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ABSTRACT: In this paper we formulated the model. We proved the basic properties of the model which are 

Positivity and boundedness and also determined the Reproduction number which helped us to determine the 

local asymptotic stability (LAS) of the DFE. We went further to prove the global asymptotic stability (GAS) of 

DFE and Endemic Equilibrium using lyapunov function. Finally, a simulation study of the model was carried 

out to help gain more insight into the formulated model. The simulations of the deterministic model shows (a) 

susceptible population which decreases over time as people interact with infected individuals and move to the 

Exposed class (b) Exposed population which increases with time when susceptible individuals get the disease 

but cannot infect it (c) Infected population which increases with time (d) Treated population which increases 

with respect to time. The simulation of the deterministic model of Recovered class which increases over time 

and  the Treated class .We noticed from the graph that as R0 ≤ 1 the Treated class decreases over time which 

will eventually die out while when R0 ≥ 1 the disease persists and becomes endemic. 
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I. INTRODUCTION 
 Tuberculosis (TB), an airborne-transmitted bacterial disease caused by Mycobacterium Tuberculosis, 

remains one of the most important global public health challenges for decades. Numerous mathematical 

modeling studies have been carried out to gain insight into the transmission dynamics and control of TB spread 

in human population. The first mathematical model specifically linked to TB that we are aware of is in the form 

of a linear discrete system. It was introduced by Waaler in 1962. Waaler's model includes three epidemiological 

classes: Susceptible, Latent (TB), and Infectious (active TB), Carlos et al. (2015). Tuberculosis is an ancient and 

complex infectious disease on which a large number of theoretical studies have been carried out. MTB's 

infection can remain latent, become active, or it can progress from latent TB to active TB either by endogenous 

re-activation and/or exogenous re-infection. Active TB is most of the time acquired through co-infection of 

MTB with other diseases (diabetes, (Human Immunodeficiency Virus Acquired Immuno deficiency Syndrome) 

HIV/AIDS) or some substance abuse such as alcohol and tobacco. The mathematical analysis of biomedical and 

disease transmission models can significantly contribute to the understanding of the mechanisms of these 

processes and to the design of potential therapies. Many researchers have worked on models of Tuberculosis 

epidemics in the past. Song et al. (2004) considered dynamical models of Tuberculosis and applications. The 

dynamical model that incorporates close and contacts (as if there were two epidemiological contact units) was 

developed and analyzed in order to address the role of heterogeneous contacts on TB transmission using three 

compartments: Susceptible, Exposed (Latent), Infected (SEI). The population was partitioned into TB-active and 

TB-inactive clusters. And the term generalized household was used to describe a group of persons (friends or 

relatives or coworkers) who have frequent contact with each other. They observed that the eventually 

eradication of Tuberculosis, it is not necessary that transmission be immediately and completely prevented. It is 

necessary only that the rate of transmission be held permanently below the level at which a given number of 

infection spreading (i.e. open) cases succeed in establishing an equivalence number to carry on the succession. If 

in successive periods of time, the number of infectious host is continuously reduced, the end result of this 

diminishing ratio, if continued long enough, must be extermination of Tubercle bacillus is losing ground and 

that the eventual eradication of Tuberculosis requires that the present balance against it be maintained. It was 

examined mathematical models of Tuberculosis with exogenous re-infection. Four compartments was used 

Susceptible, Exposed, Infected, Treated (SEIT). They showed that re-activation or re-infection mechanisms are 

capable of supporting qualitative changes in TB dynamics. Specifically, these mechanisms could be responsible 

for supporting multiple endemic states and bi-stability. The impact of these mechanisms is likely to increase due 
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to factors that include increases in HIV prevalence and deteriorating economic conditions (famine and the likes). 

Hence, the eradication or effective 

 

Control of TB becomes a challenging and critical enterprise. They looked at policies that bring 

 R0 to value less than one may no longer sufficient if re-activation or re-infection is strong. They also 

examined simple models deliberately ignoring a large number of epidemiological factors, social and socio-

economic, host's heterogeneity, population structure and movement patterns. They also neglected new and 

critically important activation mechanisms that include co-infections (HIV) or DR-TB (drug resistance) or 

XDR-TB. However, they believed that the addition of these additional levels of complexity will strengthen their 

results. That is, that reactivation or re-infection mechanisms are more likely to play an important role in the 

context of complex social environment and highly heterogeneous communities. Another worked on agent-based 

simulation (ABS) of a Tuberculosis epidemic: understanding the timing of transmission to study TB 

transmission dynamics and the role of various contact networks. Their model simulates the course of a TB 

epidemic across a single population and uses a hierarchical network of contacts in three levels, typical to the 

transmission of airborne diseases,). Parameters are chosen from the literatures, and the model is calibrated to a 

setting of high TB incidence the used their model to study the transmission dynamics at an individual level with 

regard to the timing and distribution of secondary infection from single sources. The average time for disease 

diffusion to reach 50% of infections at an individual level is estimated, and the timing patterns are compared 

among different networks. They performed sensitivity analysis of results with regard to multiple parameter 

values, and discussed the implications for TB control policy. They considered a model of transmission involving 

three contact networks (referred to as close, casual and random contacts) that represent the main social 

relationships in transmission of an airborne disease. Their model simulates the stochastic contact events at an 

individual level and enables us to study patterns of transmission across different network. Close contacts, at the 

first level, represent the most frequent contact type among household members. On the second level, casual 

contacts model social relationships such as those among friends at a bar, neighbours at a store, or children at 

school. These contacts are less frequent and intimate than close contacts, and restricted to a specific network of 

related individuals including friends, coworkers, etc. Rafalli et al. (1996); Classen et al.(1999). They restricted 

the domain of casual contacts to each neighborhood’s residents, and assume a limited period of one year for the 

duration of contacts. Finally random contacts are used to model encounters of people at places such as bus stops, 

museums, etc. such contacts have the shortest duration (one month), and account for potential risk of 

transmission among non-related people in the whole community. They derived that ABS provides a exible yet 

powerful platform to model the population heterogeneity with regard to personal characteristics and different 

contact networks. Moreover, the ABS ability to represent the course of an epidemic at a micro (individual) level 

(as well as at a macro population level) enables us to estimate the timing of TB transmissions in our model. 

They used an ABS approach to study the emergence of drug-resistant TB due to treatment with antibiotics. They 

assume a lattice structure for spatial presentation of their population and model TB transmission through local 

and global interactions across the lattice. The lattice structure, however, does not provide a realistic 

representation of social settings and cannot be used to study transmission dynamics at the individual level. He 

evaluated stability of a two-strain Tuberculosis model with general contact rate which allows Tuberculosis 

patients with drug-sensitive mycobacterium Tuberculosis strain to be treated. They subdivided the population 

according to the transmitted features of TB, into susceptible individuals (S), those exposed to drug-sensitive 

(E1), individual with symptoms of TB and drug-sensitive (I1), those exposed to drug-resistant TB (E2), those 

displaying the symptoms of TB and drug-resistant (I2) by using Lyapunov stability theory, La Selle's invariant 

set theorem and Dulac's criterion, the global stability of equilibrium of the proposed model is proved. Another 

author examined mathematical model for vaccinated tuberculosis disease with VEIT model. They used four 

populations in this model, the Vaccinated, Exposed, Infected, and Treated. The type of TB spreading in this 

model is exogenous re-infection. They also explained equilibrium point, and analyzing of stability endemic 

model. They observed that the model of vaccinated Tuberculosis with exogenous re-infection have two 

equilibrium points, there is disease free and endemic. Eigen value of disease free is always negative so the 

stability of system is stable asymptotic at disease free points.  By contrast, the impact of enhanced diagnostics 

on TB incidence is likely to be smaller, with < 10% of new cases averted. The modeled impact depends strongly 

on the quality of existing diagnostic services and the population's existing level of access to diagnostic services, 

but is robust across a wide range of population parameters including HIV and TB.  Dodd (2015) presented a 

framework that uses notification, prevalence and mortality data to inform TB burden estimates in a single 

rigorously defined statistical framework. He handled temporal correlations by introducing a simple stochastic 

compartmental model of TB transmission that builds on current modeling assumptions used in WHO estimates, 

and that includes demographic trends in ages and sexes of populations. He used 12 parameters to characterize 

the model and is treated as uncertain and Monte Carlo methods are used to perform inference and prediction in a 

Bayesian framework for 9 countries with prevalence survey data available. He concluded by saying that a 
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variety of statistical and transmission models to relate the incidence at one time to other times should be 

formally assessed against each other. Transmission models have the potential to leverage additional population 

data, including LTBI (latent Tuberculosis Infection) surveys, and use information on natural history to 

extrapolate reasonably to groups where direct data may be particularly unreliable (for example, children). 

Availability as a package for the R statistical framework would facilitate installation and use, and encourage 

additional contributions and analyses. Dodd (2015) worked on the economic impact of Tuberculosis. He found 

that Adult mortality has a significant effect on national economies, through both the direct loss of productivity 

among those of working age and by altering fertility, incentives for risk-taking behavior, and investment in 

human and physical capital. TB is the most important cause of adult death due to infectious disease after 

HIV/AIDS. TB has its greatest impact on adults between the ages of 15 and 59. So, the social and economic 

burden of TB is great because the most economically productive persons in society, parents on whom 

development and survival of children depend are affected. TB places an extraordinary burden on those affected 

by the disease, their families, communities and on government budgets. According to him, the greatest burden 

of TB falls on productive adults who, once infected, are weakened and often unable to work. The burden of 

taking care of sick individuals usually falls on other family members and, besides putting at greatest risk of 

infection, can lower their productivity. Diagnosed individuals with TB are often medically quarantined for a 

period of time, which can affect their financial well-being. The infected populations have an economic impact 

on their families and in turn their countries national economies through their inability to contribute financially, 

as they are often unable to be productive workers. Okuonghae (2017) analyzed the epidemiological models of 

infectious diseases. He formulated an SEIR model, where he used Tuberculosis as a case study. He proved the 

basic properties of the model which are Positivity and boundedness and also determined the Reproduction 

number which helped him to determine the local asymptotic stability (LAS) of the DFE. He finally proved the 

global asymptotic stability (GAS) of DFE and EE using lyapunov function. 

 

II. MODEL FORMULATION 
2.1 Flow Diagram 

Some modifications made on the model: 

 

 
                                                                                                                                    d 

Figure 3.1: Schematic diagram of the compartments of the model 

 

2.2 Assumptions of our mode 

1. Infected individuals who are receiving treatment can transfer the disease 

2. There is a Recovered class. 

3. Our Model involves both deterministic and stochastic 

4. The population is heterogeneous; hence, the individuals that make the population can be grouped into 

different compartments or groups according to their epidemiological states. 

5. That the population size in a compartment is differentiable with respect to time. 
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6. That the population mixes homogeneously, that is, all susceptible individuals are equally likely to be 

infected by infectious individuals in case of contact. 

7. Those in each compartment can die as a result of natural death. 

8. Only those in infectious class recovers 

9. The susceptible individuals can get Exposed by interacting with those in infectious andTreated class 

10. We assume that the infectious class transmits a high percentage of the disease than the treated class. 

 

2.3 Symbols and Parameters 

 

Table 2.1 
Symbols Description 

S Population of susceptible Compartment 

E Population of exposed compartment 

I Population of Infected and infectious compartment 

T Population of the treated compartment 

R Population of the Recovered compartment 

  Recruitment rate into the susceptible compartment 

d Natural death rate 

  The rate at which exposed gets infected 

  Recovery rate 

  The Treatment rate 

1  Additional induced rate for infected class 

2  Additional induced rate for treated class 

  Rate of treatment failure 

  Rate which treated class transmits the disease 

k Fraction of those whose  treatment failed and proceeds to infectious class 

(1-k) Fraction of those whose  treatment failed  and proceeds to exposed class 

 

2.4 Model Equation 

Applying the symbols and parameters, assumptions and the above flow diagram, we write the model equations 

as follows: 
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III. MODEL ANALYSIS 
3.1  Basic Properties of the Model 

3.1.1 Positivity and Boundedness of solutions 

 For the model (3.10) to be epidemiologically meaningful, it is important to prove that all its state 

variables are non-negative for all time (t). In other words, solutions of the model system (2.1) with positive 

initial data will remain positive for all time t > 0. 

Theorem 3.1:  Let the initial data for the model (2.1) be S(0) > 0;E(0) > 0; I(0) > 0; T(0) >0;R(0) > 0.Then the 

Solutions  R(t)T(t),I(t),E(t),S(t),  of the model (2.1), with positive initial data, will remain positive for all time 

 t > 0. 
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Proof: Let ]10[0)(),(),(),(),(:01  tRtTtItEtSSuptt . 

 

Thus, t1 > 0, it follows, from the first equation of the system (2.1) that 
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Integrating (3.1) we have 
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Considering the second equation of (2.1) 
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proof. 

 

3.1.2 Boundedness (invariant set) 

 Invariant set also called invariant manifold; if a solution of a differential equations starts on a given 

space, surface or curve (manifold or set) and remains within it for all time, then the manifold or set is said to be 

invariant. Hence a positively manifold or set will have solutions that are positive for all time. 
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Solving (2.3) using integrating factor,   dteddtI  exp , we have 
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3.2 Existence of steady states of the Model 
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We now Solving (3.1) 

 

Considering the first equation of (3.1) we have 
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Considering the second equation of (3.1) we have 
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Considering the third equation of (3.1) we have, 
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Considering the fourth equation of (3.1) we have, 
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Considering the fifth equation of (3.1) we have 
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3.3 Basic Reproduction Number R0 

Using the next generation method approach, we obtain 
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To find F we solve the Jacobian of if   
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To find V we note that 
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We now solve the Jacobian of iv  to get V 
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We find the eigenvalues of 1FV  and then the spectral radius of 1FV , that is,  1FV  which is 

the maximum eigen-value, that is, 
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Therefore, the basic reproduction number 
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Hence, this theorem 

 

Theorem 3.3:  (Theorem 2 in Van den Driessche and Watmough (2002)) 

Consider the disease transmission model given as (2.1) with f(x) satisfying the necessary conditions. If 0  is   

DFE of the model, then 0 is locally asymptotically stable if R0 < 1, but unstable if R0 > 1. 

 

Proof: From R0 obtained above we have the proof of the theorem (see Van den Driessche and Watmough  

(2002)) 

Epidemiologically, this implies that TB will be eliminated from the population whenever R0 < 1 if the initial 

size of the sub-population is in the basin of attraction of the DFE, that is,. a small influx of TB infectious 

individuals into the community will not generate a large TB outbreak, and the disease dies out in time. 

 

3.4 Global Stability of Disease-free Steady (Equilibrium) State 

Here we construction a Lyapunov function to prove the global stability of the disease-free steady (Equilibrium) 

(DFE). We first state this as a theorem. 

 

Theorem 3.4:  The disease-free equilibrium (steady state) (DFE), 0 , of the model (2.1) is Global 

Asymptotically stable in D whenever R0 <1. 

 

Proof: We shall first construct a Lyapunov function which shall enable us to prove the global stability of the 

DFE. Recall the Basic Reproduction number which is given as; 
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The eigenvector is given by  321  . 
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Since WRFWV 0
1  , then,   321 1,0 and  
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Hence, 
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Now a suitable lyapunov function would be 
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Differentiating (3.3) we have 
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Collecting like terms we have 
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Substituting (3.6) in (3.5) we have 
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Since all the model parameters and variables are non-negative, it follows 10 0  RforL  with L˙ = 0 If and 

only if 
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E = I = T = O. 

Hence, L is a Lyapunov function on D. Thus, using the Lassalle Invariance Principle (La Selle and O. Lefschetz 

(1976)), E → 0,I → 0, T → 0 

3.4 Global Asymptotic Stability of the Endemic Equilibrium (EE) of the Model 

Consider the system of (2.1).  For the sake of convenience, we shall construct lyapunov function to prove the 

GAS of the treatment free equilibrium, that is, T = 0. 

Theorem 3.5: Let X = 0 be an equilibrium point of XDfXfX  :),( . Let nDL :  be a continuously 

differentiable function such that; 

(i) L(X = 0) 

(ii) L(X) >0, in D − {O} 

(iii) L(X) is “radically unbounded”. 

(iv)  0,0)(  DinXL  

Then X = 0 is “globally asymptotically stable”. 

Proof: GOH-Volterra type of lyapunov /quadratic lyapunov 
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Finding the lyapunov derivative we have 
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At steady state, **
3
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3

********** ,, IKEEKSIdSSI   and substituting this into (3.8), we have 

 

 
Collect terms with ** in the infected classes and equate to zero to solve for the coefficient k1 
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Therefore, since  0,0)(  DinXL , then  00)( 0  RforXL  with 0)( XL if and only if S =R = 0. 

Hence, L is a Lyapunov function on D. Thus, using the Lassalle Invariance Principle La Selle and Lefschetz 

(1976), 0,0  RS  

                                                                                                                                    

IV. NUMERICAL SOLUTION (SIMULATION) 
First look at parameter values as follow (as contained in Table 4.1 below) 

 

Table 4.1: Parameter values 

parameter Baseline values Reference 

d 0.02041 UNIAIDS-WHO(2004) 

π dx105 Song et al(2002) 

β 8.557 Okuonghae and Aihie(2008) 

γ 0.05 Blower et al (1995) 

ψ 1.5 Feng et al (2001) 

δ1 0.365 Borgdorff (2004) 

δ2 0.365 Borgdorff(2004) 

τ 0.2 Borgdorff(2004) 

 0.05 Assumed 

η 0.8 Assumed 

k 0.5 Assumed 

S 50 Assumed 

E 10 Assumed 

I 10 Assumed 

T 15 Assumed 

R 20 Assumed 

Total population 105 Assumed 

 

4.1 Graphs of the Simulation 

Here we present the graphs of our simulation study which gives a good analysis of the model. 
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Figure 4.3: Graph of R(t) when R0< 1 and when R0 >1 against time (t) 

 

4.3  Discussion of Results 

 Figure 4.1 shows the simulations of the deterministic model showing (a) susceptible population which 

decreases over time as people interact with infected individuals and move to the Exposed class.(b)Exposed 

population which increases with time when susceptible individuals get the disease but cannot infect it 

(c)Infected population which increases with time (d)Treated population which increases with respect to time. 

 Figure 4.2 shows the simulation of the deterministic model of Recovered class which increases over 

time. Figure 4.3 shows the simulation of deterministic model of the Treated class .We noticed from the graph 

that as R0 ≤ 1 the Treated class decreases over time which will eventually die out while when R0 ≥ 1 the disease 

persists and becomes endemic. 

 

V. SUMMARY, CONCLUSION AND RECOMMENDATION 
 In this work we considered the Deterministic Mathematical model of Tuberculosis. The survey result in 

Okuonghae (2008) and partly reported in Okuonghae and Omosigho (2010) had identified the following key 

parameters necessary for an effective management of Tuberculosis: awareness rate of TB programmes, 

associated cost factor for testing and treating TB, use of chronic cough as a marker for identifying a potential 

TB cases and effective treatment rate. A model incorporating the key parameter was developed. Analysis of the 

model showed that Tuberculosis cannot be eliminated if the authorities are only concerned with those receiving 

treatment. A sufficient effective combination of making Tuberculosis medical test and treatment free, high 

awareness rate, high active cough identification rate to improve notification rate and an effective and high 

treatment rate will eventually lead to eradication of Tuberculosis. 

 Also those receiving treatment should be kept in some form of isolation to reduce their infectiousness. 

In all, this study has shown, from the associated mathematical model, that the prospect of effectively controlling 

the spread of Tuberculosis in a community and improving case detection is very bright. Emphasis should be 

shift to preventive strategies by the pragmatic use of Tuberculosis awareness programmes in both the electronic 

and print media in enlightening the public on the disease, how TB spreads, how TB can be controlled and the 

Federal government policy on the treatment and management of Tuberculosis in Nigeria. This should include 

helping the public make use of simple markers for the quick identification of a ’potential’ TB case. A good 

example is the use of chronic cough as a marker. This will not only hasten up the treatment of the TB case, it 
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also minimizes the likelihood of transmission as the persons infectious period is reduced, more so, when the 

index case is living amongst susceptible (and even latent) persons. 
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