>

The Stein-Chen method is a general method in probability theory that isused to obtain bounds on distance
between two probabilitydistributionswith respect to a probability metric.
Teerepabolan[6] gave a Stein-Chen equation for Poisson distribution with A > 0 and for h of the form.

ho(x) — 2, (h) = /1f (x + 1) - xf (x) (15)
Where g,(h) =
ForQ € N u {0}, deflnlng an |nd|cat0r functlon h O(x) = N U (0) — R such that
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1 ifxg<x
th(x) {O ifx > xy
For Q = {x,} wherex, € N U {0},Barbour et al gave a solution of (5) of the form by letting f = f,,
—(x—-1DIr= [Sot(hg)goz(hcx,l)]ifx < X
fro () = (x — DI e o, (he)91(1 — he,_,)]ifx > x,,  (16)
0 ifx=20
where C, = (0,1, ....n).
Let Af,,(x) = f,(x + 1) — f;,(x),then the following lemma gives a non-uniform bound of [Af, .
For the model, the following assumptions hold
Assumptions
I The initial value of the stock is Sy (S(o) is the stock price at t=0).
ii. At the end of the period, the prlce is either going up or down with factors uand dthat is, uS) with

probability — vl dSoy with probablllty h which satisfies 0 <i3< 1.

iii. The movement can also be traced from a view point of tossmg a die,which result to a head and tail if it
result to a head at a time, one we have S; (H) = uSand if it result to a tail at a time, one we have S;(T) =
dS ).

iv. One dollar invested in the money market at time zero will yield 1 + r dollar at time one,where r is the
interest rate .Conversely, one dollar borrowed from the money market at time zero will result in a debt of 1 4+ r
at time one.

V. The price either increases, by u > 1 or will decrease byd < 1.

Lemma 1: If no arbitrage principle holds then
Ciy1 = Vg forvt € {0,1....T}.
Lemma 2

For a risk neutral probability% = (%), and no arbitrage principle u > 14+ r > d > 0 exist if the following
holds

a. E 5 (S@) = (1+1)%S() where (1 + ) denote the interest rate

F+b

3 " —
b. Sz, =1V =123

#
C. mi >0
Proof

P \? PN\, T ¥ P \?

For 5(2) Implles t = 2and ( +h +1- m) = (m) +2m(1 — T) + (1 — m)

+b

77)
2 ( )ud+< r:—5> d]S(O)

T
=s(0)[ vu+(1_ v)d]
r+b 7+b
R—d u—R 2 Ru — du + du — Rd1? Ru — Rdy? 2u—d2
:S(O)[U—du+<1_ d)d] =S(°)[ u—d ]25(0)[u—d =Sk [u—d]
Er (S@)=Soy1+71)°

r+l

Now E o (5(2)) = [(%) u 5(0) + 2 ( udS(o) + (1 - Lv)z dS(O)]

r+bl

r+b[

where(1 + r) is the interest rate
N M Y y v Y \2
Defining - ( d ) v = 2— (1 — VTV) and %3 = (1 —r%) we have

7+b

[(fj—ﬁ)z + 2r“+ ( 1= zfil? + (fiﬁ)z] = [(r“il;
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3 v
r
-
] = 7+ bi
Now it can be clearly seen that-— > 0.
L

. P (R-u b u-1-r .

Lemma 3: For —— = (u_d), and — = ——- forany given u > landd < 1
factors
So = —[Zus, +2as,| @7

0= T s+ apas| an)

Lemma 2.1
Forx, € NU{0},x € Nwith Af, (x) = f,,(x + 1) — £, (x) then the following holds.
|Af| <27 (1—e™) (18)
Proof

For vx € Nand xo € NU {0}, |[Af,,(X)] = Ifiq(x +1) = f,, ()] < |f;,, (D]
Implies |Af,, ()| < |f;,(DIVX €N
Samson Egege etal [11] showed that |f, (1)] =271(1 —e™*)
= |Af,| <27 (1 —e™)
Lemma2.2. Letx, € NU{0},x € N then the following holds
|af,| < Min{/l‘l(l - e"l),i} where x, # 0
Proof
fo(1) = (x = DIA*e*[03h002 (1 = hey)]
=(x—-Dir*ete?(1—e?)]
< (x—DiIr*ete™ — e
S@-DIA(1-e?)
Aoz x
=@x-1iat [1— 1 _f+i_§+m"']
(x =D Ax
= Tl—l [_f-'_ﬁ-'_ ]
(x—1)! A a2 2
- ’11[?+2! 3!+"']

X!

-1
<=—(1-e).

xQ

—1

And 18y (O < 1fig (D) == (1= ™) ==
Combing lemmas 2.1 and (2.2), we obtain |Af; | < Min{l‘l(l - e‘l),%} with x, # 0.
Lemma 2.3: ForA > 0and x, € NU {0},x € Nwith Af, (x) = f,,(x + 1) — £, (x) then the following holds
|af,, )| < Min{1,§]. (19)
By lemma 2.1, we have |Af,,(x)| <271(1—e™*).Clearly 1—e™* <1, and also
l-A<e?*=1-e*<
Therefore (1 — e™) < min(1, 1). Multiplying both sided by /11 we obtain 271(1 — e™*) < min (1}1)

N _ _ 1
This implies that [Af,, (x)| < 271(1 —e™*) < min (1,;).Thus
|Afx0 ()| < min (1,%). (20)

Lemma 2.3: let x, € N U {0} and x € N then we have
|Afy ()| < 27%(A +e™* — 1) (Teerapabolarn and Neammanee)[8]
Lemma2.4 If ho(x) is an indicator function of a random variable for event Q = {x,}, then
E[hq(x)] = P, (xo), (21)
where x, € N U (0).
Proof : By definition  hq(x) = {
1
E[ho(x)] = Z xP(hq(x) = x) = 0 X P(hq(x) = 0) + 1 X P(hq(x) = 1) = P(ho(x) = 1)

x=0

1 if xeQ
0 ifx ¢ Q
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= P(Q) = P, (xo).

Il. FUNCTIONS
o-functions were studied and used by many authors. Among others, Papathanassiou and Cacoullos[6] defined
a o function associated with non-negative integer valued random variable in the relation

0()0? = = Tioolu — h@]p() For xeS(X). (22)

Lemma 3.1 (Egege et al [11]): For P,(x) > 0 and VxeS(X) U {0} there exist a function w-function such that
w(©0) =/ 5. (23)

0@ = w@-DPET D/ H Ty, (24)

Lemma 3.2: Letp, (x) > 0, Vx € S(X) there exists w(x) associated with a random variable X such that
p(x—1) _ x(b+(n—x)c) ' (25)

p(x) (m—x+1)(r+(x-1)c)
Lemma 3.3: Let w(x) be the o function associated with the Pélya random variable X and p, (x) > 0 for every
0 <x <n.Then
CL)(X) — (n—x)(r+cx)

(r+b)c?
Proof
From (15) Forx > 0,

(26)

plr—1)  #=h()
p(x) o2
)M_l_ua;zx — u p(x 1) (_1)__

wox)=wkx-1
. _ (n—x+l)(r+(x—1)c) (r+cx)(n—x) .
And with w(x — 1) = S eTTo we obtalned wlkx) = om0l which holds.

Proposition 3.1: If a non-negativeinteger valued random variable X have p, (x) > 0 for every x in the support
ofX and finite variance 0 < 62 < oo,then

E[X —w)f ()] = e’ E[w(X)Af(X)] < 0, (27)

For any function f: NuU {0} » R for which E |w(X)Af(X)| < co,whereAf (x) = f(x + 1) — f(x).

Forf(x) = x, we have thatE[w(X)] = 1. Papathanassiou and Cacoullos [6].

wkx) = wlx — 1)

V. MAIN RESULTS

Theorem4.1: Let0<d <1+71<u, ﬁ 1::‘1 nd E = i | let X, be the wealth at time zero, and A,
share of stock , for X, — A,S, invested in the money market at time zero it worth

Xo = 8¢Sy + (Xo —A0S0) = ¢o , (28)

such that at time one it worth

X1 =081 + (1L +1)(Xg — A¢Sp) = €4, (29)

But Ay= % and a unique solution exist. Then

XtE[O,l - Cte[O,l]- (30)

Proof: Given that

Xy =081+ (A +7)(Xo — AoSo) = C,
=1 +1)Xy + 4,05 — (1 +1)S) = €,.(31)
Then possible cash position at time t = 1 is

1
XO + AO (mu.ﬁ‘l —50) = m u (32)
and
1 1
Xo+ 8o (m=dS; = $y) = =, (33)

Solving equation (32) and (33) simultaneously we obtain
A ! §1(T) = S5y| = Cy— X
0[1—+r 1D =] = G =X

1 1 1
B0 751 =0 = 17451 = o] = 371G = o = G = )
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1
Ao[l SO 1+‘rd51+50]=_1+T[Cu_X0_Cd+X0]
Ay |7/—— —dS —IC, - C
°[1+§” Tty 1] 157G~ Cal
Ay—|uS; —dS{]=—IC, —C
. . 01+r[u1 1] 1+r[“ al

Makmg A, the subject;
Ap= 1+r[C“ Cal - [C,—Cq]

0 m[usl—dsl] (u—d)Sl.

The uniqueness result can be also obtain by recasting the (29) and (30) in terms of matrices. Thus
1

1
L7us Xo] _ =G
1 Al T2 :
L7 ds 700 |G
- Ax:b - - -
Uniqueness solution exist if det(4) # 0

1 1
det®) = (3545 -%) = (135
From (29) and (30)
1 1 1
Xo + A, (mus1 —50) = ——C, and X, + 4 (mds1 - SO) =
Adding we obtained

uSl - S()) = —[dSl - U.Sl] * O

1+7r
—Cy.

1+r

1
[uS; — Sol + ——1[dS; — Spl =

X0+Aoll+r 1+r 1+r[C“+Cd]

Xo + Do[(uS; —dS;) — Sp] = :[Cu - Cd]-
Multlplymg uS; W|th " and dS; Wlth 5 we obtalned
By Iemma3 2 Sy = :[ 7 uS; + I dSl] , SO we have

10 #
%o = i [F 6~ o] (34)
Thus Cy, = X, by (9) and

1 T
Co= 15 [f+15 G573 Cd] (35)

V. THE MULTIPLE-PERIODP6LYA MODEL
We started with the one-period model to a multiple-period model, where we assumed that the initial stock price
S0y can increase by a factor u and decrease by a factor d at time one. After oneperiod the stock price will either
be uSy)y or dSqy . The stock price can once again go up by u or down by d withpossible
prices uusS g),0r u%Sg),udS gy and dS,or ddS).Now we are interested in the case where there is more
than one period for the option to expire(T = 2)
Theoremb.1: For a recursively backward sequence with respecttotimet =T —1,T — 2 ...... 0,1
Visr = ASeir + 1+ 7(C — ASy) = Cpq (36)
That depend on the subset of Q = {H, T},with unfair probability and no arbitrage principle such that
Ci41 = V1. Then
n ( F+E)x(b/1‘+5) X gn—x
Co = g 2=’ )(—nmax[u d"Sgy — K] (37)
Proof
For no arbitrage principle C,,; = Vo Witht =T — 1,T — 2.Then Cy4.qy = V44 ,thus
{Cuu = CZ (HH)
Cud = CZ(HT)
=@ =0 ¢, = G
ded = G,(TT)
This implies that
A S,(HH) + 1 +r[C,(H) — A;S;(H)] = C,(HH)

(38)

M SH(TT) + 14 7[Ci(T) — A1 (T)] = C(TT)

(39)
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Following Osu et al[2] we obtain
— CZ(HH)_CZ (HT) — Cuu _Cud - Cuu _Cud (40)
L™ SyHH)=S(HT) — uSi(H)—dS1(H) ~ (u—d)Si(H)’
A is the hedging formula.
Substitute (40)in (39) gives
AMuS;(H) +1+71C, — 1+ 1S, (H) =Cyy
Cyu —Cud $1 (H)[u—1+r]

=>1+7rC, + )51 () =Cu
Cyy [u—147] _ Cyg lu—1+r] _ _
=1+ 76, + S - ST = G 2 14 TG vcw —Cut = Cuy
S147C, = Cu = 7 Cuu + 715 Cua :(1 )cuu+ = Cyq. SO that
; 5
Co= 1 7o G + 505 Ca|  (4D)

Now solving also equations (39) we obtain the value of a; and C;(T) = C, as
_ GQUHT)-C(TT) _  Cug—Cad (42)
L7 S(TH)=5,(TT) — uS1(T)—dsy(T) °
And Substituting A4 |nt0 (40) we have
1
Co =17~ [rib Cua + 53 Cdd] (43)

1+r ¥+b
Where — = 1: dd -l:—b = 1T \which are called risk neutral probabilities.
Substltutmg equations (42 and (43) |nto equation (35) we have
1 7 1 7 b b 1 ¥
Coy = 1+r [r+5 (1+r) F+b U tig F+b ud U Eip (E) F+b Cua + F+b Cdd]
Or better of

1(*)% LA +(b)2c
1+r\r+b) ™ “rybr+b @ \r+b) ™

_ 1 7
T 14s2 [(m) Cuu + 2r+b T+E ud ¥ ( +b Cdd]' (44)
Where C,,, C,q and Cy, is the payoff of the stock at t = 2. The pay-off values can be generalized of the form

Cr(x) = Max [u*d" Sy — K,0]. Where x =0,1,2...,n and x depends on the factor u.

1
1+r

Coy =

1 ¥ \? 7 ¥ 7 7
Now C(0>=1+7[(m) Cuu + 2551 = 7 Cua + (1= 757) G T [(m) G +2751-
7r+H0C21+6r+H62C20
__ 1 |fr* 2 T _r X gn—x _
- (1+7)2 [(f+5) t2:3 7+b 1 r+5 + (1 ]Max [u d S(O) K, 0]
_ 1 F\? i i nex
o | () + 271~ 7+ (i ]M‘”‘ [“xd Sw = K9]

, r L2
! (LV+LV) Max[uxd""‘S(O)—K,O].

= (147)2

¥+b = r+b
By Binomial theory expansion, we have that
Coy = f+52 [u*d"™*S() — K|
O @rni\rap g TS0

Cras) Crras)”

( r+b T+ B)

(1+r)2 ¥roo(?) max[u*d" ¥ Sy — K|.

Where x = 0,1, ...
Generally
r+b (B/ "_x X Jn—x
Coy = (1+r)" 0( ) max[u d"*S —K].
( r+b r+b)
Theorem 5.2: .Let X be the Polya random variable with A:rrrb ,and (n—1)c <r for
¢ > 0Vx, €{0,1.......n} the following exist
_ -1 -2 _ r(r+b+c)—b(n—1)c
IP,(x0) —,(x0)] <A1 (A+e 1)—(r+b)(r+b+c) . (45)
Forx, € {1, .....,n}
_ . _ —ﬂi r(r+b+c)—-b(n—1)c
1P, (xo) = 92 ()| < Min (1 — 7, Z) o2 r, (46)
and
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. r(r+b+c)—b(n—1)c r(r+b+c)-b(n—1)c
15 Gro) = a0l < mm( TS TS S L VS TS ) (47)

forvx, € N U (0).

Proof: Substituting xby X from on light hand side (6) and taking expectation, we have
Elhq(x) — g, (W] = E[Af(x + 1) — xf(x) ]
Py (x0) — #2(x0) = EA[f(X + 1)] — E[Xf(X)]
=AE[f(X+1) — fX) + f(X)] — E[Xf(X)]
= E[Af(X) + f(X)] — E[Xf(X)]
= AE[Af(X) + f(X)] — E[(X — ) f (X)] — E[uf (X)]
=E[2Af(X) + Af (X)) —E[(A —wf(X)] — E[(X — wf(X)]. (48)

Recall from Proposition 3.1 that
E[(X —fX)] = o?E[wX)Af(X)]
= AE[Af(X)] + E[A — plf (X) — 0 E[w(X)Af (X)]
= E[(2 - c?0(X)Af (O] + E[(2 — wIf (X)
I (x0) — 22 (x0)| = | E[(A = 0?0 ())Af QO] + E[A — m]f (X))
<[4 = a2wIAfCOI + 12— ulEIfF (X)) < 32 1Af (OIEIA = o2w(X)] + [A = plE[fX)].
Since A=p, for x ¢ N we have

2 _m (m—x)(r+cx) _ [(n—x)c—r]x <
A-ofwlX) = (r+b) G+b) G+ 0
And |2 —c?w(X)| =0, E|2 - c?w(X)| = 1 —d?E[w(X)], where E[w(X)] = 1.
™m n(@r+b+cn)(r+b—r
El-c*wX)| = A-o0%= _ > ) )
(r+b) (r+b)?(r+b+c)
_ o nrb (r+b+cn) _ nr[(r+b)(r+b+c)—nrb (r+b+cn)]
(r+b)  (r+b)2(r+b+c) (r+b)2(r+b+c)
_nr[r+b)(r+b+c)—b(r+b+cn)] _ nr [(r+b)(r+b+c)—b[r+b+cn—c+c]]
- (r+b)2(r+b+c) B (r+b)2(r+b+c)

znr[(r+b)(r+b+c)—b[(r+b+c)+(cn—c)]]

(r+b)2(r+b+c)
_nr[(r+b)(r+b+c)—b(r+b+c)—b(cn—c)]

(r+b)*(r+b+c)

nr [(r +b)2(r+b+c)—b(n—1)c—b (r+b +c)]

(r+b) (r+b)2(r+b+c)
_w (r+b)2(r +h+6) s (=D~ r+b+c)
(r+b) (r+b+c)(r+b)?
_ (r+b)2(r+b+c)—bg:;))c——(rib)(r+b+c)
- (r+b)2(r+b+c)
_ [r+b)(r+b+c)—b(r+b+c)—b(n—1)c]
= A(r+b) (r+b)2(r+b+c) :
[r+b)r+b+c)—b(r+b+c)—bn—1)] [-b(n—Vc+[r+b+cl(r+b—>b)]
A(r+b) =1
(r+b)(Tr+b+c) (r+b)(r+b+c)
[-b(n—1)c+r(r+b+c)] _ , r(r+b+c)—b(n—1)c
(r+b)(r+b+c) - (r+b)(r+b+c)

rr+b+c)—b(n—1)c Sup
G+Dr+bto [P Gr0) =200 < 7 IAFIOIEIL = 0?0 (X))

r(r+b+c)—b(n—1)c .
ST (By lemma 2.2 , 2.3 and 2.4). The theorem is proved.

ElA—cd’wX)| =2

<SP IAF(X)| A

— x=1
In general we have

|p)((xo) - SOA(xO)| < /1—1(/1 Lot — 1) rr+b+c)—bn-1)c

(r+b)(r+b+c)
) 2 rr+b+c)—bn—1)c Ar(r+b+c)—bn—-1)c
Sm”‘{(l_e) CiDC+bto  x b +bto
<min< r(r+b+c)—bn—1)c r(r+b+c)—b(n—1)c>
- (r+b)r+b+c) " (r+b)(r+b+c)

x0=0

}0<x0Sn

for vx, € N U (0).
This can be written as
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( 1 -1 _ r(r+b+c)—b(n—1)c
| A (/1 te 1) (r+b)(r+b+c)
. -2 r(r+b+c)—b(n—1)c ir(r+b+c)—b(n—1)c
[y (x0) = 2. (x0)| < { min {(1 e™) ) +bte)  xg  (r+b)(r+b+e) }0 <Xsno (49
. r(r+b+c)—b(n—1)c r(r+b+c)—b(n—1)c _
| mi ()L (r+b)(r+b+c) " (r+b)(r+b+c) ) 0=01L..n

forxy, =0

Corollary 5.1 the following true

1. IA+e?-1)<(1-e?)
2. min{l - e‘l,:—o} <(1-e™)
3. (1 - e_’l) < min(1,21)

Remark: With the above corollary it is clear that non-uniform is sufficient enough to for accuracy in
approximation.

VI. NUMERICAL EXAMPLES

Using the same numerical examples in Samson et al[11], and Bright Osu et al [2]to illustrate how well Polya
can be approximated by Poisson in terms of point metric Pélya distribution can be associated with finance terms
to evaluate the call option respectively.
Example 6.1
Suppose thatn = 5,7 = 10, (r + b) = 1000, ¢ = 1,4 = 0.05 then for
Uniform Bound,;

|P,(x) — 2,(x)] < 0.000294767 x = 0.1.....n

and for Non-uniform Bound
0.00014861 if x, =0

| 0.000294767 ,if xo = 1,2,3

|p, (o) — 04 (x0)| < @(o 00643956) if Xy = 4 .1

kmin{0.00030220,0.00604396}x0 =12.n
Example 6.2

Suppose that = 10,7 = 10 ,(r + b) = 1000,4 = 0.1 and ¢ = 1, then for Uniform Bound
|P,(x) — 2;(x)] < 0.000104574 x =0,1.....n
and Non —uniform Bound
0.000053123 if x5, =0
0.0000104574,if xy = 1,2,3

_ < 0.1
[P (o) = 03 (x0)| < —=(0.001098901)% = 4....n
0

lmin{0.00010989, 0.001098901}x, = 0,1,2..n
Example 6.3
Suppose thatn = 20 ,r = 25,(r + b) = 1000 and A = 0.5 and ¢ = 1, for Uniform Bound
|P,(x) — 2;(x)] < 0.002545169 x = 0,1 .....n
and Non-uniform Bound

y 0.001378258 if x, = 0
0.002545169 , if x, = 1,2,3,4

_ 0.5
[P (o) — 02 (x0)| < =2 (0.006493506)x, 5 ... .1

X0
kmin{0.003246753,0.006493506}x0 =01..n
Example 6.4
Suppose that n = 25, r = 25, (r + b) = 1000 ,A = 0.625 and ¢ = 1, for Uniform Bound
|P,(x) — $,(x)] <0.00754441 x =0,1.....n

and for Non-uniform Bound

0.004162264 if x5 =0
0 00754441 if xo =1234

(
|pX (x0) — Soz(xo)| %
\

min{0. 001014610 0.001623377}x, = 0,1..n
Example 6.5
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Suppose that n = 25, r = 35,(r + b) = 1000, A = 0.875, and ¢ = 1. For Uniform Bound
|P,(x) — 2,(x)] < 0.006897456 x =0,1.....n
and for Non- uniform Bound
0.003945365 if xy =0
0.006897456 ,if x, = 1,2,3,4
|, (o) — 0. (x0)| < 0.875
| Xo
tmin 0.010380245,0.011863137 x; = 0,1..n
For Option pricing via Pélya distribution, we obtain
Example 6.6: LetSgy) = 100 K=100, u=12,d=08r=10%and1+r=1+10%
# _ R-d 11-08 _ 75 75 25

== = —an =1--—=—
7+b u—d 1.2-0.8 100 +5 100 100

Then the possible ending values for the call option after T =2 are

(0.011828172)x 5 ......n

Cr(x) = Max [u*d"~*S(0) — K, 0] wherex = 0,1,2..n, then
C,(2) = C,, = Max[1.2% x 0.8%72 x 100 — 100,0] = 44
C,(1) = Cpy = Max[1.2' x 0.8>71 x 100 — 100,0] =
C,(0) = Cgg = Max[1.2° x 0.8%7% x 100 — 100,0] =0,

1(0.75)%(0.25)2 % 1(0.75)1><(0.25)1

012! (E 25 )7 111! (75 g)z
C(O):_ 100 ' 100 100 ' 100
1.12 2! (075 2%(0.25)°
(0.75)*x(0.25) % 44

l 210’ (17050+100) J

Example 6.7: Now assume that Spy = 100, K = 100, =7%,T = 3,u = 1.1and d = 0.9 in addition to
above example. Given

X 0+
—%[1 x 0.562 X 1 X 44] = $20.45.

) Clr) _
Coy = (1+r)" 0(")1—i+nmax[u"d” *Soy — K.
b

Then the possible ending values for the call option after T =3.
Cr(x) = Max [u*d"*S(0) — k,0] where x =0,1,2..n
C3(3) = Max[1.13 x 0.90°~3 x 100 — 100,0] = 33.10,
C3(2) = Cyy = Max[1.1% x 0.903~2 x 100 — 100,0] = 8.90,
C3(1) = Cyy = Max[1.1! x 0.903~! x 100 — 100,0] =0,
C3(0) = Cyy = Max[1.1° x 0.903° x 100 — 100,0] = 0.

3! (0.85)%x(0.15)3 3! (0.85)"x(0.15)?

. 013! (ﬁ g)g 1121 (85 15) x0+
— 100 100 100 100 —
By above Cq T@07)3| 31 (0.85)2x(0.15)! 31 (0.85)3x(0.15)° $18.96.
l — = X890+ —————=x33.10
2111 85 15 310! (85 15) J
100 100 100 100

Example 6.8; Given thatS, = 80, K=100,u = 1.2,d = 0.8,r = 10%and T = 3

Now with the above data’s we obtain v+ 1 = 1.1, — = 0.75 and — = 0.25 . Then the possible
ending values for the call option after T = 3.

WWW.ijmsi.org 19 | Page



A Non-Uniform Bound Approximation Of Polya Via Poisson, Using Stein-Chen Method and €2 —Function And

Cr(x) = Max [u*d"~*S(0) — k, 0] where x =0,1,2..n
C5(3) = Max[1.23 x 0.8033 x 80 — 100,0] = 38.40,
C5(2) = Cuy = Max[1.2% x 0.80%~2 x 80 — 100,0] = 0,
C5(1) = Czy = Max[1.2! x 0.803~! x 80 — 100,0] =0,

3! (0.75)9%(0.25)3 3! (0.75)1x(0.25)2

ol (IS ﬂ)g 2l (75 ﬂ)g X0+
Cons = 100 ' 100 100 ' 100 = $12.13
(O] 31 (0.75)2x(0.25)1 31 (0.75)3x(0.25)0 S
21 (B2 B0l (75, 25 |
100 100 100 100

From the above numerical results Examples 6.1-6.5, it is found that the results obtained from non-uniform
bound are better than uniform bound which is in agreement with Corollary 5.1

L 27'(2+e?-1)<(1-¢e)

2. min{l - e"l,i} <(1-e™).

X0

When the bound is very small, a good approximation of Pélya to Poisson distribution is obtained. Examples 6.6-
6.8 show that Polya distribution associated with finance term can be used to evaluate the call option.

VII. CONCLUSION
In this work, non-uniform bound is an estimate of the point metric between the Polya and Poisson distribution.
This bound is also a criterion for measuring the accuracy of the approximation of Polya by Poisson that is if the
bound is small,then a good approximation of Pélya to Poisson distribution is obtained. And if the bound is large,
the Poisson distribution is not appropriate to approximate the Polya distribution. For the bound to be small

n < r exist with #small andc = 1.This is in agreement with Egege et al [11]. For a good approximation of
Polya to Poisson the following must hold.

i. n <r andsmall

ii. — issmall

... Ttb

iii. A issmall

iv. r+ b sufficiently large

Polya distribution will provide a good approximation to Poisson distribution when n > 5 and r = 10 and
approximate excellently when n < r. If the year for the option to expire or exercised is not continuous; the
Polya distribution can be used to evaluate the price.
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