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Mathematical Modeling of Ebola Virus Epidemics 
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Abstract 
In this work a deterministic and stochastic model is developed to investigate the dynamics of Ebola epidemic. 

The model includes susceptible, exposed, infected, quarantined and removed or recovered individuals. The 

model used in this work is based on a deterministic model. The Chowel et. al (2015) work on early detection of 

Ebola is modified by introducing an assumption that the quarantined class is totally successful and cannot infect 

the susceptible class. The resulting model is transformed into a stochastic model and solved using the Euler 

Maruyama method. Data generated with the values assigned to the parameters are used for the simulation. We 

have been able to develop and analyze a model with an effective isolation of infected individuals and its effect to 

the basic reproductive number is analyzed. In our simulation, the population of infectious individuals is shown 

over a period. It is seen that the disease will produce an epidemic and after some time, the infected class 

maintain a uniform increment. 
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I. Introduction/Model Formulation: 

The total population at time t , denoted by ( )N t , is divided into the mutually exclusive compartments of 

susceptible individuals ( )S t , exposed individuals ( )E t , infectious individuals ( )I t , quarantined or isolated 

individuals ( )Q t and recovered individuals ( )R t , so that  

( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t Q t R t      

We formulate our model with the following assumptions: 

i. The isolation is completely effective such that a successful contact with susceptible individuals is impossible. 
ii. There can be a recovery for both infectious and quarantined class. 

iii. It is assumed that individuals are recruited either by birth or by migration into the susceptible class at rate  . 

iv. Susceptible individuals acquire Ebola virus as a result of interaction with only infectious individuals at a rate 

 , where I   

 

 
Figure 1: Schematic representation of the model 
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Table 1: Description of model variables 
Variable  Description 

( )S t  
Susceptible individuals 

( )E t  Exposed individuals 

( )I t  
Infectious individuals 

( )Q t  
Quarantined or isolated individuals 

( )R t  Recovered individuals 

 
Table 2: Description of model parameters 

Parameter Description 

  
Recruitment rate 

  
Effective contact rate 

k  Transmission rate for exposed individuals 

1
  

Removal rate for infectious individuals either by recovery or Ebola induced death 

2
  

Removal rate for isolated individuals either by recovery or Ebola induced death 

  Rate at which an infectious individual gets isolated  

  Fraction of latent detectable individuals who are diagnosed and get isolated 

1
q  

Probability that an infectious individual dies due to Ebola 

2
q  

Probability that an isolated individual dies due to Ebola 

 

The model equations are therefore given by  

1

2

1 1 2 2

( )

(1 ) ( )

( )

(1 ) (1 )

d S
S S

d t

d E
S k E

d t

d I
k E I

d t

d Q
k E I Q

d t

d R
q I q Q R

d t

 

 

   

   

  


   






  






     




   






    




       (1.1) 

 

1.1 Basic Properties of the model 

Theorem 1 

Let the initial data for the model (1.1) be (0 ) 0 , (0 ) 0 , (0 ) 0 , (0 ) 0 , (0 ) 0S E I Q R     . Then, the 

solutions 

 ( ), ( ), ( ), ( ), ( )S t E t I t Q t R t of the model (1.1) with positive initial data, will remain positive for all time 

0 .t   

Proof 

Let  

 1
sup 0 : ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0 0t t S t E t I t Q t R t         

It follows from the first equation of the model (3.6) that 

d S
S S

d t
      

which can be re-written as 
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0 0

( ) e x p [ ( ) ] e x p [ ( ) ]

t t

d
S t t d t d

d t
       

      
      

      
   

Thus, 

1 1

1 1

0 0 0

( ) e x p [ ( ) ] (0 ) e x p [ ( ) ]

t t y

S t t d S y d d y       
      

       
     

    

This implies 

1

1

1

1

0

1

0

0 0

( ) (0 ) e x p [ ( ) ]

e x p [ ( ) ]

e x p ( ) 0

t

t

t y

S t S t d

t d

y d d y

   

   

   

  

  
   
  

  
     

  





 

 

Similarly, it can be shown that 0 , 0 , 0 , 0E I Q R    for all time 0t   

 

Theorem 2 

The closed set  
5

, , , , :S E I Q R R N




 
    

 

 is positively invariant 

Proof 

Adding all the equations of the model gives 

d N d S d E d I d Q d R

d t d t d t d t d t d t
      

1 1 2 2
N q I q Q        

In the absence of infection 

0I Q  , so that 

d N
N

d t
    

We now apply Birkhoff and Rota’s Theorem on differential inequality. 

By separation of variables of differential inequality, we obtain 

d N
d t

N


 
 

Integrating both sides gives 

1
ln ( )

ln ( ) ( )

d N
d t

N

N t c

N t c






 


 

     

     

 

 

Therefore, 

,
t

N B e





   where B  is a constant. 

Now applying 
0

(0 )N N  we have 

0
A N    

Substituting gives 

0
( )

t
N N e


 


      
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Making   the subject of the formula we have 

0 tN
N e



 

   
   

 

 

As t   in  the population size, N  approaches 

0 N N
 

 
     

Therefore, the feasibility solution set of the system of equations enters the region 

5
( , , , , ) :S E I Q R R N




 
    

 

 

In this case, whenever ,N



  then 0

d N

d t
  which means that the population reduces asymptotically to the 

carrying capacity. On the other hand, whenever ,N



  every solution with initial condition in 

5
R


 remains in 

that region for 0 .t   

Thus, the region   is positively-invariant and the model is well posed and biologically meaningful. 

 

1.2 STOCHASTIC MODEL EQUATIONS  

Applying the method developed by Allen et al. (2008), we can get the stochastic model for the deterministic 

model above. 

The drift vector is defined as 
1 4

1

ii

i

f p 



  , where 
i

p  and i are the random changes and transition probabilities respectively, defined in 

Table 3 below. 

Table 3 
Change Probability Event 

[1 0 0 0 0 ]
T

 1
p t    

Birth of a susceptible  

[ 1 0 0 0 0 ]
T

  2
p S t   

Susceptible dies natural death  

[ 1 1 0 0 0 ]
T

  3
p S I t   

Susceptible becomes exposed 

[0 1 0 0 0 ]
T

  4
p E t   

Exposed individual dies natural death 

[0 1 1 0 0 ]
T

  5
(1 )p k t    

Exposed individual becomes infectious 

[0 1 0 1 0 ]
T

  6
p k t   

Exposed individual is quarantined 

[0 0 1 0 0 ]
T

  7
p I t   

Infectious individual dies natural death 

[0 0 1 1 0 ]
T

  8
p I t   

Infectious individual is quarantined 

[0 0 1 0 1]
T

  9 1 1
(1 )p q t    

Infectious individual recovers 

[0 0 1 0 0 ]
T

  1 0 1 1
p q t   

Infectious individual dies due to Ebola 

[0 0 0 1 0 ]
T

  1 1
p Q t   

Quarantined dies natural death 

[0 0 0 1 0 ]
T

  1 2 2 2
(1 )p q t    

Quarantined individual recovers  

[0 0 0 1 1]
T

  1 3 2 2
p q t   

Quarantined individual dies due to Ebola 

[0 0 0 0 1]
T

  1 4
p R t   

Recovered individual dies natural death 
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1 4

1

ii

i

f p 



   

1 2 3 4 5 6 7

8

1 1 1 0 0 0 0

0 0 1 1 1 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0

0

1

1

0

f p p p p p p p

p

              

             
  

             

                    

             

             
             
             

 

 

 

  

 



 

9 1 0 1 1 1 2 1 3 1 4

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 1 0

1 0 0 0 1 1

p p p p p p

           

           

           

                

           
              

            
           

 

0 0 0 0

0 0 (1 ) 0

0 0 0 0 ( 1) 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

S S I

S I E k k

f k I

k

I

I

 

   

 







               

             
   

             

                    

             

             
             
             

 





 







1 1 1 1

2 22 2

1 1 2 2

00 00 0 0

00 00 0 0

0( 1) 00 0

0 ( 1)0 0

(1 ) 0 0 0

q q

qqQ

q q R

 



  

         

          

          

                
          
           

           
            

 

Hence, the drift vector    of order    , is given by 

 

1

2

1 1 2 2

( )

(1 ) ( )

( )

(1 ) (1 )

S S

S k E

f k E I

k E I Q

q I q Q R

 

 

   

   

  

   

 
 

 

     
 

   

 
    

 

 

whereV  is the covariance matrix, given as: 
1 4

1

T

i

i

V p  



   
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1 2 3

4 5 6

7

1 1 1

0 0 1

(1 0 0 0 0 ) ( 1 0 0 0 0 ) ( 1 1 0 0 0 )0 0 0

0 0 0

0 0 0

0 0 0

1 1 1

(0 1 0 0 0 ) (0 1 1 0 0 ) (0 1 0 1 0 )0 1 0

0 0 1

0 0 0

V p p p

p p p

p

      

     

     

         

     

     
     
     

     

     
  

     

          

     

     
     
     


8 9

1 0 1 1 1 2

0 0 0

0 0 0

(0 0 1 0 0 ) (0 0 1 1 0 ) (0 0 1 0 1)1 1 1

0 1 0

0 0 1

0 0 0

0 0 0

(0 0 1 0 0 ) (0 0 0 1 0 ) (0 0 0 1 0 )1 0 0

0 1 1

0 0 0

p p

p p p

p

     

     

     

           

     

     
     
     

     

     

     

          

     
      

     
     


1 3 1 4

0 0

0 0

(0 0 0 1 1) (0 0 0 0 1)0 0

1 0

1 1

p

   

   

   

     

   
   

   
   
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 (1 ) (

S S I S I

S I S I E

V

S I S I

k

  

  

 



        

       


       

          

       

       
       

       





0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ( 1) (1 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

k k k

k k I I I

k k I I

  

    

   

       

       
 

       

           

       
        

       
       


1 1 1 1 1 1

1 1 1 1

2 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

(1 ) 0 ( 1) 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ( 1) 0 (1 ) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 00 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 (1 ) 0

0 0 0 0 0

q q q

Q

q q

q

  



 



     

     

     

       

     

     
    

      

 

 

 

  

 
 

 
 

2 2 2 2

2 2 2 2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

q q

q q R

 

  

   

   

   

   

   
   

  
   

 

Hence, the covariance matrix   of order     is given by 

 

1 1
)

0 0

(1 ) ( 1) 0

0 ( 1) ( 1) ( 1) 2 (1 ) ( 1)
1 1 1 1 1 1 1 1 2 2 1 1

0 0
2 2

0 0 ( 1) (1
1 1 2 2 2 2

0S S I S I

S I S I E k k k k

k q k q k I q q q q

k I k I Q q

q q q q R

  

      

         

     

   

   

      

            

    

   

 

 

 

 
 
 

 

 

The stochastic model is therefore given by 

 
1

2( ( )) ( ( )) ( , ( )) ( )d X t f X t d t V t X t d W t   

 

We have already seen the transition probabilities as shown above. 

 

where the drift vector    of order    ,  

 

i
p and i  (          are random changes and transition probabilities represented in the above table.

 
 

The diffusion matrix is obtained from the entries ii
p  .  It is given by  

 

( ) ( ) ( ) 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ( ) ( 1 ) 0 0 0 0 0 0 0

0 0 0 0 (1 ) 0 ( ) ( ) [ (1 ) ] ( ) 0 0 0 01 1 1 1

0 0 0 0 0 0 0 0 ( ) [ (1 ) ] ( ) 02 2 2 2

0 0 0 0 0 0 0 0 [(1 ) ] 0 0 0 ( ) ( )1 1 2 2

S S I

S I k k

k I I q q

k Q q q

q q R

E

I

 

  

    

   

  









  

  

     

  

 

 

 

 

 
 
 
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where
1 2 3 4 5 6 7 8 9 10 11 12 13 14

[ , , , , , , , , , , , , , ]
T

W W W W W W W W W W W W W W W  is a vector of fourteen   

independent Wiener processes. In addition,           has order  
 

14 1 while        is a 5 1 dimensional vector.  

 

i
f are given below: 

 

1

2

3 1

4 2

5 1 1 2 2

( )

(1 ) ( )

( )

(1 ) (1 )

f S S

f S k E

f k E I

f k E I Q

f q I q Q R

 

 

   

   

  

   

  

    

   

    

 

 

The elements of the diffusion matrix 

 

                                                    

                                         

                        ,                     

                                               

           

                                                              

                                                         

                                                   

                                                 

                                                      

 

 

5

2

1

( )
i

i

f f x



  and,

4 9

2

1 1

( )
i j

i j

G g x

 

    

 

 

Note 

 

2 2 2 2 2 2

1 2 3 3 4 5
[ ] [ ] [ ] [ ] [ ] [ ]f f f f f f f       

 

1 1 1 2 ) 2
2 3(1 ) (1 ) 2 (1 )G S S I k q q q R                    

 

Both 
i

f  and 
i j

g  are continuously differentiable at               and hence satisfy the  

 

Lipschitz condition (by the Mean value theorem for calculus). Since the norms exist, they are bounded. The drift 
and the diffusion matrices are therefore bounded. Hence, they satisfy the conditions for existence and 

uniqueness of solution.  

 

1.3 Basic reproduction number (    
The basic reproduction number    ) is calculated from the disease compartments i.e  

those classes that have the disease (      . 
The basic reproduction number    ) is calculated as follows: 
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 : Rate of appearance of new infection   
   
 
 

  

  
  : Rate of transfer of disease out of the disease compartment      

              

                      
                   

  

 

      
         
       

  

  
 : Rate of transfer of infection into the disease compartment by other means  

  
   

 
       
      

  

     
    

   

      
                 
              

  

  
      

   
 : The Jacobian of  with respect to disease compartments    evaluated at D.F.E i.e    

          ,  , 
 

    

       
               

           
  

 

    
 

      
               

 
 

                   
 

                
                        

                                     

  

 

 

 
 
 
 

 

     
  

      

             

 

        
 

                 

                   

 

              

 

       

 
 
 
 

 

 

The basic reproductive number          
  

 

 
 

   
   

 

 

 
 

 

     
  

      

             

 

        
 

                  

                   

 

              

 

       

 
 

 

 
        

              
 

 

1.4 ENDEMIC STEADY STATE 

Endemic state equilibrium at this state the differential equation of the model is set to zero but   0,  0  
  

  
                                                                                    1.2 

  

  
                                                                                    1.3 

  

  
                                                                             1.4 

  

  
                                                                             1.5 

  

  
                                                                     1.6 

On putting the derivatives in the left-hand side and equating it to zero and solving the resulting differential 

equation with respect to the variables , , ,S E I Q  and R , we obtain 
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We obtain the endemic steady state at                      

Evaluating J at    

  =

 

  
 

                                                   
                                                 

 
 
 

                       
                           

                                   

             
        

 
   

           

                          
                         
                  

  
 

 

Compute the eigenvalues, we solve 

            =0  

 

 

  
 

                                                   
                                                 

 
 
 

                                       
                                     

                                               

             
         

 
   

           

                          
                         
                   

  
 
   

 

                                
 
       

 The endemic state is locally asymptotically stable      
Numerical Simulation 

 
Parameter values unit Reference 

  7 0  1
d a y


 

Chowel, et al.(2015) 

  0 .91  1
d a y


 

Ebenezer, et al.(2016) 

k  0 .2  1
d a y


 

Chowel, et al.(2015) 

1
  0 .1 7  1

d a y


 
Ebenezer, et al.(2016) 

2
  0 .2  1

d a y


 
Chowel, et al.(2015) 

  0 .08  1
d a y


 

Ebenezer, et al.(2016) 

  0 .6  1
d a y


 

Chowel, et al.(2015) 

1
q  0 .7  1

d a y


 
Chowel, et al.(2015) 

2
q  0 .63  1

d a y


 
Chowel, et al.(2015) 

  0 .000498  1
d a y


 

Ebenezer, et al.(2016) 

 The initial populations were assumed to be ( ( ), ( ), ( ), ( ), ( )) (2 0 , 2 5,1 5, 2 5,1 5)S t E t I t Q t R t   
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Deterministic model analysis 

 

 
Fig. 2: Graph of Infected against time 

 

 
Fig. 3: Graph of Quarantined against time 

 

From Fig. 2, the population of infectious individuals is shown over a period. It is seen that the disease will 

produce an epidemic and after some time, the infected class maintains a uniform increment. The quarantined 
population is also shown to behave in a similar manner over a period.   
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Stochastic model Analysis 

 

 
Fig. 4: Graph of Infected against time 

 

 
Fig. 5: Graph of Quarantined against time 

 

The populations of infectious and quarantined individuals over a period of time are shown in figures 4 

and 5 here, the two populations have below 50 individuals for a long period of time, but after 40 years. The 

result seem a contrast to what is obtainable in the deterministic model when the infected and quarantined 

populations increase rapidly at the onset of the disease. The deterministic gives a better description of the model. 

It considered environmental fluctuations which were not captured by the deterministic model.      

 

II. Results And Conclusion 
In this work, Chowell et. al (2015) work on modeling the case of early detection of Ebola virus is 

reviewed and extended to Stochastic model. A deterministic and Stochastic differential equation model is 

developed and investigated for the transmission dynamics of Ebola virus. The model, which is a 

multidimensional diffusion process, includes susceptible, exposed, infected and quarantined classes. This model 

is developed with an assumption that there can be a recovery for the infected population and after recovery the 

recovered individual do not stand the chance of been re-infected. We were able to see that the disease-free 

steady state of our model is globally asymptotically stable. We also observed that there should be a bound at 

which Susceptible become infected. The endemic steady state showed that the disease will persist in the 

population if there is no bound on the interactions between the susceptible and infected population. It is also 
important to place the infected population in a quarantine, since removing the infected population will stop the 

susceptible from been infected. 
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Not only should mass vaccination exercise be encouraged to cover most of the population whenever 

there is an outbreak of the disease but also, measles prevention must be a public health priority. As a 

mathematical epidemiologist, I can tell you there is some good news in the Ebola epidemic ravaging West 
Africa. This Ebola is not spreading nearly as fast as some scourges of the past. Ebola was an interesting case 

study for our mathematical modeling of the spread of disease, as there were two relatively large and well-

documented outbreaks in which the impact of efforts to control the virus was evident (the 1995 outbreak in 

Congo — formerly known as Zaire — and the 2000 outbreak in Uganda). It was intriguing — not to mention 

scary — to work on a disease that produced such horrific symptoms with a fatality rate above 50 percent. But I 

learned then that Ebola isn’t the fastest-spreading disease in human history. The good news is that Ebola has a 

lower reproductive rate than measles in the pre-vaccination days or the Spanish flu. Our 2004 work, which 

produced the first estimates for Ebola’s reproductive rate by using mathematical modeling and epidemiological 

data from the Central African outbreaks, found that each case of Ebola produced 1.3 to 1.8 secondary cases on 

average. This ongoing outbreak has a reproductive rate that is about the same as the last one. It hasn’t become 

more transmissible in the more than 10 years it was lying low — and humankind has experience in dealing with 
it. And the time that elapses between the first Ebola case and the generation of secondary cases is about two 

weeks. This should allow plenty of time to identify those who are sick and protect people who might come in 

contact with them. People with Ebola are contagious and able to transmit the virus only when they are showing 

symptoms, which occurs about a week after they are exposed to the virus. To break the chain of the current 

Ebola epidemic, our numbers show that health-care workers need to stop about 50 percent of infectious contacts 

by effectively isolating people who are infectious. (Vaccinating at least some of the population would be another 

option, but no licensed vaccine is available.) The trouble is that the countries suffering from outbreaks have 

weak health-care systems – perhaps too weak to halve the number of infectious contacts. These countries lack 

gloves, gowns, face masks and other essential supplies to protect nurses and doctors from infection, and they 

don’t have an adequate surveillance system to catch and identify Ebola cases in a timely way. The number of 

doctors and health centers is small as well. 
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Appendix 

Deterministic Code: 
clearall 

global alpha Lambda beta k gamma_1 gamma_2 delta q_1 q_2 mu 

alpha=0.2;  

Lambda=40;  

beta=0.91;  

k=0.2;  

%gamma_1=0.17;  

gamma_2=0.2;  

delta=0.6;  

q_1=0.7;  

q_2=0.63;  
mu=0.0000498; 

for gamma_1=0.1:0.1:0.9; 

tspan =[0,50]; 

yzero = [50;40;10;75;20]; 

 [t,y]=ode45(@ebolatk,tspan,yzero); 

plot(t,y(:,3),'r') 

xlabel('time(years)'),ylabel('I') 

holdon 

end 

 

Stochastic Code: 
% A program for Ebola Model  

% The Euler-Maruyama method is used for solving the SDEs 

% y1 y2 y3 y4 and y5 are the different populations 

% y10 y20 y30 y40 and y50 are the initial populations 

% Problem-dependent statements are marked with a %***  

% icase=1 corresponds to the deterministic problem  

% nt is the number of steps 

% h is the step size 

% Accuracy generally increases as h decreases 

clf 

clear 

foricase=2 
cleartt 

clearyp1 

clearyp2 

clearyp3 

clearyp4 

clearyp5 

nsamp=100; %*** 

tmax=50; %*** 

nt=500; %*** 

y10=20; %*** 

y20=25; %*** 
y30=15; %*** 

y40=25; %*** 

y50=15; %*** 

if(icase==1) nsamp=1; end 

h=tmax/nt; 

hs=sqrt(h); 

randn('state',20); %initiates the random number generator 
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te1=zeros(nsamp,1); 

te2=zeros(nsamp,1); 

te3=zeros(nsamp,1); 
te4=zeros(nsamp,1); 

te5=zeros(nsamp,1); 

te6=zeros(nsamp,1); 

jj1=0; 

jj2=0; 

jj3=0; 

jj4=0; 

jj5=0; 

jj6=0; 

forjj=1:nsamp 

y1=y10; 
y2=y20; 

y3=y30; 

y4=y40; 

y5=y50; 

yp1(1)=y1; 

yp2(1)=y2; 

yp3(1)=y3; 

yp4(1)=y4; 

yp5(1)=y5; 

r=randn(nt+1,14); 

nchk1=0; 

nchk2=0; 
nchk3=0; 

nchk4=0; 

nchk5=0; 

n=0; 

t=0; 

chk=0; 

tt(1)=0; 

while (chk==0) 

n=n+1; 

t=t+h; 

if(jj==nsamp) tt(n+1)=t; end 
Lambda=0.070; 

mu=0.0048; 

alpha=0.03; 

beta=0.01; 

delta=0.2; 

q_1=0.7; 

q_2=0.63; 

gamma_1=0.17; 

gamma_2=0.2; 

lambda_1=0.71; 

lambda_2=0.82; 

k=0.5; 
f1=Lambda-beta*y3*y1-mu*y1; 

f2=beta*y3*y1-(k+mu)*y2; 

f3=(1-delta)*k*y2-(alpha+gamma_1+mu)*y3; 

f4=delta*k*y2+alpha*y3-(gamma_2+mu)*y4; 

f5=(1-q_1)*gamma_1*y3+(1-q_2)*gamma_2*y4-mu*y5; 

g1=sqrt(delta)*r(n,1)-sqrt(mu*y1)*r(n,2)-sqrt(beta*y1*y3)*r(n,1); 

g2=sqrt(beta*y1*y3)*r(n,4)-sqrt(mu*y2)*r(n,5)-sqrt((1-delta)*k)*r(n,6)-sqrt(delta*k)*r(n,7); 

g3=sqrt((1-delta)*k)*r(n,5)-sqrt(mu*y3)*r(n,7)-sqrt(alpha*y3)*r(n,8)-sqrt((1-q_1)*gamma_1)*r(n,9); 

g4=sqrt(delta*k)*r(n,6)+sqrt(alpha*y3)*r(n,8)-sqrt(mu*y4)*r(n,11)-sqrt((1-q_2)*lambda_2)*r(n,12)-

sqrt(q_2*gamma_2)*r(n,13); 



Mathematical Modeling of Ebola Virus Epidemics 

DOI: 10.35629/4767-10020420                              www.ijmsi.org                                                             19 | Page 

g5=sqrt((1-q_1)*gamma_1)*r(n,9)+sqrt(2-q_2*gamma_2)*r(n,13)-sqrt(mu*y5)*r(n,14); 

if(icase==1) g1=0; end 

if(icase==1) g2=0; end 
if(icase==1) g3=0; end 

if(icase==1) g4=0; end 

if(icase==1) g5=0; end 

y1=y1+h*f1+hs*g1; 

y2=y2+h*f2+hs*g2; 

y3=y3+h*f3+hs*g3; 

y4=y4+h*f4+hs*g4; 

y5=y5+h*f5+hs*g5; 

if(jj==nsamp) yp1(n+1)=y1; end 

if(jj==nsamp) yp2(n+1)=y2; end 

if(jj==nsamp) yp3(n+1)=y3; end 
if(jj==nsamp) yp4(n+1)=y4; end 

if(jj==nsamp) yp5(n+1)=y5; end 

% This is Euler's approximation to the SDE 

if (y1 < 1) 

chk=1; 

jj1=jj1+1; 

te1(jj1)=t; 

end 

if (y2 < 1) 

chk=1; 

jj2=jj2+1; 

te2(jj2)=t; 
end 

if (y3 < 1) 

chk=1; 

jj3=jj3+1; 

te3(jj3)=t; 

end 

if (y4 < 1) 

chk=1; 

jj4=jj4+1; 

te4(jj4)=t; 

end 
if (y5 < 1) 

chk=1; 

jj5=jj5+1; 

te5(jj5)=t; 

end 

if (t >tmax) 

chk=1; 

jj6=jj6+1; 

te6(jj6)=t; 

chk=1; 

end 

end% end of while (chk==0) loop 
end% end of for jj=1:nsamp loop 

tp=0; tp1=0; tp2=0; tp3=0; tp4=0; tp5=0; tp6=0; 

if(jj1 ~= 0) tp1=sum(te1)/jj1; end 

if(jj2 ~= 0) tp2=sum(te2)/jj2; end 

if(jj3 ~=0)  tp3=sum(te3)/jj3;end 

if(jj4 ~= 0) tp4=sum(te4)/jj4; end 

if(jj5 ~= 0) tp5=sum(te5)/jj5; end 

if(jj6 ~= 0) tp6=sum(te6)/jj6; end 

if(jj1+jj2+jj3+jj4+jj5~=0)tp=(sum(te1)+sum(te2)+sum(te3)+sum(te4)+sum(te4))/(jj1+jj2+jj3+jj4+jj5); end 

p1=jj1/nsamp; 
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p2=jj2/nsamp; 

p3=jj3/nsamp; 

p4=jj4/nsamp; 
p5=jj5/nsamp; 

p6=jj6/nsamp; 

disp(' ') 

if(icase==1) disp(' Deterministic Calculational Results'); end 

if(icase==2) disp(' Stochastic Calculation Results'); end 

disp(' icasensamp h tmax') 

disp((sprintf(' %12.0f %12.0f %12.5f %12.2f',icase,nsamp,h,tmax))); 

disp(' tp1 p1') 

disp((sprintf(' %12.6f %12.6f', tp1, p1))); 

disp(' tp2 p2') 

disp((sprintf(' %12.6f %12.6f', tp2, p2))); 
disp(' tp3 p3') 

disp((sprintf(' %12.6f %12.6f', tp3, p3))); 

disp(' tp4 p4') 

disp((sprintf(' %12.6f %12.6f', tp4, p4))); 

disp(' tp5 p5') 

disp((sprintf(' %12.6f %12.6f', tp5, p5))); 

disp(' tp6 p6') 

disp((sprintf(' %12.6f %12.6f', tp6, p6))); 

disp(' tp p1+p2+p3+p4+p5') 

disp((sprintf(' %12.6f %12.6f', tp, p1+p2+p3+p4+p5))); 

if(icase==1) title('Deterministic'); end 

if(icase==2) title('Stochastic'); end 
set(gca,'fontsize',18,'linewidth',1.5); 

plot(tt,yp1,'r-')%,tt,yp2,'k-', tt,yp4,'r-',tt,yp3,'y-',tt,yp5,'g-') 

xlabel('Time t') 

ylabel(' POPULATIONS') 

legend('Infected'),% 'Exposed','Infected','Quarantined','Recovered') 

if(icase==2) title('Stochastic'); end 

holdon 

end% end of for icase=1:2 loop 

holdoff 

 

 
 


