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ABSTRACT.The aim of this paper is to show that them ostelementary homo- topytheory of G-spaces is equivalent 

to ahomotopy theory of simplicialsets over BG,where Gisafixed group.Both homotopy theories are presented as 

Relative categories.We establish the equivalence by constructing a strict homotopy equivalence between the two 

relative categories.No Modelcategory structure is assumed on either Relative Category. 
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I. INTRODUCTION 
A G-space is a simplicial set with the action of a group G. The category of G-spaces and G-equivariant simplicial 

maps is denoted by GSp. We establish an equivalence between the homotopy theory of G-spaces, T(GSp,Ω) and 

the homotopy theory T(sSets↓ BG,Σ). Both homotopy theories are presented as relative categories. The notation 

above is meant to distinguish the homotopy theory from the relative category presenting it. We denote the 

category of simplicial sets by sSetsand we will assume the Kan model category structure on sSets, see [Qui67] 

and [Hov99]. The classifying space of the group G is denoted BG. The subcategory of weak equivalences, Ω, has 

the same objects as GSpand its morphisms are weak equivalences in sSetswhich preserve the group action. The 

subcategory of weak equivalences, Σ, has the same objects as sSets↓ BG. A morphism in Σ is an arrow of the 

comma category such that the arrow over the vertex BG is a weak equivalence in sSetsi.e. its image under the 

geometric realization functor is a weak equivalence of topological spaces. 

The goal of this paper is to provide a direct proof, in the context of relative categories, of a result on homotopy 

equivalence of simplicial categories obtained by simplicial localizations, see [DK80b, 3.3], [DK80a] and 

[DK80c], of the two relative categories (GSp,Ω) and (sSets↓ BG,Σ), which was announced in a note [DDK80, 

Theorem 2.1]. The proof indicated in [DDK80] is based on constructing suitable simplicial model category 

structures on the two relative categories (GSp,Ω) and (sSets↓ BG,Σ) and then establishing a homotopy 

equivalence, in the sense of [DK80b, 2.5], between the underlying simplicial homotopy categories, namely, the 

simplicial subcategories of cofibrant and fibrant objects of the two simplicial model categories in question. 

In this paper, we do not assume any model category structure. We have taken a very direct approach of writing 

a strict homotopy equivalence between the relative categories (GSp,Ω) and (sSets↓ BG,Σ) which establishes a 

homotopy equivalence of homotopy theories T(GSp,Ω) and T(sSets↓ BG,Σ). Finally, proposition 3.3 along with 

[BK11a, 2.3] and remark 3.1 show that our main result is an equivalent version of [DDK80, Theorem 2.1], thereby 

proving that theorem.[DDK80, Theorem 2.1] is a particular case of [Lur09, Theorem 2.2.1.2]. Jacob Lurie uses 

some sophisticated simplicial techniques to prove this generalized version of the theorem in [DDK80], as a 

homotopy equivalence of simplicial categories. In a future paper we plan on extending the arument of the proof of 

our main result to obtain an equivalence of homotopy theories of simplicial maps over an arbitrary simplicial set 

B, and a suitably defined homotopy theory of functors into the category of simplicial sets. 

Acknowledgments. The author is thankful to Alexander Voronov for frequent discussions regarding this paper and 

also for his suggestions on the proof of Theorem 3.2. The author is also thankful to W. G. Dwyer who proposed 

the idea of Proposition 3.3 to the author in a private email message. 

 

2. SETUP 

 A homotopy theory is presented most naturally as a relative category. In this section we give a brief 

introduction to relative categories and explain the notion of weak equivalences in relative categories. A relative 

category is a pair (C,Γ), where C is an ordinary (small) category and Γ is a subcategory of C having the same set 

of objects as C. The morphisms of Γ will be called weak equivalences of C. A functor of relative categories is an 

ordinary functor which preserves weak equivalences. The category of all small relative categories and functors of 

relative categories,called RelCat, has been given a model category structure by Barwick and Kan see [BK11b]. 

Let 1 denote the category 0 → 1 having two objects and exactly one, nonidentity morphism. This category is 

treated as a relative category in which every morphism is a weak equivalences, namely (1, 1). 
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Deftnition 2.1. A pair of functors of relative categories 

) 

are strictly homotopic if there exists a functor of relative categories 

H : C × 1 → C, 

such that H(x,0) = F(x) and H(x,1) = G(x), for all x ∈Ob(C). H is called a strict homotopybetween F and G. 

Notice that H is a natural weak eqivalence between F and G, H assigns to each x ∈Ob(C), a weak equivalence 

in C
′
. A morphism f: x→ y in Mor(C) is assigned a commutative pair of composite maps 

 

Moreover, if f is a weak equivalence in C, then each arrow in the above equation is a weak equivaleces in C
′
. 

Definition 2.2.A morphism of relative categories, f : (C,Γ) → (C
′
,Γ

′
), is a strict homotopy equivalence if there 

exists another morphism of relative categories, f
′ 
: (C

′
,Γ

′
) → (C,Γ) (called the inverse of f) such that the 

compositions f
′
fand ff

′ 
are strictly homotopic, see 2.1, to the identity maps of C and C

′ 
respectively. 

 

2.1The Homotopy category:The homotopy category of a relative category (C,Γ) is obtained by ”formally 

inverting‘” all morphisms in the subcategory Γ. Given two objects X,Y∈Ob(C) and an integer n ≥ 0, a zigzag in C 

from X to Y of length n is a sequence 

  X = C0        C1C2 ….        Cn. = Y 

of maps in C, each of which is either forward (i.e points to the right) or backward (i.e points to the left) and such a 

zigzag is called restricted if all the backward maps are weak equivalences or arrows in Γ. The homotopy category 

will then be the category HoC which has the same objects as C, in which, for every two objects X,Y ∈Ob(C), the 

hom-set HoC(X,Y ) is the set of equivalence classes of the restricted zigzags in C from X to Y , where two such 

zigzags are in the same class if one can be transformed into the other by a finite sequence of operations of the 

following three types and their inverses: 

(i) omiting the identity map 

(ii) replacing two adjacent maps which go in the same direction by their composition, and 

(iii) omitting two adjacent maps when they are the same, but go in the opposite direction 

and in which the compositions are induced by the composition of the zigzags involved. If the category C is small, 

then the category HoC is also small. 

2.2 A functorial construction of classifying spaces of  groups:Let G be a discrete group. Let G[1] be 

the category with one object ⋆and HomG(⋆,⋆) is isomorphic to G. We claim that N(G[1]) is the classifying space 

BG. Let G[0,1] be the category with one object for each element of G and exactly one arrow between any two 

objects. Each object is both initial and final hence the nerve of G[0,1], denoted EG := N(G[0,1]) is a contractible 

simplicial set. Now we define the notion of an action of a group on a category An action of a group on a category 

is an assignment of an automorphism of the category to each element of the group. The action satifies the usual 

assiciativity and unit conditions. We define the (right) action of G on G[0,1] by assigning to each element g ∈G, a 

functorφg: G[0,1] → G[0,1] which is defined on objects by group multiplication as follows: φg(x) = xgand since 

there is only one morphism between any two objects in G[0,1], there is only one way of defining the functor on 

arrows. Also, φg1g2 = φg1 ◦φg2 and if e is the unit element of the group then φge= φg. This action of G on G[0,1] 

induces an action of G on EG This induced action is free and it is easy to check that EG/G is isomorphic to BG. 

A group homomorphism G → H induces a functorG[1] → H[1] and hence induces a map on their nerves. Let 

Aut(G[0,1]) denote the monoid in Cat whose object is the category G[0,1] and morphisms are automorphisms of 

G[0,1], i.e. functors whose source and target is the category G[0,1] and which have an inverse. An action as 

defined above is uniquely determined by a functorG[1] → Aut(G[0,1])). 

3. THEEQUIVALENCE OF HOMOTOPY THEORIES 

  

The main result of this paper is presented in this section. We will prove the equivalence of the two homotopy 

theories by constructing a strict homotopy equivalence between the two relative categories presenting the 

homotopy theories. Given a simplicial set S, the product space S ×EG has a G - action and S ×GEG is the quotient 

space of this action which is also the total space of a fibration of simplicial sets 

qS:S ×G EG → BG, 
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which will be called the quotient map. Any G - space can be viewed as a functor from the category G[1] into the 

category sSets. The homotopy colimit of a functorX ∈Fun(G[1],sSets) is the following quotient space: 

hocolimX= X ×G EG, 

where the simplicial set X on the right side of the above equation is the image of the functorX. 

The following proposition is a key step in the proof of our main result 3.2: 

Proposition 3.1. The G-space (X ×G EG)×qXEG is isomorphic to the product G-space X × EG. 

Proof. We prove this proposition by defining a morphism of G-spaces 

K: X × EG → (X ×G EG)×qXEG. 

In degree n, this morphism is defined as follows: 

      

Using the freeness of the action of the group G on EG, it is easy to check that this map is an isomorphism of 

simplicial sets. Further it is not hard to see that this map preserves the G-action.  

Theorem 3.2. The relative categories (GSp,Ω) and (sSets↓ BG,Σ) are srtictlyhomotopy equivalent. 

Proof. We begin our proof by defining two functor of relative categories as follows: 

The first 

M : (GSp,Ω) → (sSets↓ BG,Σ) 

is defined on objects as 

M(X) =qX: X ×G EG → BG, 

where qX:X ×GEG → BG is the quotient map. A morphism m: X → Y ∈GSpinduces a morphism on the quotient 

spaces 

m: X ×G EG → Y ×G EG. 

Moreover, mis a morphism in sSets↓ BG. The functor M is defined on morphisms as follows:  

M(m: X → Y) =m: X ×G EG → Y ×G EG. 

Clearly M is a functor of relative categories. A morphism f :Y → BG ∈Mor(sSets) uniquely determines a 

fibrationR(f) : R(Y ) → BG, where R(Y ) is simplicial set with an acyclic cofibration Y → R(Y ) in the model 

category sSets. We define the second functor of relative categories N : (sSets↓ BG,Σ) → (GSp,Ω) as follows: 

f: Y → BG 7→ R(Y ) ×R(f) EG 

This is a functor of relative categories also. Now, the composite functors are defined on objects as follows: 

N(M(X)) = (X ×G EG)×qXEG 

and 

M(N(f : X → BG)) = qR(X)×R(f)EG : (R(X) ×R(f) EG) ×G EG → BG. 

We first define the homotopy 

N M :GSp×1 → GSp 

On objects, it is defined as 

h(X,0) = N(M(X)) = (X ×G EG)×qXEG,h(X,1) = X 

and on morphisms it is defined as 

    

h(X → Y,id1) = X → Y 

h(X → Y,1) = (X ×G EG)×qXEG → Y. 
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(X ×G EG) is a principal G-space over BG. Let qX: (X ×G EG) → BG be the quotient map. The G - map h(X,1) 

is the following composition: 

(X ×G EG)×qXEG ≅X × EG → X → Y. 

Clearly, if X → Y is a weak equivalence in (GSp,Ω), then the above map is also a weak equivalence in (GSp,Ω). 

Hence h is a weak equivalence preserving functor or h ∈Mor(RelCat). 

Now we define the reverse homotopyk: 1(sSets↓BG,Σ) ⇒ MN. 

k: sSets↓ BG×ˆ1 → sSets↓ BG. 

On objects, k is defined as 

k(f : X → BG,0) = f,k(f,1) = qR(X) : R(X) ×R(f) EG → BG. 

On morphisms, k is defined as follows: 

k(f → g,id0) = f → g, 

k(f → g,id1) = R(X) ×R(f) EG → R(Z) ×R(g) EG, 

where f: X → BG and g: Z → BG are objects of sSets↓ BG. For every f ∈ 

Ob(sSets↓ BG), there is a zero morphism obtained by the following composition: 

0: R(X) → ∗ → EG ∈Mor(sSets↓ BG). Since the action of G on R(X) ×R(f) 

EG is free, there is a weak equivalence of simplicial sets with contractible fibers 

F: (R(X) ×R(f) EG) ×G EG → R(X). The morphism 

(id,0) 

R(Z) ×R(g) EG → (R(Z) ×R(g) EG) × EG 

induces a morphism on quotient spaces 

s: R(Z) → (R(Z) ×R(g) EG) ×G EG 

which is a homotopy inverse of F. The following morphism determined by s 

s/BG :g → qR(Z)×R(g)EG, 

is a weak equivalence in (sSets↓ BG,Σ). 

We define the morphism k(f → g,1) by the following composite in sSets↓ BG: 

 

Clearly, if f → g is a weak equivalence in sSets↓ BG, then the above arrow is also a weak equivalence in sSets↓ 

BG. Thus,k is a morphism of relative categories.  

As mentioned in the introduction, the main goal of this paper is to provide a direct proof of [DDK80, Theorem 

2.1]. Now we achieve this goal by proving that our main result is an equivalent version of [DDK80, Theorem 2.1]. 

More precisely, the following proposition along with our main result 3.2, [BK11a] and remark 3.1 prove [DDK80, 

Theorem 2.1]. 

Proposition 3.3. The simplicial localization functor takes (strict) homotopy equivalences of relative categories to 

homotopy equivalences of simplicial categories in the sense of [DK80b, 2.5]. 

3.1. Future direction of this research. The homotopy theory T(GSp,Ω) can be identified with a functorhomotopy 

theory sSets
hG

. The construction of this functorhomotopy theory is elaborate and we will not describe it in this 

paper. The functor M in the proof above is derived from the homotopy colimit functorhocolim:sSets
hG

→ sSetsand 

the functor N in the proof above is a version of the homotopy pullback functor taking values in G-spaces 

− ×
h

BGEG :T(sSets↓ BG,Σ) → sSets
hG

. 

These two functors induce an equivalence between homotopy theories sSets
hG

and T(sSets↓ BG,Σ). Let B be an 

arbitrary simplicial set, replacing BG by B we get homotopy theory T(sSets↓ B,Λ) whose weak equivalences are 

weak equivalences of simplicial sets over B. We claim the existence of another (relative) category C(B) such that 

the homotopy theory T(sSets↓ B,Λ) is homotopy equivalent to a functorhomotopy theory sSets
hC(B)

. 
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Remark. The definition of a G-space considered in [DDK80] is more generic in the sense that the group acting on 

a simplicial set could be a simplicial group. The argument of the proof our main result remains valid for this case 

also if we replace EG and BG by their equivalent versions for a simplicial group G, namely, WG 

 
and WG respectively, see [May67]. We want to achieve our future goal mentioned in 3.1 by considering the action 

of ordinary monoids on simplicial sets. Therefore, writing our main result for the action of an ordinary group was 

more pertinent. 
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