On Nano Forms Of Weakly Open Sets

M. Lellis Thivagar¹, Carmel Richard²

¹ School of Mathematics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India ²Department of Mathematics, Lady Doak College, Madurai - 625 002, Tamil Nadu, India

ABSTRACT: The purpose of this paper is to define and study certain weak forms of nano-open sets namely, nano α -open sets, nano semi-open sets and nano pre-open sets. Various forms of nano α -open sets and nano semi-open sets corresponding to different cases of approximations are also derived.

KEYWORDS: Nanotopology, nano-open sets, nano interior, nano closure, nano α -open sets, nano semi-open sets, nano pre-open sets, nano regular open sets. 2010 AMS Subject Classification:54B05

I. INTRODUCTION

Njastad [5], Levine [2] and Mashhour *et al* [3] respectively introduced the notions of α - open, semi-open and pre-open sets. Since then these concepts have been widely investigated. It was made clear that each α -open set is semi-open and pre-open but the converse of each is not true. Njastad has shown that the family τ^{α} of α - open sets is a topology on X satisfying $\tau \subseteq \tau^{\alpha}$. The families SO(X, τ) of all semi-open sets and PO(X, τ) of all preopen sets in (X, τ) are not topologies. It was proved that both SO(X, τ) and PO(X, τ) are closed under arbitrary unions but not under finite intersection. Lellis Thivagar *et al* [1] introduced a nano topological space with respect to a subset X of an universe which is defined in terms of lower and upper approximations of X. The elements of a nano topological space are called the nano-open sets such as also studied nano closure and nano interior of a set. In this paper certain weak forms of nano-open sets such as nano α -open sets, nano semi-open sets and nano pre-open sets are established. Various forms of nano α - open sets and nano semi-open sets under various cases of approximations sre also derived. A brief study of nano regular open sets is also made.

II. PRELIMINARIES

Definition 2.1 A subset A of a space (X, τ) is called

- (i) semi-open [2] if $A \subseteq Cl$ (Int (A)).
- (ii) pre open [3] if $A \subseteq Int (Cl(A))$.
- (iii) α -open [4] if $A \subseteq Int (Cl (Int (A)))$.
- (iv) regular open [4] if A = Int (Cl(A)).

Definition 2.2 [6] Let \cup be a non-empty finite set of objects called the universe and *R* be an equivalence relation on \cup named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (\cup, R) is said to be the approximation space. Let $X \subseteq \bigcup$.

(i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and its is denoted by $L_R(X)$. That is, $L_R(X) = \bigcup \{R(x) : R(x) \subseteq X\}$, where R(x)

denotes the equivalence class determined by x.

(ii) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$. That is, $U_R(X) = \bigcup_{x \in U} \{R(x) : R(x) \cap X \neq \phi\}$

(iii) The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor

 $x \in U$

as not-X with respect to R and it is denoted by $B_R(X)$. That is, $B_R(X) = U_R(X) - L_R(X)$. **Property 2.3** [6] $If(\cup, R)$ is an approximation space and X, $Y \subseteq \cup$, then (i) $L_R(X) \subseteq X \subseteq U_R(X)$. (ii) $L_R(\phi) = U_R(\phi) = \phi$ and $L_R(\cup) = U_R(\cup) = \cup$ (iii) $U_R(X \cup Y) = U_R(X) \cup U_R(Y)$ (iv) $U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y)$ (v) $L_R(X \cap Y) \supseteq L_R(X) \cap L_R(Y)$ (vi) $L_R(X \cap Y) = L_R(X) \cap L_R(Y)$ (vii) $L_R(X) \subseteq L_R(Y)$ and $U_R(X) \subseteq U_R(Y)$ whenever $X \subseteq Y$ (viii) $U_R(X^c) = [L_R(X)]^c$ and $L_R(X^c) = [U_R(X)]^c$ (ix) $U_R(X) = L_RU_R(X) = U_R(X)$ (x) $L_RL_R(X) = U_RL_R(X) = L_R(X)$

Definition 2.4 [1]: Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. Then by property 2.3, $\tau_R(X)$ satisfies the following axioms:

- (i) U and $\phi \in \tau_{R}(X)$.
- (ii) The union of the elements of any subcollection of $\tau_R(X)$ is in $\tau_R(X)$.
- (iii) The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ is a topology on U called the nanotopology on U with respect to X. We call $(U, \tau_R(X))$ as the nanotopological space. The elements of $\tau_R(X)$ are called as nano-open sets.

Remark 2.5 [1] If $\tau_R(X)$ is the nano topology on \cup with respect to X, then the set $B = \{\bigcup, L_R(X), B_R(X)\}$ is the basis for $\tau_R(X)$.

Definition 2.6 [1] If $(U, \tau_R(X))$ is a nano topological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then the nano interior of A is defined as the union of all nano-open subsets of A and it is denoted by N Int(A). That is, N Int(A) is the largest nano-open subset of A. The nano closure of A is defined as the intersection of all nano closed sets containing A and it is denoted by N Cl(A). That is, N Cl(A) is the smallest nano closed set containing A.

Definition 2.7 [1] A nano topological space $(U, \tau_R(X))$ is said to be extremally disconnected, if the nano closure of each nano-open set is nano-open.

III. NANO α – OPEN SETS

Throughout this paper $(U, \tau_R(X))$ is a nano topological space with respect to X where $X \subseteq U$, R is an equivalence relation on U, U/R denotes the family of equivalence classes of U by R.

Definition 3.1 Let $(U, \tau_R(X))$ be a nano topological space and $A \subseteq U$. Then A is said to be

(i) nano semi-open if $A \subseteq \mathsf{N} Cl (\mathsf{N} Int (A))$

(ii) nano pre-open if $A \subseteq \mathsf{N}$ Int (N Cl (A))

(iii) nano α -open if $A \subseteq \mathsf{N}$ Int (NCl (NInt (A))

NSO(U, X), NPO (U, X) and τ_R^{α} (X) respectively denote the families of all nano semi-open, nano pre-open

and nano α -open subsets of U .

Definition 3.2 Let $(U, \tau_R(X))$ be a nanotopological space and $A \subseteq U$. A is said to be nano α -closed (respectively, nano semi- closed, nano pre-closed), if its complement is nano α -open (nano semi-open, nano pre-open).

Example 3.3 Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ and $X = \{a, b\}$. Then the nano topology, $\tau_R(X) = \{U, \phi, \{a\}, \{a, b, d\}, \{b, d\}\}$. The nano closed sets are $U, \phi, \{b, c, d\}, \{c\}$ and $\{a, c\}$. Then, N SO $(U, X) = \{U, \phi, \{a\}, \{a, c\}, \{a, b, d\}, \{b, c, d\}\}$, N PO $(U, X) = \{U, \phi, \{a\}, \{b\}, \{d\}, \{a, b\}\}$, $\{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ and $\tau_R^{\alpha}(X) = \{U, \phi, \{a\}, \{b, d\}, \{a, b, d\}\}$. We note that, N SO (U, X) does not form a topology on U, since $\{a, c\}$ and $\{b, c, d\} \in N$ SO (U, X) but $\{a, c\} \cap \{b, c, d\} = \{c\} \notin N$ SO (U, X). Similarly, N PO (U, X) is not a topology on U, since $\{a, b, c\} \cap \{a, c, d\} = \{a, c\} \notin N$ PO (U, X), even though $\{a, b, c\}$ and $\{a, c, d\} \in N$ PO (U, X). But the sets of $\tau_R^{\alpha}(X)$ form a topology on U. Also, we note that $\{a, c\} \in N$ SO (U, X) but is not in N PO (U, X) and $\{a, b\} \in N$ PO (U, X) but does not belong to N SO (U, X). That is, N SO (U, X) and N PO (U, X) are independent.

Theorem 3.4 If A is nano-open in $(\bigcup, \tau_R(X))$, then it is nano α -open in \bigcup . **Proof:** Since A is nano-open in \bigcup , N IntA = A. Then N Cl (N IntA) = N Cl (A) \supseteq A. That is $A \subset N Cl$ (N IntA). Therefore, N Int (A) \subseteq N Int (N Cl (N Int (A))). That is, $A \subseteq N Int$ (N Cl (N Int (A))). Thus, A is nano α -open.

Theorem 3.5 $\tau_R^{\alpha}(X) \subseteq \mathsf{N}$ SO (U, X) in a nano topological spece $(\mathsf{U}, \tau_R(X))$. **Proof:** If $A \in \tau_R^{\alpha}(X)$, $A \subseteq \mathsf{N}$ Int $(\mathsf{N}$ Cl $(\mathsf{N}$ Int $(A))) \subseteq \mathsf{N}$ Cl $(\mathsf{N}$ Int (A)) and hence $A \in \mathsf{N}$ SO (U, X) .

Remark 3.6 *The converse of the above theorem is not true. In example 3.3, {a,c} and {b,c,d} and nano semiopen but are not nano* α *-open in* \cup *.*

Theorem 3.7 $\tau_R^{\alpha}(X) \subseteq \mathbb{N}PO((\mathbb{U}, X)$ in a nano topological space $(\mathbb{U}, \tau_R(X))$. **Proof:** If $A \in \tau_R^{\alpha}(X)$, $A \subseteq \mathbb{N}$ Int $(\mathbb{N}Cl(\mathbb{N}Int(A)))$. Since $\mathbb{N}Int(A) \subseteq A$, $\mathbb{N}Int(\mathbb{N}Cl(\mathbb{N}Int(A))) \subseteq \mathbb{N}Int(\mathbb{N}Cl(A))$. That is, $A \subseteq \mathbb{N}Int(\mathbb{N}Cl(A))$. Therefore, $A \in \mathbb{N}PO((\mathbb{U}, X))$. That is, $\tau_R^{\alpha}(X) \subseteq \mathbb{N}PO((\mathbb{U}, X))$.

Remark 3.8 *The converse of the above theorem is not true. In example 3.3, the set {b} is nano pre-open but is not nano* α *-open in* \cup *.*

Theorem 3.9 $\tau_R^{\alpha}(X) = \mathsf{N}SO(\mathsf{U}, X) \cap \mathsf{N}PO(\mathsf{U}, X)$.

Proof: If $A \in \tau_R^{\alpha}(X)$, then $A \in NSO(U, X)$ and $A \in NPO(U, X)$ by theorems 3.5 and 3.7 and hence $A \in NSO(U, X) \cap NPO(U, X)$. That is $\tau_R^{\alpha}(X) \subseteq NSO(U, X) \cap NPO(U, X)$. Conversely, if $A \in NSO(U, X) \cap NPO(U, X)$, then $A \subseteq NCl(NInt(A))$ and $A \subseteq NInt(NCl(A))$. Therefore, $NInt(NCl(A)) \subseteq NInt(NCl(NInt(A))) = NInt(NCl(NInt(A)))$. That is, $NInt(NCl(A)) \subseteq NInt(NCl(NInt(A)))$. Also $A \subseteq NInt(NCl(A)) \subseteq NInt(NCl(NInt(A)))$ implies that $A \subseteq NInt(NCl(NInt(A)))$. That is, $A \in \tau_R^{\alpha}(X)$. Thus, $NSO(U, X) \cap NPO(U, X) \subseteq \tau_R^{\alpha}(X)$. Therefore, $\tau_R^{\alpha}(X) = NSO(U, X) \cap NPO(U, X)$.

Theorem 3.10 : If, in a nano topological space $(U, \tau_R(X))$, $L_R(X) = U_R(X) = X$, then U, ϕ ,

 $L_{R}(X) = U_{R}(X)$ and any set $A \supset L_{R}(X)$ are the only nano- α -open sets. in \cup .

Proof: Since $L_R(X) = U_R(X) = X$, the nano topology, $\tau_R(X) = \{U, \phi, L_R(X)\}$. Since any nano-open set is nano- α -open, U, ϕ and $L_R(X)$ are nano α -open in U. If $A \subset L_R(X)$, then N Int $(A) = \phi$, since ϕ is the only nano-open subset of A. Therefore N Cl (N Int $(A))) = \phi$ and hence A is not nano α -open. If $A \supset L_R(X)$, $L_R(X)$ is the largest nano-open subset of A and hence, N Int (N Cl (N Int (A))) = N Int $(B_R(X)^C) = N$ Int (U), since $B_R(X) = \phi$. Therefore, N Int (N Cl (N Int (A))) = U and hence, $A \subseteq N$ Int (N Cl (N Int (A))). Therefore, A is nano α -open. Thus $U, \phi, L_R(X)$ and any set $A \supset L_R(X)$ are the only nano α -open sets in U, if $L_R(X) = U_R(X)$.

Theorem 3.11: \cup , ϕ , $U_R(X)$ and any set $A \supset U_R(X)$ are the only nano α -open sets in a nanotopological space $(\bigcup, \tau_R(X))$ if $L_R(X) = \phi$.

Proof: Since $L_R(X) = \phi$, $B_R(X) = U_R(X)$. Therefore, $\tau_R(X) = \{U, \phi, U_R(X)\}$ and the members of $\tau_R(X)$ are nano α -open in U. Let $A \subset U_R(X)$. Then N Int $(A) = \phi$ and hence

N Int (N Cl (N Int (A))) = ϕ . Therefore A is not nano α – open in U. If $A \supset U_R(X)$, then $U_R(X)$ is the largest nano-open subset of A (unless, $U_R(X) = U$, in case of which U and ϕ are the only nano-open sets in U). Therefore, N Int (N Cl (N Int (A))) = N Int (N Cl (U_R(X))) = N Int (U) and hence

 $A \subseteq N$ Int (N Cl (N Int (A))) . Thus, any set $A \supset U_R(X)$ is nano α -open in U. Hence, U, ϕ , $U_R(X)$ and any superset of $U_R(X)$ are the only nano α -open sets in U

Theorem 3.12: If $U_R(X) = \bigcup$ and $L_R(X) \neq \phi$, in a nano topological space $(U, \tau_R(X))$, then $\bigcup, \phi, L_R(X)$ and $B_R(X)$ are the only nano α -open sets in \bigcup .

Proof: Since $U_R(X) = U$ and $L_R(X) \neq \phi$, the nano-open sets in U are $U, \phi, L_R(X)$ and $B_R(X)$ and hence they are nano α -open also. If $A = \phi$, then A is nano α -open. Therefore, let $A \neq \phi$. When $A \subset L_R(X)$, N Int $(A) = \phi$, since the largest open subset of A is ϕ and hence

 $A \not\subset N$ Int $(N \ Cl \ (N \ Int \ (A)))$, unless A is ϕ . That is, A is not nano α -open in U. When $L_R(X) \subset A$, $N \ Int \ (A) = L_R(X)$ and therefore, $N \ Int \ (N \ Cl \ (N \ Int \ (A))) = N \ Int \ (N \ Cl \ (L_R(X))) = N \ Int \ (B_R(X)^C)$ $= N \ Int \ (L_R(X)) = L_R(X) \subset A$. That is, $A \not\subset N \ Int \ (N \ Cl \ (N \ Int \ (A)))$. Therefore, A is not nano α -open in U. Similarly, it can be shown that any set $A \subset B_R(X)$ and $A \supset B_R(X)$ are not nano α -open in U. If A has atleast one element each of $L_R(X)$ and $B_R(X)$, then $N \ Int \ (A) = \phi$ and hence A is not nano α - open in U. Hence, U, ϕ , $L_R(X)$ and $B_R(X)$ are the only nano α -open sets in U when $U_R(X) = U$ and $L_R(X) \neq \phi$.

Corollary 3.13: $\tau_{R}(X) = \tau_{R}^{\alpha}(X)$, if $U_{R}(X) = U$.

Theorem 3.14: Let $L_R(X) \neq U_R(X)$ where $L_R(X) \neq \phi$ and $U_R(X) \neq U$ in a nano topological space $(U, \tau_R(X))$. Then $U, \phi, L_R(X), B_R(X), U_R(X)$ and any set $A \supset U_R(X)$ are the only nano α -open sets in U.

Proof: The nano topology on U is given by $\tau_R(X) = \{U, \phi, L_R(X), B_R(X), U_R(X)\}$ and hence U, ϕ , $L_R(X), B_R(X)$ and $U_R(X)$ are nano α -open in U. Let $A \subseteq U$ such that $A \supset U_R(X)$. Then

N Int $(A) = U_R(X)$ and therefore, N Int $(N Cl (U_R(X))) = N Int (U) = U$. Hence, $A \subseteq N Int (N Cl (N Int (A)))$. Therefore, any $A \supset U_R(X)$ is nano α -open in U. When $A \subset L_R(X)$, N Int $(A) = \phi$ and hence N (Int (N Cl (N Int (A)))) = ϕ . Therefore, A is not nano α -open in U. When $A \subset B_R(X)$, N Int $(A) = \phi$ and hence A is not nano α -open in U. When $A \subset U_R(X)$ such that A is neither a subset of $L_R(X)$ nor a subset of $B_R(X)$, N Int $(A) = \phi$ and hence A is not nano α -open in U. When $A \subset U_R(X)$ such that A is neither a subset of $L_R(X)$ nor a subset of $B_R(X)$, N Int $(A) = \phi$ and hence A is not nano α -open in U. Thus, U, ϕ , $L_R(X)$, $B_R(X)$, $U_R(X)$ and any set $A \supset U_R(X)$ are the only nano α -open sets in U.

IV. FORMS OF NANO SEMI-OPEN SETS AND NANO REGULAR OPEN SETS

In this section, we derive forms of nano semi-open sets and nano regular open sets depending on various combinations of approximations.

Remark 4.1 \cup , ϕ are obviously nano semi-open, since N Cl (N Int (U)) = U and N Cl (N Int (ϕ)) = ϕ

Theorem 4.2 If, in a nano topological space $(\bigcup, \tau_R(X))$, $\bigcup_R(X) = L_R(X)$, then ϕ and sets A such that $A \supseteq L_R(X)$ are the only nano semi-open subsets of \bigcup

Proof: $\tau_R(X) = \{U, \phi, L_R(X)\}$. ϕ is obviously nano semi-open. If A is a non- empty subset of U and $A \subset L_R(X)$, then $N Cl (N Int (A)) = N Cl (\phi) = \phi$. Therefore, A is not nano semi-open, if $A \subset L_R(X)$. If $A \supseteq L_R(X)$, then $N Cl (N Int (A)) = N Cl (L_R(X)) = U$, since $L_R(X) = U_R(X)$. Therefore, $A \subseteq N Cl (N Int (A))$ and hence A is nano semi-open. Thus ϕ and sets containing $L_R(X)$ are the only nano semi-open sets in U, if $L_R(X) = U_R(X)$.

Theorem 4.3 If $L_R(X) = \phi$ and $U_R(X) \neq U$, then only those sets contianing $U_R(X)$ are the nano semiopen sets in U.

Proof: $\tau_R(X) = \{U, \phi, U_R(X)\}$. Let A be a non-empty subset of U. If $A \subset U_R(X)$, then $N Cl (N Int (A)) = N Cl (\phi) = \phi$ and hence $A \not\subset N Cl (N Int (A))$. Therefore, A is not nano semi-open in U. If $A \supseteq U_R(X)$, then $N Cl (N Int (A)) = N Cl (V_R(X)) = U$ and hence $A \subseteq N Cl (N Int (U))$. Therefore, A is not nano semi-open in U. If $A \supseteq U_R(X)$, then $N Cl (N Int (A)) = N Cl (U_R(X)) = U$ and hence $A \subseteq N Cl (N Int (U))$. Therefore, A is nano semi-open in U. Thus, only the sets A such that $A \subseteq U_R(X)$ are the only nano semi-open sets in U.

Theorem 4.4 If $U_R(X) = \bigcup$ is a nano topological space, then \bigcup , ϕ , $L_R(X)$ and $B_R(X)$ are the only nano semi-open sets in \bigcup .

Proof: $\tau_R(X) = \{U, \phi, L_R(X), B_R(X)\}$. Let A be a non-empty subset of U. If $A \subset L_R(X)$, then $N Cl (N Int (A)) = \phi$ and hence A is not nano semi-open in U. If $A = L_R(X)$, then $N Cl (N Int (A)) = N Cl (L_R(X)) = L_R(X)$ and hence, $A \subseteq N Cl (N Int (A))$. Therefore, A is nano semi-open in U. If $A \supset L_R(X)$, then $N Cl (N Int (A)) = N Cl (L_R(X)) = L_R(X)$. Therefore, $A \not\subset N Cl (N Int (A))$ and hence A is not nano semi-open in U. If $A \supset L_R(X)$, then $N Cl (N Int (A)) = N Cl (L_R(X)) = L_R(X)$. Therefore, $A \not\subset N Cl (N Int (A))$ and hence A is not nano semi-open in U. If $A \supset B_R(X)$, then $N Cl (N Int (A)) = N Cl (N Int (A)) = B_R(X)$ and hence A is not nano semi-open in U. If $A = B_R(X)$, then $N Cl (N Int (A)) = N Cl (B_R(X)) = B_R(X)$ and hence $A \subseteq N Cl (N Int (A))$. Therefore, A is nano semi-open in U. If $A \supset B_R(X)$, then $N Cl (N Int (A)) = N Cl (B_R(X)) = B_R(X)$, then $N Cl (N Int (A)) = N Cl (B_R(X)) = B_R(X)$, then $N Cl (N Int (A)) = N Cl (B_R(X)) = B_R(X)$, then $N Cl (N Int (A)) = N Cl (B_R(X)) = B_R(X)$, then $N Cl (N Int (A)) = N Cl (B_R(X))$, then $N Cl (N Int (A)) = N Cl (B_R(X))$, then $N Cl (N Int (A)) = N Cl (\phi) = \phi$ and hence A is not nano semi-open in U. If A has atleast one element of $L_R(X)$ and atleast one element of $B_R(X)$, then $N Cl (N Int (A)) = N Cl (\phi) = \phi$ and hence A is not nano semi-open in U. Thus, $U, \phi, L_R(X)$ and $B_R(X)$ are the only nano semi-open sets in U, if $U_R(X) = U$ and $L_R(X) \neq \phi$. If $L_R(X) = \phi$, U and ϕ are the only nano semi-open sets in U, since U

and ϕ are the only sets in U which are nano-open and nano-closed.

Theorem 4.5 If $L_R(X) \neq U_R(X)$ where $L_R(X) \neq \phi$ and $U_R(X) \neq U$, then \bigcup , ϕ , $L_R(X)$, $B_R(X)$, sets containing $U_R(X)$, $L_R(X) \cup B$ and $B_R(X) \cup B$ where $B \subseteq (U_R(X))^c$ are the only nano semi-open sets in \bigcup .

Proof: $\tau_{R}(X) = \{ \bigcup, \phi, L_{R}(X), \bigcup_{R}(X), B_{R}(X) \}$. Let A be a non-empty, proper subset of \bigcup . If $A \subset L_{R}(X)$, then N int $(A) = \phi$ and hence, N cl (N int (A)) = ϕ . Therefore, A is not nano semi-open in U. If $A = L_{R}(X)$, then $\operatorname{N} cl(\operatorname{N} int(A)) = \operatorname{N} cl(L_{R}(X)) = L_{R}(X) \cup [U_{R}(X)]^{C}$ and hence $A \subseteq \operatorname{\mathsf{N}} cl (\operatorname{\mathsf{N}} int (A))$. Therefore, $L_{R}(X)$ is nano semi-open in \bigcup . If $A \subset B_{R}(X)$, then $\operatorname{\mathsf{N}} int (A) = \phi$ and hence A is not nano semi-open in U. If $A = B_R(X)$, then $N cl(N int(A)) = N cl(B_R(X)) = B_R(X) \cup$ $[U_{P}(X)]^{C}$ and hence $A \subseteq \operatorname{N} cl(\operatorname{N} int(A))$. Therefore, $B_{R}(X)$ is nano semi-open in U. Since $L_{R}(X)$ and $B_R(X)$ are nano semi-open, $L_R(X) \cup B_R(X) = U_R(X)$ is also nano semi-open in U. Let $A \subset U_{R}(X)$ such that A has at least one element each of $L_{R}(X)$ and $B_{R}(X)$. Then N int $(A) = \phi$ or $L_{R}(X)$ or $B_{R}(X)$ and consequently, $N cl (N int (A)) = \phi$ or $L_{R}(X) \cup [U_{R}(X)]^{c}$ or $B_{R}(X) \cup [U_{R}(X)]^{C}$ and hence $A \cup (N int (A))$. Therefore, A is not nano semi-open in U. If $A \supset U_{R}(X)$, then $\operatorname{N} cl(\operatorname{N} int(A)) = \operatorname{N} cl(U_{R}(X)) = U$ and hence $A \subseteq \operatorname{N} cl(\operatorname{N} int(A))$. Therefore, A is nano semi-open. If A has a single element each of $L_{R}(X)$ and $B_{R}(X)$ and at least one element of $[U_{p}(X)]^{c}$, then N int $(A) = \phi$. Then, N cl (N int $(A)) = \phi$ and hence A is not nano semi-open in U. Similarly, when A has a single element of $L_{R}(X)$ and at least one element of $[U_{R}(X)]^{c}$, or a single element of $B_{R}(X)$ and at least one element of $[U_{R}(X)]^{C}$ then $N cl (N int (A)) = \phi$ and hence A is not nano semiopen in U. When $A = L_{R}(X) \cup B$ where $B \subseteq [U_{R}(X)]^{C}$, then $\operatorname{N} cl(\operatorname{N} int(A)) = \operatorname{N} cl(L_{R}(X)) =$ $L_{p}(X) \cup [U_{p}(X)]^{C} \supseteq A$. Therefore, A is nano semi-open in U. Similarly, if $A = B_{p}(X) \cup B$ where $B \subseteq (U_R(X))^C$, then $\operatorname{N} cl(\operatorname{N} int(A)) = B_R(X) \cup [U_R(X)]^C \supseteq A$. Therefore, A is nano semi-open in U. Thus, \bigcup , ϕ , $L_{R}(X)$, $U_{R}(X)$, $B_{R}(X)$, any set containing $U_{R}(X)$, $L_{R}(X) \cup B$ and $B_{R}(X) \cup B$ where $B \subseteq [U_p(X)]^c$ are the only nano semi-open sets in U.

Theorem 4.6 If A and B are nano semi-open in U, then $A \cup B$ is also nano semi-open in U. **Proof:** If A and B are nano semi-open in U, then $A \subseteq N Cl$ (N Int (A)) and $B \subseteq N Cl$ (N Int (A)). Consider $A \cup B \subseteq N Cl$ (N Int (A)) $\cup N Cl$ (N Int (B)) = N Cl (N Int (A) $\cup N Int$ (B)) $\subseteq N Cl$ (N Int (A $\cup B$)) and hence $A \cup B$ is nano semi-open.

Remark 4.7 If A and B are nano semi-open in U, then $A \cap B$ is not nano semi-open in U. For example, let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ and $X = \{a, b\}$. Then $\tau_R(X) = \{U, \phi, \{a\}, \{a, b, d\}, \{b, d\}\}$. The nano semi-open sets in U are U, ϕ , $\{a\}$, $\{a, c\}$, $\{b, d\}$, $\{a, b, d\}$, $\{b, c, d\}$. If $A = \{a, c\}$ and $B = \{b, c, d\}$, then A and B are nano semi-open but $A \cap B = \{c\}$ is not nano semi-open in U. **Definition 4.8** A subset A of a nano topological space $(U, \tau_R(X))$ is nano-regular open in U, if N Int (N Cl (A)) = A.

Example 4.9 Let $U = \{x, y, z\}$ and $U/R = \{\{x\}, \{y, z\}\}$. Let $X = \{x, z\}$. Then the nano topology on U with respect to X is given by $\tau_R(X) = \{U, \phi, \{x\}, \{y, z\}\}$. The nano closed sets are $U, \phi, \{y, z\}, \{x\}$. Also, N Int (N Cl (A)) = A for $A = U, \phi, \{x\}$ and $\{y, z\}$ and hence these sets are nano regular open in U.

Theorem 4.10 Any nano regular open set is nano-open.

Proof: If A is nano regular open in $(U, \tau_R(X))$, A = N Int (N Cl(A)). Then N Int (A) = N Int (N Int (N Cl(A))) = N Int (N Cl(A)) = A. That is, A nano-open in U.

Remark 4.11 The converse of the above theorem is not true. For example, let $U = \{a, b, c, d, e\}$ with

 $U/R = \{\{a,b\}, \{c,e\}, \{d\}\}$. Let $X = \{a,d\}$. Then $\tau_R(X) = \{U, \phi, \{d\}, \{a,b,d\}, \{a,b\}\}$ and the nano closed sets are $U, \phi, \{a,b,c,e\}, \{c,e\}, \{c,d,e\}$. The nano regula open sets are $U, \phi, \{d\}$ and $\{a,b\}$. Thus, we note that $\{a,b,d\}$ is nano-open but is not nano regular open. Also, we note that the nano regular open sets do not form a topology, since $\{d\} \cup \{a,b\} = \{a,b,d\}$ is not nano regular open, even though $\{d\}$ and $\{a,b\}$ are nano regular.

Theorem 4.12 In a nano topological space $(\bigcup, \tau_R(X))$, if $L_R(X) \neq U_R(X)$, then the only nano regular open sets are $\bigcup, \phi, L_R(X)$ and $B_R(X)$.

Proof: The only nano-open sets $(U, \tau_R(X))$ are $U, \phi, L_R(X), U_R(X)$ and $B_R(X)$ and hence the only nano closed sets in U are $U, \phi, [L_R(X)]^c$, $[U_R(X)]^c$ and $[B_R(X)]^c$ which are respectively $U, \phi, U_R(X^c)$, $L_R(X^c)$ and $L_R(X) \cup L_R(X^c)$.

Case 1: Let $A = L_R(X)$. Then $\mathbb{N} CL(A) = [B_R(X)]^c$. Therefore, $\mathbb{N} Int(\mathbb{N} Cl(A)) = \mathbb{N} Int[B_R(X)]^c$ = $[\mathbb{N} Cl(B_R(X))]^c = [(L_R(X))^c]^c = L_R(X) = A$. Therefore, $A = L_R(X)$ is nano-regular open.

Case 2: Let $A = B_R(X)$. Then $\operatorname{N} Cl(A) = [L_R(X)]^c$, Then $\operatorname{N} Int(\operatorname{N} Cl(A)) = \operatorname{N} Int[L_R(X)]^c = [\operatorname{N} Cl(L_R(X))]^c = [[B_R(X)]^c]^c = B_R(X) = A$. That is, $A = B_R(X)$ is nano regular open.

Case 3: If $A = U_R(X)$, then N Cl(A) = U. Therefore, $N Int(N Cl(A)) = N Int(U) = U \neq A$. That is, $A = U_R(X)$ is not nano regular open unless $U_R(X) = U$.

Case 4: Since N Int (N Cl (U)) = U and N Int (N Cl (ϕ)) = ϕ , U and ϕ are nano regular open. Also any nano regular open set is nano-open. Thus, U, ϕ , $L_R(X)$ and $B_R(X)$ are the only nano regular open sets.

Theorem 4.13: In a nano topological space $(\bigcup, \tau_R(X))$, if $L_R(X) = U_R(X)$, then the only nano regular open sets are \bigcup and ϕ .

Proof: The nano- open sets in U are U, ϕ and $L_{R}(X)$ And N Int (N Cl ($L_{R}(X)$)) = U $\neq L_{R}(X)$

Therefore, $L_{R}(X)$ is not nano regular open. Thus, the only nano regular open sets are U and ϕ .

Corollary: If A and B are two nano regular open sets in a nano topological space, then $A \cap B$ is also nano regular open.

REFERENCES

- [1] M.Lellis Thivagar and Carmel Richard, Note on nano topological spaces, Communicated.
- [2] N. Levine, Semi-open sets and semicontinuity in topological spaces, Amer.Math.Monthly 70 (1963), 36-41.
- [3] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-topological spaces, Bull.Math. de la Soc. R.S. de Roumanie 28(76) (1984), 39–45.
- [4] Miguel Caldas, A note on some applications of α -open sets, IJMMS, 2 (2003),125-130 O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [5] Z. Pawlak, Rough sets, International journal of computer and Information Sciences, 11(1982),341-356.
- [6] I.L.Reilly and M.K.Vamanamurthy, On α -sets in topological spaces, Tamkang J.Math., 16 (1985), 7-11