International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 — 4767 P-ISSN: 2321 - 4759
wWww.ijmsi.org Volume I Issue 2 | December. 20131 PP-69-78

A New Type of Generalized Difference Sequence Spaces of Fuzzy
Numbers Defined By Modulas Function

Manmohan Das, Bipul Sarma
Deptt. of Mathematics, Bajali College, Pathsala, Assam, India
Deptt. of Mathematics, M.C College , Barpeta, Assam, India

ABSTRACT: In this article we introduce and study the sequence space w¥ (A%, f.p) , A% — summable
sequence of fuzzy numbers, 47 — statistical convergent and also A7 — pre-Cauchy sequences of fuzzy numbers
by using modulas function . Further we show that w* (A7, f.p) is a complete metric space .
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I. INTRODUCTION
The concept of fuzzy sets and fuzzy set operations was first introduced by Zadeh [25] and subsequently
several authors have studied various aspects of the theory and applications of fuzzy sets. Bounded and
convergent sequences of fuzzy numbers were introduced by Matloka [7] where it was shown that every
convergent sequence is bounded. Nanda [9] studied the spaces of bounded and convergent sequence of fuzzy
numbers and showed that they are complete metric spaces. In [13] Savas studied the space m(A), which we call
the space of A-bounded sequence of fuzzy numbers and showed that this is a complete metric space.

Let D denote the set of all closed and bounded intervals X = [a,,b, ] on the real line R. For X =
[a,,b,]Je Dand Y=[a,,b,]e D, define d( X, Y) by
d(X,Y)=max(|a,-b,||a,-b,]|).

It is known that (D, d ) is a complete metric space.
A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R — L(= [0,1] ) associating each real
number t with its grade of membership X(t).

The a- level set [ X 1 set of a fuzzy real number X for 0 <o <1, defined as

X “={teR:X({)=a}
A fuzzy real number X is called convex, if X(t) > X(s) A X(r) = min ( X(s), X(r) ), wheres<t<r.
If there exists t, € R such that X(t,) = 1, then the fuzzy real number X is called normal.

A fuzzy real number X is said to be upper semi- continuous if for each £> 0, X ' ([0, a + ¢)), for all a
e L is open in the usual topology of R.

The set of all upper semi-continuous, normal, convex fuzzy number is denoted by L (R).

The absolute value |X| of X € L(R) is defined as (see for instance Kaleva and Seikkala [2] )
IX| (1) = max { X(t), X(-t)} , if t>0
=0 , if t<0.
Let d :L(R) x L(R) »> R be defined by
d (X,Y)=sup d(X“,Yy").
0<a <1l

Then d defines a metric on L(R).

For X, Ye L(R) define
X<Yiff X*<Y*for any ae [0, 1].

A subset E of L(R) is said to be bounded above if there exists a fuzzy number M, called an upper bound
of E, such that X < M for every Xe E. M is called the least upper bound or supremum of E if M is an upper
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bound and M is the smallest of all upper bounds. A lower bound and the greatest lower bound or infimum are
defined similarly. E is said to be bounded if it is both bounded above and bounded below.

I1. DEFINITIONS AND BACKGROUND
A sequence X = (Xy) of fuzzy numbers is a function X from the set N of all positive integers into L(R).
The fuzzy number X, denotes the value of the function at ke N and is called the k-th term or general term of the
sequence.

Definition2.1: A sequence X = (X,) of fuzzy numbers is said to be convergent to the fuzzy number X,, written
as limXy = Xo, if for every ¢ > 0 there exists npe N such that

d Xk, Xo) <& fork>ng
Definition2.2: The set of convergent sequences is denoted by c¢". X = (X,) of fuzzy numbers is said to be a
Cauchy sequence if for every ¢ > 0 there exists nge N such that
d (X, X)) <e fork, I >ng
Definition2.3: A sequence X = (X,) of fuzzy numbers is said to be bounded if the set {X\: ke N} of fuzzy

numbers is bounded and the set of bounded sequences is denoted by ¢ * .

The notion of difference sequence of complex terms was introduced by Kizmaz [6]. This notion war
further generalized by Et and Colak [2], Tripathy and Esi [16], Tripathy, Esi and Tripathy [17] and many others.

The idea of the statistical convergence of sequence was introduced by Fast [3] and Schoenberg [12]
independently in order to extend the notion of convergence of sequences. It is also found in Zygmund [26].
Later on it was linked with summability by Fridy and Orhan [4], Maddox [8], Rath and Tripathy [11] and many
others. In [10] Nuray and Savas extended the idea to sequences of fuzzy numbers and discussed the concept of
statistically Cauchy sequences of fuzzy numbers. In this article we extend these notions to difference sequences
of fuzzy numbers.

The natural density of a set K of positive integers is denoted by § (K ) and defined by

1

S(K)=lim —card{k <n:keK}
non

Definition2.4: If a sequence X = (X;) satisfies a property P for almost all k except a set of natural density

zero , then we say that X, satisfies P for almost all k and we write a.a.k.

Definition2.5: A sequence X = (X,) of fuzzy numbers is said to be statistically convergent to a fuzzy number Xq

1
if forevery e >0, lim —card {k <n:d(X,, X ;)= ¢} =0. We write st-lim X, = X,
"on
Throughout the article we denote by .w " the set of all sequences of fuzzy numbers.
Definition2.6: A sequence (X} of fuzzy numbers is said to be double Az - convergent to a fuzzy number X if
for each £> 0 there exist k; € N such that,

d (A%, X)) =z forall k=k,.
We write , limg_. ALK, =X, . where r and = two non negative integers.and

ASKy = ASTRE, — ATTMX . and ARK, = X, for all k€N , which is equivalent to the following
binomial representation :
=

8% = Y (-1 () X
i=0

We recall that a modulas function f is a function from [0 ,0) to [0,00) such that :
() flx)=0iffx=0
(i) flx + v} = flx) + fly) forall x,¥ = 0.
(iii) f is increasing.
(iv) f is continous from the right at 0 .

It follows that f must be continous everywhere on [0,00) and a modulas function may be bounded or
not bounded . Ruckle [24], Maddox[18] , Srivastava and Mohanta [15], used modulas function f to construct
some sequence spaces. subsequently many authors.
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A metric d on L(R) is said to be translation invariant if d(¥ +¥.¥ + Z} =d(X.¥) for all fuzzy
numbers X, Y ,Z.

Let (E,, dy) be a sequence of fuzzy linear metric spaces under the translation invariant metrices dys
such that E; ., = Ey, for ,each ke N where X = ({Xk-[}i=lj € Ey. Define
WI(E) ={X = (X, ): X, € Ey for each k € N}. W(E) is a linear space of fuzzy numbers under coordinatewise
addition and scalar multiplication . ( see for instance[15])

Let f be a modulas function and # = () be a bounded sequence of positive real numbers .Also
 and 5 be two non negative integers ; we present the following new sequence space
]

1% .
wF (AL, f.p) = {x = (X%,) € W(E):lim —z (f (supy @, (85 %, L))" where L, € Ey
n—m ] 4
i=1

where X ; =AFNR  —AFTMX . and ARX ;=X for all € N , which is equivalent to the following

binomial representation
&

8%1= Y (1 () B

=0

Definition2.7: Asequence X = {{:{X;;_JZJ ) of fuzzy numbers is said to be A —staistically convergent to

a fuzzy number L; € Ey .k e N if for each &> 0 such that

1 .
lim—card{l <n: sup, d, (A%, L) =2} =0

= K.+
The set of all A7 —staistically convergent is denoted by 57 (A%} .
Definition2.8: A sequence X = {{:I[X;:_;]Eﬂ)__) of fuzzy numbers is said to be Af —staistically Cauchy

sequence , if for each = = 0, there exists a possitive integer [ such that

1
lim—card{l <n: sup, d(ASX, 03X, )= e} =0

i
n-x= Kl K

Definition2.9: A sequence X = (({X;‘-[}I:;L) ) of fuzzy numbers is said to be A2 —staistically pre-Cauchy

k

sequence , if forall & = 0 ¢
¥ 1 - 3 ] 2
}!ﬂﬂ—zcwd{{x,y] Py < n,supy QA8 K ., MK ) 2 e} =0

Lemma2.1: If d is translation invariant then
(a) (ASX; ; + A%V, 0) < d(ASX, 1, 0) + d(A%Y,,, D)
(b) d(aniX, ;. 0) < leld(aiX, ,0) .lal = 1.

Lemma2.2: Let (&) and (B} be sequences of real or complex numbers and () be a bounded sequence of
positive real numbers , then
lag + BilPx < CCla IP% + 18, 17%)
and [AIP% = max(1, |415)
where C=max(1,141°7%). ¢ = supp, , 4 is any real or complex number

1.  MAIN RESULTS

Theorem3.1: If f bea modulas functionand 0 = h = infp, =p, < supp, = H | then
w (AL f. p)= 57 (A2) .

Proof : Letz = 0 begivenand X = (({X“}ll)) e wF (AL, f.p) . Then
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Zﬂ: (f (Sﬂpkﬂk{ﬂf_xk-”‘k]))?k

_ = % ZF: (f (Sﬂpk En[ﬂf-xi:.pf-ic]))pk

=1
suppdp (ALXy bl )eE "

+i zﬁ: (f (mkgn{ﬁiXk.[:Lk]J]pk = Z (f (sup;{ Ekmi‘zﬁ-[’h])]m

=1 =1
oup e dp (X Lyl<E

M -
= ;cm‘d{i < n: suppdy(ASX, L) = &}
where M = min{f(£)"®,f(2)¥}. This follows that ¥ € 5F (A7) and hence completes the proof.

==

2|~

Theorem3.2: If f is bounded modulas function and is X = ((I[Xk_[}:ﬂ)
X e wF(ALf.p).

) —staistically convergent , then
K

Proof: Since f is bounded modulas function, therefore there exists an integer K such that f{x) < K. letz = 0
be given .Consider

mn
1 B P
;z (f (FHPE: dk{ﬂi}f&.ist]))
=1
1]
1 _ P
= Z (f (Sﬂpk di{{":"f'xi{.[JLi{]))
=1
Eup EEE['—:'ixI:[-LFc:' 2E
1 - _ Pk
+ Z (f (SHPE: di (A7 X 1. L) J:]

oy

suppdy Xy LleE

. 1 - .
= max(!{",f{“f]; card{l = n: supyd, (02X, . L) = e} + max{f(e)" . F(e)¥} = Dasn

—* 00

Thus X € wF (AL, f.p). This completes the proof.

Theorem3.3: If a sequence X = {{:I[X;{_[};Jk) is A7 — staistically convergent , then it is A —statistically
Cauchy sequence.

Proof: Since X is Af — staistically convergent, so we have for each £ = 0,

1 -
lim —card {E =0 sup,dp (88K, L L) = E} =0
n—so 1
i.e
suppd (03X, . L) <& aoa.l
We can choose [4 € N such that

supydi (B3, 1, L) < =
Now,
supy &, (A3, 1. ﬂf-xrmi} < supydy (A3 X 1. L) + supy, Ek{‘ﬁf’}:ﬁq[f L)
<e+es=28 aa.l
This implies that X is A7 —statistically Cauchy sequence.
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Theorem3.4: If a sequence X = {((};’“}11)) is AF — staistically convergent , then it is A —statistically
bounded sequence.

Proof: Since X is A7 — staistically convergent, so we have for each = 0,

1 -
lim—card{l <n: sup, d, (AKX, L) =} =0

n—x 71 ta
supd; (87X 1. L) <& .
One can find, sup,d;(L;,0) < N(say). Then we have

SUPE EE;;{J‘!':'E-X;;_[; ﬁ] = supy I:'E;; Cﬂ'.f.X;;_;, L;;] + supy IE;;{L;;J ﬁ]
<&+ N o a. k.

Hence X is A} —statistically bounded sequence.
Remark : The converse of the above theorem is not true . To justify it, we consider the following example .

Example 3.1: Take flx} =x.r=s5=1.p, = 1 for each k € N and E, = L(R).
Define the sequence (X} as follows :

When k& = 10"
1
1+ tk* if —Fi:tiiﬂ
X;:{f] = 2 . 1
1—tk* if D=t EF
0 otherwise
When k # 10" and & is odd,
E+5 if —S=t<—4
@) =4—t—-3 if —4=<t=<-3
0 otherwise
When k # 10™ and k is even,
t—3 if3i=t=4
@) ={-t45 ife<t<>s
0 otherwise
Then,
[a—l l—u] hem k = 108
Tzt oz winen o = 1
le={ © & . .
[-54+ & -3 —a] when k # 10" and & is odd
[34a5—a] when k £ 10" and k is even
Therefore,
a—1+ak®+3k* 1 —a+ 5k — ak?
P . P when k& = 10"
[AX]® =9[-10 + 2a,—6 — 24] when k = 10" and k is odd
[6+ 2,10 — 2a] when k # 10" and k is even

It follows that X is A7 — staistically bounded but not X is A7 — staistically convergent sequence .

Theorem3.5 : If X = (({XH}:J) is a sequence for which there exists a 4f — staistically convergent

sequence If ¥ = ((I[F;i;}';l) ) such that A2X; ; = A%¥,; a.a.l. Then X is also A% — staistically convergent.

ke

Proof : Given that, A7%;, ; = 4;¥y; a.a.l.and ¥ is A7 — staistically convergent sequence. Then
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for each £ == 0 and each n, we have ,
U =n: sup, di (A3 X, L) = &}
cll=n: suppd, (AW, L) = efull = m: 83X = ASYy, )

Y is A3 — staistically convergent sequence, therefore the set 1 =n: sup, d (A2V,, L) = &}
contains a fixed number I,=[;(} . Then

1 _ I 1
;mrd{.! =n: supdp(AiX,  Ly) = &) = f-l—;m’rd{i =n: AN =AY, }-0as nox
This implies that X is A — staistically convergent .

Theorem3.6: Let X =(X;) be a sequence of fuzzy number and A7 — bounded . Then X is A7 —staistically pre-
Cauchy sequence if and only if

1 _
lim— > f(sup G0 K 0 035 ) = 0
xysn

where f is bounded modulas function.

Proof: Let us first assume that,
1 -
lim— ) f(supe 3 (85X, 105K ) = O
xEn

Given & = 0 and for n € N, we have,

1 -
=5 ) £ (8% 0 8% ))

X yEmn
1 3 & ]
= f{mkdk{ﬁrxkxaﬁrxkq']]
n
X yEn
sup I (MK My o )zE
1 ) g g
t— FCsupied (87 Ko 07K )
X yEn
supdi S Xy oMK y)e
1 _
2= D Flomnd8i K 8K y))
X yEn
suppdp( ANy - S X o JzE

1 -
> f2) pcard{(ey)ix.y = msup B85, 0 057,) = )

and hence X is A7 —statistically pre-Cauchy.
Conversely let, X is A7 —statistically pre-Cauchy and £ = 0 be given. Choose A > 0 such that f (L} = E .
Since f is bounded modulas function , therefore there exists an integer M such that

fsupy di (838, 05, ) < M.

Now,
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1 -
— D F o G830 835y ))

X ysn
1 3 =2 =2
=— fsupy di (A28 4 2%, 1))
n x,ysn
suppdp[ AN 2 MK )2l
1 _
t— Z f(supy di (853, o 83, )
X, yan

supdp( MRy MK o )

M -
= fO) +—card{(x.y):xy = nsupdi(85 K0 8K y) 2 1)

i

= §+ e card{(x,v): %, v < n, supy dy(AZX, ﬂf.X;[J} =4}
By our assumption,

lim — card {Cov)ixy < mosup, 6, (83X, . 05%, ) =2} =0
i.e there exists a pc;sitiCe integer ng such that ,

£

¥unxEmn

1 -
ﬂ—zcmﬂd [, y):x,y < n,sup, dk{ﬂf.XkJJﬂf.Xkd-} =1}< M =

1 -
= D Flom (8K 8%y )= e Vnzng
x.ysn

Thus we have
1

lim— > F(supy a8 % 0 85X ) = O

- g1 2
xysn

This completes the proof.

Remark : A sequence X is A7 — staistically pre Cauchy but not A7 — staistically convergent. To justify it, we
consider the following example .

Example 3.2 :Take f(x) =x.r=1.p, =1 for each k € N and E; = L(R). Consider the sequence X =
(X given as follows :
When k is even ,
t—3 if3iz=t=4
X () :{—t+5 if4<t=<5

0 otherwise
When k is odd ,
E+5 if —0=t<—4
X, () :{—t—a if —4=t=-3
0 otherwise
Then

cv1a (2B +a)2°(5—a)]l  ifkis even
[a75,]% = {[23 (=5 +a)2°(—=3—a)] if kis odd

This implies that X is A7 — staistically pre Cauchy but not 47 — staistically convergent.

Theorem3.7: If (p) be a bounded sequence of positive real numbers . Then the space w¥ (A%, f.2). is a linear
space over the real field R .
Proof : The proof is easy , so omitted .

Theorem3.8:  Let (E;.d;) be a sequence of complete metric spaces and () be a bounded sequence of
positive real numbers such that infp, = 0 . Then the space w¥ (A%, f.) is complete metric space under the
metric g defined by-
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gX.¥) = supy (%ZF: (f {5“?;: d (A7 % . ﬂil“mi]J)pk)

[=1
Proof : It is easy to see that g is a metric on w* (A%, f.p). We just prove completeness. Let {X“f'} be a Cauchy

sequence in w¥ (A%, f.p), where XU = ({X.El: :

)_ ewF (A2, f.p) ¥ i€ N.Then we have,
=1 =1

g(x®,xWN) 5 0asi,j»e
This implies
mn
1 - ; Pk
(3.1)  sup, (;z (f Gupidic (83 X, .88 %, 7)) ) —+0asij—=w=
I[=1

Since f is modulas function we have —
supy (83 % 85X, ;) = 0 as 1,j — wand foreach I = 1,23, ...,m
This follows that ,
(8%, ™, 805%,, W) = Oas i.j » = and foreach I = 1.2,3,....n

i.e. (A%, ;"7 is a Cauchy sequence in Ej. Since Ej is complete so AZX; ;™ is convergent in E;. For simplicity
let

=2
. =
lim AF X =Z (—1)* (u) X urs = Ny, say for each k = 1.
w=0

Considering & = 1,2,3, ... 75, .. and [ = 1,2,3,.... 5. we can easily conclude that
limX, ;Y =X, forl =1.23....5.
= :

Taking limitas j — == in (3.1) , we have,
n
. 1 - fa
32) timsupn = (F(supidil(83 5,2, 85X, ) ) =0
I=1

ie.
i 23] =
111_312 glx™.x) =0

Now it remains to spow X e wF (AL f.p). From (3.2) we get,
1 _ )
EE (FCsupsde (855,858, )" > Das i = vneN
=1
Therefore for any £ = 0 there exists a positive integer iy such that,
n
1 _ . £
= (o (0%, 008X ) <5 vizigandneN.
[=1
Now one can find fgr each mny.n, € N such that,
1< - : i P £ §]
;Z&(mpkdk{aixk_iilj,Lg‘- N < 3 ¥ n=ngand LY € E.
=1
and
1 - P &
< SEgIANN i
;Z&(Sﬂpkik{ﬂi-":&.inJLE'}]} <3 Vnzmand Ly e E
=1
Take i,j = igand n; = max (ng,ny). Then,
T
1 - i SRR L
;z (fesuppdi (L5712 ))
=t 1 mn 1 n
- i ) Pk - ; i PE
< ¢ ) (e d8x 10N + € ) (Fsupdi(83%,9,18))
=1 =1
T
1 _ B
i PE .
+ '5';z{f{m‘?ndk{ﬁixk.i[l'aﬂixk.i}]} <l ¥Yijzn
=1

Since f is monotone function , we have
GO L1M s vijEn
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i.e. (Lgf"] is Cauchy sequence in E; which is complete. So IetLEf-’ = Ly asi—m.
Therefore,

n
1
;Z{f{sup;;cf;;{l.?,!.;; W <ce vizn,
i=1
Thus we get,

T
1 B :
;z&[wkdk[ﬂi}*’k.bl'k n*
[=1
1+ . :
= E;z{f{ﬂ‘?k di (8%, @, 88 %, )"
=1

1 n . . 1 n .

+ E;z&{mkak{ﬁixﬁ.:“"jsLgal"j}]}pk + E;Z&(m;; (L5, Ly }]}PE
2{.";:1 =1

= T+ g ¥ nzn,

Which implies that ¥ € w¥ (A%, f.p). This completes the proof.

Theorem3.9: Let () and (gi) be two sequences of positive real numbers such that 0 = g = g; and the
sequence (:—‘:J is bounded. Then wF (AL, f.q) = wF (AL F.p).
Proof : LetX € wF(AZ,f.q). therefore,

n

1
tim = " (f(sups (8%, 1. L )™ =0
[=1

oLl i

Take, HF{ = {f{sﬂpk&k{:ﬂf-xk [-'LFi }]}qk ﬂ-‘i"l,d ']nf";i = :_E =t U = ¥ ‘:_: ']nf";i i 1
) PE

Define ,

_ ey ifﬂ;i:_"l _{U f.fﬂ!;;:_"l

”“‘_{n Fag <1 M BTl G <1

The, ay = ay + by and a;, "% = a, ' + b"™ | thisimplies that a;"* < a; < ay and b"™ = b,"
Therefore,

! ! n

1 1 1

;z (FCsupsds (85K L 1) = ;z (FCsuprdi (85 L )0)™ + ;Z by =0 as n—w
=1 I=1 I=1

ie.

1
lim—
= 1

D (Floupide (8% 1.1 1)) =0
=1

It follows that X € w¥(AZ, £, p). This completes the proof.
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