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ABSTRACT:A common challenge in RNA-seq data analysis is to identify genes whose mean expression levels 

change across different groups of samples, or, more generally, are associated with one or more variables of 

interest. Such analysis is called differential expression analysis. Many tools have been developed for analyzing 

differential gene expression (DGE) for RNA-seq data. RNA-seq data are represented as counts. Typically, a 

generalized linear model with a log link and a Negative Binomial response is fit to the count data for each gene, 

and DE genes are identified by testing, for each gene, whether a model parameter or linear combination of 

model parameters is zero. We conducted a simulation study to compare the performance of our proposed 

Permutation test to traditional parametric methods when applied to RNA-seq data. We considered different 

combinations of sample sizes and underlying distributions. In this simulation study, we simulated data using 

Monte Carlo simulation in SAS and assessed Type I error rate, Power rate, True Positive rate and False 

Positive rate for each model involved. The simulation results suggest that Permutation tests are a viable 

alternative with a comparable power and good control of Type I error and False Positive rate. 
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I. INTRODUCTION 
Disease statuses and biological conditions are known to be greatly impacted by differences in gene 

expression levels [1]. The recent rise of RNA-seq technology has now supplanted microarrays as the technology of 

choice for genome‐ wide Differential Gene Expression (DGE) experiments. As described by [1], in each experiment, 

messenger ribonucleic acids (mRNAs) are shattered and reverse transcribed into complementary deoxyribonucleic 

acid (cDNA). These short pieces of cDNA are amplified by a polymerase chain reaction and sequenced by a 

sequencing machine, giving a list of short sequences called reads. These reads are then mapped to the reference 

genome using an appropriate algorithm, telling us which region each read comes from. Finally, for a set of regions of 

interest on the genome, such as genes, exons, or junctions, we count the number of reads mapped unambiguously to 

each of them and use this count as a measure of the expression of the region. 

A common challenge in RNA-seq data analysis is to identify genes whose mean expression levels change 

across different groups of samples, or, more generally, are associated with one or more variables of interest. Such 

analysis is called differential expression analysis. Differential expression analysis usually involves carrying out a 

significance test for each gene. Because RNA-seq data generally contain thousands of genes, differential expression 

analysis involves testing thousands of hypotheses.  

Many tools have been developed for Analyzing DGE for RNA-seq data. RNA-seq data are represented as 

counts and statistical methods that try to identify differential expression – enhanced (“up-regulated”) or suppressed 

(“down-regulated”) make assumptions about the statistical properties inherent to the data and they exploit a range of 

normalization and analysis techniques to compute the magnitude of a DGE result and estimate its significance.  

Typically, a generalized linear model with a log link and a Negative Binomial response is fit to the count data for each 

gene, and DE genes are identified by testing, for each gene, whether a model parameter or linear combination of 

model parameters is zero. It is reported that data from technical replicates can often be well characterized by the 

Poisson distribution, while data from biological replicates have much larger variance and Negative Binomial models 

seem to be more appropriate. 

Estimates obtained from inferential statistical methods are generally reliable when the underlying 

assumptions are met. However, when the underlying assumptions of the test statistic are not met, the sampling 

distribution of the test statistic may deviate substantially leading to inaccurate inferences. According to [2], the 

tendency of researchers to prefer the use of parametric statistics has led many to propose some transformation 

techniques to satisfy the underlying parametric assumptions. However, others such as [3] have shown that 

transforming data for certain designs can be dramatically non-robust and often produce poor power properties. This 
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controversy calls for the need to better understand statistical procedures available to researchers given an unknown or 

non-normal population distribution. 

Simple Permutation tests use rearrangements of the original sample to build the sampling distribution of the 

test statistic so make minimal assumptions about the data. For clients with modest mathematical or statistical 

background, Permutation tests are often more intuitive than even basic parametric tests such as the two-sample t-test. 

Inferential methods associated with RNA-seq data are substantially more mathematically challenging than the two-

sample t-test so may be even more difficult to comprehend. According to [4], Permutation tests can be applied to 

continuous, ordered and categorical data, and to values that are normal, almost normal, and non-normally distributed. 

For almost every parametric and nonparametric test, one may obtain a distribution-free Permutation counterpart. The 

resulting Permutation test is usually as powerful than alternative approaches. And Permutation methods can 

sometimes be made to work when other statistical methods fail [4]. 

 Permutation tests can take multiple forms. Exact Permutation tests compile all possible combinations of 

treatment and control data for the chosen test statistic. They are called exact because the relevant properties are 

specifically determined, that is an exact level of significance is determined by a significance test [5]. The approximate 

randomization test focuses on a random subset of all possible Permutations[6]. In situations where the number of 

Permutations may be overwhelming due to a large sample size, an approximate randomization test can be a viable 

alternative. Several researchers suggest thatPermutation and randomization tests help to rehabilitate the power of 

parametric tests under conditions of non-normality [7,8]. And still, others offer Permutation tests as preferred 

alternatives to rank-based tests, citing that rank tests are less powerful than randomization tests on scores [9]. 

The goal of this study is twofold. First, to compare the performance of the Permutation test to comparable 

parametric tests in the two-sample differential expression setting using simulated data that mimic RNA-seq data. And 

secondly, to investigate how the sample sizes impact the Permutation results. Various scenarios will be explored, 

some in which the underlying assumptions on the data are met such that the parametric tests perform well and in 

others where the underlying assumptions on the data for the parametric tests are violated to varying degrees.  Our 

general expectations are that the parametric tests will usually be more powerful, but if simple Permutation tests yield 

reasonably close results, clients due to their more intuitive nature may prefer them.  A broad study outline follows.  

The core of this study will be carried out in two phases. In the first phase, we will simulate RNA-seq data 

assuming various underlying distributions using Monte Carlo simulation in SAS to mimic real RNA-seq datasets for 

relatively small sample sizes (n1=n2≤10). For our simulated data, we will consider four distributions, namely: Normal, 

Poisson, Negative Binomial (NB) and Zero Inflated Poisson (ZIP) distributions and then assess Type I error and 

Power rate for each combination of underlying distribution and sample sizes for the fitted models considered. In the 

second phase, we will repeat the simulation process as described above but this time we will set twenty percent (20%) 

of the simulated RNA-seq data to be differentially expressed (the DE genes are obtained at 0.5σ and 1σ effect sizes). 

We will then assess differential expression using Permutation, two-sample t-tests, Poisson regression and Negative 

Binomial regression onvarying numbers of replicates. For each combination of underlying distribution (Normal, 

Poisson, NB) and number of replicates, we will obtain the number of differentially expressed (DE) genes for each of 

the fitted models (T-test, Permutation, Poisson, Negative Binomial).  From the DE genes obtained, we will assess the 

True Positive (TP) rate and the False Positive (FP) rate and compare these rates across the fitted models. 

The process just described was conducted for distributions with mean µ = 30 and standard deviation σ = 5 

for samples simulated from Normal distribution and Lambda=30 for samples simulated from Poisson distribution. For 

Negative Binomial distribution, we increased the standard deviation from 5 to 8 and kept the mean the same as that of 

Normal and Poisson distribution at µ = 30. However, it is important to note for the Permutation distribution that when 

a large number of replicates is considered we did not perform a full Permutation test. The number of 

possiblepermutations is overwhelming for large samples. Therefore, we take a random sample of all possible 

permutations of the data instead. We will use B to indicate the number of random permutations selected. In this study 

we decided to select 5000 random permutations (B=5000). For each of these randomly selected Permutation samples 

we will assess DE genes for each fitted model at varying numbers of replications and compare the True Positive and 

False Positive rates across all the fitted models. 

Although we expect the TPR rate for the parametric tests to be better, we are interested in showing how 

much poorer the results are using the Permutation test. For some clients, the Permutation test may be preferable due to 

its intuitive nature *if* the loss of power is not too great. 

Additionally, the two phases as described above were carried out under a balanced Two-Sample scenario 

(Treatment and Control). Moreover, we also applied the scenario described in phase 1 to unbalanced sample sizes and 

see how the results compared to that of balanced sample sizes.  

We then attempt to answer the following research questions: 
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 How do Type I error rate, True Positive rate and False Positive (FP) rates compare across T-test, Permutation, 

Poisson, and Negative Binomial when applied to RNA-Seq data?  

 How does the sample size impact the Permutation test results? 

II. METHODOLOGY 

 
Methodology 

Data Simulation Overview 

Our main goal for conducting this simulation study is to demonstrate that simple Permutation is a valid 

candidate for detecting differentially expressed genes in RNA-seq data sets when compared to the traditional 

parametric methods. We first started in our Initial research by assessing Type I error and Power rates under various 

conditions. Afterward, we estimate True Positive (TP) and False Positive (FP) rates when the parametric methods’ 

underlying distribution assumptions are met as well as when the underlying distribution assumptions are violated. 

We simulated 5,000 genes with two groups each with equal sample sizes ranging from 7 to 30. We then set 

twenty percent (20%) of the simulated genes to be differentially expressed (the two group means are different by a 

defined effect size) and the other eighty percent (80%) are equally expressed (the two groups have equal means). We 

used SAS for this simulation and considered four main data-generating distributions namely: Normal, Poisson, Zero 

Inflated Poisson (ZIP) and Negative Binomial. It is noteworthy that this study was motivated by an RNA-seq data set 

that has features similar to zero inflated data distributions. We are simulating data from ZIP to assess the performance 

of Permutation tests when there is an excess of zeros in an RNA-seq dataset. 

Differential Gene Expression Assessment 

Whenever the observed difference or change in read counts or expression levels between the two conditions 

of an RNA-seq data set (assuming two groups Control and Treatment) is statistically significant, the gene is declared 

to be differentially expressed (DE). Therefore, it is important to find the underlying distribution of the data when 

fitting a parametric method to identify differentially expressed genes. In practice, researchers do not always know the 

statistical distribution of the data and a violation could lead to an incorrect detection.  

In this present study, the focus is to investigate the differential gene expression analysis based on the 

Permutation test and how it compares with traditional parametric methods used for gene expression analysis. The 

framework for this simulation study is as follow: We simulated 5,000 genes of two groups (control and Treatment) 

each of size n from the same underlying distribution. For our simulated data to exhibit the features of a true RNA-seq 

dataset, 80% of the data is set to be equally expressed while 20% is set to be differentially expressed. For the 

differentially expressed genes, we considered 0.5σ and 1σ effect sizes. By 0.5σ effect size we refer to the mean 

difference between a pair of genes in Control and Treatment is equal to half its standard deviation. For example, 

suppose that we have a µC = 30 and σC =5 for the Control group; a 0.5σ effect size will correspond to µT = µC - 0.5σ = 

30 – 2.5 =27.5 and standard deviation σT =5 for the Treatment group such that µC- µT = 2.5. In general, as the effect 

sizes increase it becomes easier to detect any difference in means; namely, the detection rate of the test increases as 

well. 

To detect DE genes, we then fit the models (T-test, Poisson, Negative Binomial, Permutation test and Zero 

Inflated Poisson regression) to each gene and count the number of times the null hypothesis for the test below was 

rejected: 

H0: µC = µT 

Ha: µC ≠ µT 

The rejection rate (rejection rate or p-value refers to how often the null hypothesis was rejected) for each underlying 

distribution is computed by dividing the total count ofsamples in which the null hypothesis was rejected by 5,000 

(number of simulated genes). For a 5% significance level we computed the rejection rate for each combination of 

underlying distributions and sampling efforts. 

True Positive Rate 

The True Positive rate (TPR; power), also called sensitivity, is the probability that a gene that is declared to 

be differentially expressed is actually differentially expressed. The rate is computing by tallying the true DE genes 

from the list of genes declared to be DE genes by a fitted model over the total number of the simulated True DE genes 

(1000). The TPR was calculated as follow: 
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𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where TP is true positive, FN is false negative 

False Positive Rate 

AFalse Positive, also often called a Type I error in statistics, occurswhen an equally expressed (EE) gene is 

falsely declared as a DE gene by a fitted model. The False Positive Rateis calculated as the ratio of the number of 

genes wrongly classified as DE genes over the total number of actual negative events (EE genes).  

𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Where FP is false positive, TN is true negative 

We use the True Positive and False Positive rates to measure the accuracy of our fitted model. If the 

difference in True Detection rate is not too large, the model that minimizes the False Positive Rate may be of interest. 

This may vary from one field to another. For some researchers and types of studies, controlling the False Positive Rate 

is a very important. Therefore, a model that consistently keeps the FPR very low is preferred. 

Proposed Test 

In this study, our main goal is to provide evidence that the simple Permutation test is a valid and 

viablealternative for analyzing RNA-seq data. Permutationtests and Randomization tests are often interchangeable; 

however, the distinction between the two varies among the statistical community [10]. Some authors consider a 

randomization test to bean approximate Permutation test that takes only a random sample of all possible 

Permutations[10]. Others however, differentiate Permutationtests as those based on the assumption of random 

sampling from two identical population distributions while a randomization test is based on the assumption of random 

assignment of group labels [11]. We refer to these asPermutation tests regardless of: (i) whether groups are obtained 

by random assignment or random sampling, and (ii) whether the testsare obtained from the full set of possible 

permutations or from a random sample of the possible permutations[10]. 

We are simulating data from Normal, Poisson, Negative Binomial and Zero Inflated Poisson distributions 

and then fitting traditional parametric methods used for the simulated genes and then compare these results to that of 

the simple Permutation test. We do not expect the Permutation test to be superior; if the Permutation test yields a 

power that is close enough to the gold standard then that is sufficient. Particularly, we are interested in how the 

Permutation test compares to the traditional methods with respect to controlling the False Positive Rate while yielding 

a competitive True Detection Rate. 

For the simple Permutation test, we defined the test statistic as follows: 

 When sampling from Normal, Poisson and Negative Binomialdistrbutions 

Consider our hypothesis: 

H0: µC = µT 

Ha: µC ≠ µT 

Where µC and µT represent the means of the control and treatment groups respectively and δ = µC - µT is the true 

difference in the means. We define 𝐶  and 𝑇 as the means obtained from the samples from the control group (C) and the 

treatment group (T). The test statistic is given as: 

D = 𝐶  - 𝑇  

Under the null hypothesis, the expected value of D, E(D) = 0. Moreover, suppose that the test statistic from our 

sample is defined as d = 𝑐  - 𝑡 . By definition, a two-tailed p-value based on  𝐶  - 𝑇  is: 

p-value = Pr (| 𝐶  - 𝑇 | ≥ | 𝑐  - 𝑡 | │H0 is true) = Pr (|D| ≥ |d| │H0 is true) 

= Pr (D ≤ ─ |d| │H0 is true) + Pr (D ≥ |d| │H0 is true) 

For our simulation study, we sampled 5,000 genes with two groups (Control and Treatment). Unlike 

parametric models assuming known distributions, such as the Gaussian or Student’s t, to calculate the p-value for the 
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Permutation test, we first build the sampling distribution for our test statistic D = 𝐶  - 𝑇  by aggregating all (or a sample 

of) possible values of the test statistic obtained by rearranging the group labels associated with the observations. For 

small samples, less than or equal to 10, we did a full Permutation test whereas for larger sample sizes, greater than or 

equal to 12, we did a partial Permutation (or randomized Permutation) of B size. Here we set B at 5000 randomly 

selected Permutations. The p-value is then obtained by finding the proportion of the sampling distribution of the test 

statistic obtained from the Permutation samples that is at least as extreme as the actual test statistic. Specifically, we 

first compute the test statistic from the original sample as d = 𝑐  - 𝑡 . And then, the samplingdistribution of the test 

statistic d is built by computing the B Permutation test statistics d1, …, dB where di = 𝑐𝑖  - 𝑡𝑖  , and 𝑐𝑖  and 𝑡𝑖  are the 

means of the control and treatment groups respectively when labels have been reassigned according to the 

i
th
Permutation, or random shuffling, of the group labels. Our two-sided Permutation test p-value is then calculated as: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  
 𝐼( 𝑑𝑖  ≥ 𝑑 )

𝐵
1

𝐵
 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 =  
 𝐼 𝑑𝑖  ≤ − 𝑑  

𝐵
1

𝐵
+  

 𝐼(𝑑𝑖  ≥ 𝑑 )
𝐵
1

𝐵
 

Where I, the indicator function, is equal to 1 when the condition is true and 0 otherwise. 

 When sampling from Zero Inflated Poisson distribution 

For genes simulated from the Zero inflated distribution, we had to find a way to incorporate the zero in the mean 

estimation. We sampled 5,000 genes from a mixture of Poisson and Uniform distributions. We set the probability of 

success to 20% for the Uniform distribution. In other words, there is a 20% chance of observing a 1 from the Uniform 

distribution. If the event is 1 then we set y = 0 otherwise y = Poisson (Lambda= λ). Now our random variable y 

follows a modified version of the Poisson (λ) distribution known as a Zero Inflated Poisson (ZIP) distribution with a 

density function defined as: 

P(Y = k) =  
π +  1 –  π  exp −λ                 if k =  0 

 1 –  π exp −λ 
λ𝑘

k!
            if k ∈  {1, 2, . . . } 

  

Where 0 ≤ π ≤ 1 and λ ≥ 0. 

The parameter π gives the probability at the value 0. When it vanishes, ZIP (π, λ) reduces to Poisson (λ). 

The mean and variance of the ZIP are: 

E(Y) = (1 – π) λ 

V(Y) = (1 – π) (1 + π λ) λ 

We can easily derive λ from the expected value of the ZIP as follow: 

λ =  
𝐸(𝑌)

(1 –  π)
 

From the simulated samples we can estimate the mean of the ZIP and the parameter π. Recall that π is the 

probability that y is 0. Therefore, we could estimate π by dividing the frequencyof 0 by the sample size. 

The test statistic for the simple Permutation test remains the same as described previously with a slight modification in 

the Permutation process. We quickly realized that a full permutation or a partial permutation of the control and 

treatment groups led to a very poor Type I error. Both Control and Treatment contain zeros at approximately 20% of 

their size. Shuffling the two groups could cause the data to be skewed with all the zeros or most of the zeros to be in 

one group and no or very few zeros in the other. After muchtrial and error, we proposed a modified Permutation 

method. Instead of shuffling all the observations, we held the proportion of zeros constant in each group and permuted 

only the non-zero observations. Once we obtained all the permuted samples from the modified Permutation process, 

we then computed the means using the adjusted mean formula discussed above. 

The test statistic is computed in the same fashion as described above. The only difference here is the 

Permutation procedure. When sampling from Normal, Poisson and Negative Binomial distributions we shuffled all the 

data in Control and Treatment groups. However, when sampling from the Zero Inflated Poisson, we modified the 

Permutation procedure by keeping the proportion of zeros constant in each group and permuting only the non-zero 

values. 
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III. RESULTS 
In this section, we will first cover the results obtained from the first phase of our research comparing Type I 

Error and power performance, and then discuss the results from the second phase detection rate assessments (the TP 

and FP rate comparison for each combination of underlying distributions, fitted model and sample sizes for the case of 

two populations scenarios). 

Phase I Research Results 

In our Initial study, we assessed the Type I error as well as the Power of the fitted models for each 

underlying distribution we considered in the case of two populations scenarios. 

Type I error Assessment: µC = µT 

Type I error is defined as the probability of rejecting the null hypothesis when in fact it is true. For this 

simulation study we set our significance level alpha at α = 0.05 and expect the estimated Type I error to be in the 

neighborhood of 5%. 

We sampled two random groups (Control and Treatment) from an underlying distribution using three 

different models (Normal, Poisson and ZIP). The estimated Type I error was obtained based on these random samples 

assuming equals sample sizes for both Control and Treatment. Furthermore, we set the mean of the two groups to be 

equal to 30 and explored different sampling effortsof5, 7, 10, 12, 15, 20 and 30. For the Normal distribution we set the 

variance to be equal to 25 and for the Zero Inflated Poisson we set π=0.2; the mean remains the same for all 

underlying distributions (mean=30). 

The estimated Type I error when sampling from Normal Distribution (Normal with mean 30 and standard 

deviation 5 for both Control and Treatment) is summarized in Table 1 below. The results suggest that, for all 

combinations of sampling effort and fitted models (T test, Permutation, Poisson and NB regressions), Type I error is 

maintained near the stated rate of α = 0.05. Similar results are obtained when sampling from the Poisson distribution. 

As shown in Table 2, Type I error is maintained near 0.05 significance level with the exception of the Permutation test 

which isslightly conservative for sample sizes 5 and 7. 

Table 1. Normal samples - rejection rates (%) for fitted models µC = µT = 30 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=5  4.73  4.98  5.29  5.38  

nC= nT=7  4.37  4.70  4.60  4.71  

nC= nT=10  4.36  4.50  4.48  4.71  

 

Table 2. Poisson samples - rejection rates (%) for fitted models µC = µT = 30  

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=5  4.37  4.02  4.81  4.81  

nC= nT=7  4.55  4.18  4.86  4.95  

nC= nT=10  5.21  4.85  5.37  5.44  

 

Tables 3, 4, 5, 6, 7 and 8 below display estimated Type I error when sampling from Normal and Poisson 

distributions respectively, for samples sizes 12, 15 and 20, using different numbers of random Permutationsamples. 

For small samples above (nC = nT ≤ 10) we performed a full permutation on the simulated data set. However, when the 

sample size is greater than 10 (nC = nT ≥ 12) Permutation becomes overwhelming. In this case we randomly selected a 

sample of all possible permutations of the simulated data set (referred to subsequently as a partial permutation 

analysis). For our study, we considered three sizes (denoted using B in a manner similar to indicating the number of 

bootstrap samples) of these samples of possible permutations. B = 1000, 5000 and 10,000. 

For all combinations of underlying distributions, sample sizes and number of permutationsamples (B) and 

fitted models, as shown from table 3 to table 8, Type I error is maintained near the stated significance level of 0.05. 

Let us note here that for B = 10,000 and sample size of 12 and 15 (Table 8) the Permutation test was slightly 

conservative. 

 

Table 3. Normal samples - rejection rates (%) for fitted models µC = µT = 30,B=1000 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12  4.89  5.08  4.91  5.32  

nC= nT=15  4.87  5.01  4.93  5.20  
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nC= nT=20  5.19  5.36  5.22  5.55  

 

Table 4. Poisson samples - rejection rates (%) for fitted models µC = µT = 30, B=1000  

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12  4.90  4.67  5.05  5.13  

nC= nT=15  5.04  4.76  5.06  5.30  

nC= nT=20  5.34  5.09  5.38  5.51  

 
Table 5. Normal samples - rejection rates (%) for fitted models µC = µT = 30, B=5000  

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12  5.08  5.08  5.14  5.41  

nC= nT=15  5.38  5.33  5.34  5.64  

nC= nT=20  5.28  5.28  5.28  5.58  

 

Table 6. Poisson samples - rejection rates (%) for fitted models µC = µT = 30, B=5000  

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12  4.83  4.42  4.83  4.93  

nC= nT=15  5.16  4.82  5.21  5.43  

nC= nT=20  4.81  4.38  4.82  5.12  

 

Table 7. Normal samples - rejection rates (%) for fitted models µC = µT = 30, B=10K  

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12  5.19  5.39  5.31  5.57  

nC= nT=15  4.82  4.96  4.83  5.26  

nC= nT=20  5.18  5.23  5.14  5.62  

 

Table 8. Poisson samples - rejection rates (%) for fitted models µC = µT = 30, B=10K  

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12  4.74  4.47  4.86  4.94  

nC= nT=15  4.75  4.46  4.78  4.99  

nC= nT=20  4.80  4.52  4.79  4.83  

 

For genes from the ZIP distribution, we only looked at sample sizes greater than 10 and B = 1000 

permutationsamples. From Table 9 below we can conclude that type I error is maintained near the stated alpha value 

of 0.05 for all fitted mode. 

 

Table 9. ZIP samples - rejection rates (%) for fitted models µC = µT = 30, B=1000  

Sampling  

Efforts  

Fitted Models 

T test   Perm  ZIP  Poisson NB  

nC= nT=12  5.10  4.78  4.90  3.43  2.10  

nC= nT=15  4.41  4.59  5.07  3.41  2.43  

nC= nT=20  5.18 4.66 4.85 4.27 3.38  

nC= nT=30  5.32  4.94  5.14  4.66  4.04  

 

The results obtained from the Type I error assessment for each combination of sampling efforts and 

underlying distributions, suggest that all the models fitted (T test, Poisson regression, Negative Binomial regression, 

Zero Inflated Poisson regressionand Permutation Test) control the Type I errors. Therefore, all of the above models 

are valid candidates to test the null hypothesis that the means are equal using RNA-seq data. We will next discuss the 

results from the power comparison to decide whether a particular model is preferred over the rest. 
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Power Comparison: µC ≠ µT 

After ensuring that all models maintained Type I error at below or near the stated significance level of 

α=0.05, we then conducted a power comparison under various conditions to check whether certain models performed 

better than others. We considered a 0.5σ effect size for the power comparison. By 0.5σ effect size, we refer to the 

mean difference between a pair of genes in Control and Treatment is equal to half its standard deviation. For example, 

suppose that we have a µC = 30 and σC =5 for the Control group; a 0.5σ effect size will correspond to µT = µC - 0.5σ = 

30 – 2.5 =27.5 and standard deviation σT =5 for the Treatment group such that µT - µC = 2.5. In general, as the effect 

sizes increase it becomes easier to detect any difference in means; namely, the power of the test increases as well. 

 Effect size: half sigma (0.5σ) 

The power is defined as the probability of rejecting the null hypothesis when in fact it is false. Simulating 

our observations from two populations with different means and setting the null hypothesis as H0: µC = µTmakes the 

null hypothesis false. Tallying the number of times each of the models correctly detects the difference in the two 

groups (rejecting H0 since there are in fact different and dividing it by 10,000 will give us our estimated powers). This 

process was repeated for each of the underlying distributions.  

For small sample sizes (nC = nT ≤ 10), when sampling from Normal and Poisson distribution, all fitted models (T 

test, Permutation, Poisson and NB regression) yielded a comparable power rate as shown in Tables 10-11. 

 

Table 10. Normal samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30) 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=5  9.89  10.45 10.68  10.88  

nC= nT=7  13.47  14.02 14.04 14.32 

nC= nT=10  18.20  18.55  18.37 18.98 

 

 

Table 11. Poisson samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30) 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=5  9.96  9.48 11.00 11.12 

nC= nT=7  14.19  13.47 14.73 14.88 

nC= nT=10  18.71  17.89  18.99 18.34 

 

For samples sizes nC = nT ≥12, we performed a partial permutation analysis for the Permutation test 

(B=1000, 5000, 10000). When sampling from Normal and Poisson distribution, all fitted models (T test, Permutation, 

Poisson and NB regression) yielded a comparable power rate at all permutation sample sizes level as shown in Tables 

12-17. 

Table 12. Normal samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30), B=1000 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12   21.19 21.43 21.13  21.70 

nC= nT=15  26.10 26.42 26.08 26.78 

nC= nT=20   32.72  33.04  32.73 33.70 

 

Table 13. Poisson samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30), B=1000 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12   22.43 21.57 22.73  23.02 

nC= nT=15  27.49 26.63 27.73 28.01 

nC= nT=20   35.09  34.36  35.17 35.52 

 

Table 14. Normal samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30), B=5000 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12   20.99 21.35 21.16  21.75 
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nC= nT=15  26.45 26.63 26.43 27.15 

nC= nT=20   34.11  34.49  34.05 35.26 

 

Table 15. Poisson samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30), B=5000 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12   22.37 21.59 22.70  22.87 

nC= nT=15  27.05 26.15 27.13 27.61 

nC= nT=20   34.89  33.98  34.97 35.49 

 

Table 16. Normal samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30), B=10K 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12   21.88 22.11 21.93  22.47 

nC= nT=15  25.59 25.88 25.65 26.49 

nC= nT=20   33.43  33.45  33.30 34.23 

 

Table 17. Poisson samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30), B=10000 

Sampling  

Efforts  

Fitted Models 

T test   Permutation  Poisson  Negative Binomial  

nC= nT=12   22.28 21.49 22.46  22.72 

nC= nT=15  26.47 25.59 26.73 27.20 

nC= nT=20   35.04  33.78  35.11 35.28 

 

Table 18 summarizes the power rate from all fitted models (T test, Permutation, Poisson and NB regression) 

when we sample from a ZIP distribution. We can see that the Permutation test and the ZIP model yielded comparable 

power whereas T test, Poisson, and Negative Binomial displayed a poor power. 

 

Table 18. ZIP Samples - rejection rates (%) for fitted models µC ≠ µT (Effect size=0.5σ, µ=30, π=0.2), B=1000  

Sampling  

Efforts  

Fitted Models 

T test   Perm  ZIP  Poisson NB  

nC= nT=12  7.65  17.39  20.36  6.09 4.56  

nC= nT=15  7.63  21.28 23.56 6.48  5.36  

nC= nT=20  8.80 28.00 30.29 7.78 6.91  

nC= nT=30  10.71  40.54 42.18 9.99  9.26  

 

Differential Expressed Genes Assessment 

Whenever a fitted model detected a significant difference between the mean of the two conditions of our 

simulated RNA-seq data (Control vs Treatment), the gene wasdeclared to be differentially expressed. The detection 

rate wasthen obtained by tallying the total number of DE genes over the simulation size (5000). 

We sampled two random groups (Control and Treatment) from each underlying distribution using three different 

models (Normal, Poisson and Negative Binomial). The estimated detection rate, True Positive and False Positive rate 

were obtained based on these random samples under two different designs: Balanced (equal sample sizes for both 

Control and Treatment; n1=n2) and Unbalanced (unequal sample sizes between Control and Treatment; n1≠n2). 

Furthermore, we set 80% of the simulated data to be equally expressed (µ1=µ2=30) while the other 20% are set to be 

DE genes (µ1≠µ2) with a 1σ effect size. 

Various sample sizes were considered from 5 to 30. Our early results suggested that Permutation tests suffer 

from the granularity issue with relatively small sample sizes [12]. Note that the smallest possible value for the p-value 

is 1/N where N represents the number of permutation possible. We refer to 1/N as the granularity limit. For large 

sample sizes, since N is too large for the Permutation test to be computationally convenient, we take a partial 

permutationsample of size B for our simulation and therefore the smallest the p-value can beis 1/B. it is important to 

note that 1/B can be much larger than the permutation limit 1/N. To obtain a small p value, a larger number for B is 

required. Due to thisissue, the results are very poor compared to the parametric methods regardless of the design. For 

the rest of the study we will focus on the following sample sizes: 10, 15, 20, 25 and 30. 
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Balanced Design: n1=n2 

When sampling from a Normal distribution (Normal with mean µ=30 and standard deviation σ=5) with a 1σ 

effect size, all fitted models (T test, Permutation, Poisson and NB regression) yielded a comparable detection rate as 

shown in Table 19. As the sample size increases, the number of genes declared to be differentially expressed increases 

as well. However, we are interested in the quality of the model to detect the True differentially expressed genes with 

minimal error. Negative Binomial regressions tend to detect more DE genes compared to the other models but the 

difference is very small. For instance, for sample sizes nC= nT=25, NB regression correctly detected 924 genes out of 

1000, Poisson regression was second with 923 and the Permutation test was third with 922 genes. The difference is 

about two extra genes. It appears that all fitted models perform relatively well when it comes to detecting True DE 

genes when the effect size is relatively large.  

The last column in Table 19 provides the False Positive rate which indicates the proportion of genes that 

were incorrectly declared to be DE genes. Overall, Permutationtests and Poisson regression consistently had lower 

False Positive rates for all sample sizes compared to Negative Binomial regression.Permutation and Poisson 

regression were somewhat similar, with Poisson regression having slightly lower FPR when the sample sizes are 15 

and 20. Permutation however, had a lower FP rate when the sample sizes are 25 and 30. So there is not a consistent 

signal on whether Permutationtests or Poisson regression keeps lower FP rates. But clearly both controlled FP rate 

better than the Negative Binomial regression. The t-test on the other hand had the overall lowest FP rate. This is 

expected as the underlying distribution is Normal but the t-test also had the smallest True Positive rate (slightly lower 

than the others, which is surprising as we expected the t-test to be better when sampling from a Normal distribution). 

 

Table 19. Normal samples - detection rates (%) for fitted models 

Fitted Models Sampling 

Efforts 

Actual Detected TDE 

Gene 

TPR(%) FPR (%) 

T-test 

nC= nT=10 1000 722 546 54.60 4.40 

nC= nT=15 1000 968 763 76.30 5.13 

nC= nT=20 1000 1078 862 86.20 5.40 

nC= nT=25 1000 1119 921 92.10 4.95 

nC= nT=30 1000 1149 968 96.80 4.53 

Permutation 

nC= nT=10 1000 733 551 55.10 4.55 

nC= nT=15 1000 977 765 76.50 5.30 

nC= nT=20 1000 1080 866 86.60 5.35 

nC= nT=25 1000 1121 922 92.20 4.98 

nC= nT=30 1000 1146 967 96.70 4.48 

Poisson 

nC= nT=10 1000 725 543 54.30 4.55 

nC= nT=15 1000 968 761 76.10 5.18 

nC= nT=20 1000 1076 861 86.10 5.38 

nC= nT=25 1000 1124 923 92.30 5.03 

nC= nT=30 1000 1149 967 96.70 4.55 

Negative Binomial 

nC= nT=10 1000 748 557 55.70 4.78 

nC= nT=15 1000 1001 766 76.60 5.88 

nC= nT=20 1000 1091 864 86.40 5.68 

nC= nT=25 1000 1138 924 92.40 5.35 

nC= nT=30 1000 1180 966 96.60 5.35 

 

Table 20 summarizes the simulation results when the underlying distribution is Poisson (Poisson with mean 

lambda=30). We see a similar pattern as with normal distribution samples. The difference in true DE genes is very 

small across fitted models with Poisson and Negative Binomial regression closely detecting about the same number. 

As the sample sizes increase, the models detected more True DE genes and the Permutation test becomes very close in 

True detection rate to Poisson and Negative Binomial regression. The performance of Permutationtests is very 

satisfying and competitive withits parametric counterparts. Interestingly, Permutationtests consistently had the lowest 

False Positive rate across all sample sizes with T-test second. This is in line with our early studies that showed that 

Permutation does a better job at controlling False Positive rates - lower than Poisson and Negative Binomial 

regression. 
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Table 20. Poisson samples - detection rates (%) for fitted models 

Fitted Models Sampling 

Efforts 

Actual Detected True DE Gene TPR (%) FPR (%) 

T-test 

nC= nT=10 1000 768 578 87.80 4.75 

nC= nT=15 1000 987 778 77.80 5.23 

nC= nT=20 1000 1089 888 88.80 4.93 

nC= nT=25 1000 1167 958 95.80 5.23 

nC= nT=30 1000 1158 976 97.60 4.55 

Permutation 

nC= nT=10 1000 749 569 56.90 4.50 

nC= nT=15 1000 959 767 76.70 4.80 

nC= nT=20 1000 1078 888 88.80 4.75 

nC= nT=25 1000 1152 956 95.60 4.90 

nC= nT=30 1000 1151 974 97.40 4.43 

Poisson 

nC= nT=10 1000 780 582 58.20 4.95 

nC= nT=15 1000 990 775 77.50 5.38 

nC= nT=20 1000 1090 891 89.10 4.98 

nC= nT=25 1000 1170 959 95.90 5.28 

nC= nT=30 1000 1162 976 97.60 4.65 

Negative Binomial 

nC= nT=10 1000 781 581 58.10 5.00 

nC= nT=15 1000 988 775 77.50 5.33 

nC= nT=20 1000 1100 893 89.30 5.18 

nC= nT=25 1000 1173 955 95.50 5.45 

nC= nT=30 1000 1165 976 97.60 4.73 

 

When we sample from Negative Binomial distribution (NB with mean µ=30 and standard deviation σ=8) we 

see similar results as Poisson samples discussed above. As exhibited in Table 21 below, all fitted models yielded 

comparable True DE genes detection rates.Permutationtests however consistently kept the False Positive rate lower 

across all sample sizes. Negative Binomial regression tends to have slightly a higher False Positive rate probably due 

to a larger variation in the data. Thus Permutationtests not only appear to be competitive when compared to Poisson 

and Negative Binomial regression but most importantly it consistently had a better control of the False Positive rate 

for nearly all combinations of sample sizes and underlying distribution.  A few exceptions occurred with Normal data 

where we saw Poisson regression having slightly lower FPR when the sample sizes were 15 and 20. 

Table 21. Negative Binomial samples - detection rates (%) for fitted models 

Fitted Models Sampling 

Efforts 

Actual Detected True DE Gene TPR (%) FPR (%) 

T-test 

nC= nT=10 1000 874 680 68.00 4.85 

nC= nT=15 1000 1042 845 84.50 4.93 

nC= nT=20 1000 1143 937 93.70 5.08 

nC= nT=25 1000 1164 969 96.90 4.88 

nC= nT=30 1000 1205 989 98.90 5.40 

Permutation 

nC= nT=10 1000 869 676 67.60 4.83 

nC= nT=15 1000 1032 841 84.10 4.78 

nC= nT=20 1000 1127 937 93.70 4.75 

nC= nT=25 1000 1155 967 96.70 4.70 

nC= nT=30 1000 1193 989 98.90 5.10 

Poisson 

nC= nT=10 1000 881 677 67.70 5.10 

nC= nT=15 1000 1036 834 83.40 5.05 

nC= nT=20 1000 1143 939 93.90 5.10 

nC= nT=25 1000 1167 967 96.70 5.00 

nC= nT=30 1000 1203 989 98.90 5.35 

Negative Binomial 

nC= nT=10 1000 882 674 67.40 5.20 

nC= nT=15 1000 1039 834 83.40 5.13 

nC= nT=20 1000 1143 937 93.70 5.15 

nC= nT=25 1000 1168 966 96.60 5.05 

nC= nT=30 1000 1204 989 98.90 5.38 



Performance of Permutation Tests Using Simulated Genetic Data 

DOI: 10.35629/4767-11011220                                            www.ijmsi.org                                               48 | Page 

Unbalanced Design: n1≠n2 

Given the competitive performance of the Permutation test and its capability to control False Positive rate in 

the balanced design scenario, we decided to run a few unbalanced data sets and assess Permutationtest performance 

compared to Poisson and Negative Binomial regression. The results obtained are summarized in Tables 22, 23, 24 

when sampling from Normal, Poisson and Negative Binomial distributions respectively. We see similar trends as for 

the balanced scenario. All models exhibited comparable True DE genes detection rate. Permutationtests kept the False 

Positive the lowest overall. 

 

Table 22. Normal samples - detection rates (%) for fitted models 

Fitted Models Sampling 

Efforts 

Actual Detected True DE Gene TPR (%) FPR (%) 

T-test 

nC=15 nT=10 1000 806 621 62.10 4.63 

nC=20 nT=10 1000 881 686 68.60 4.88 

nC=20 nT=15 1000 989 793 79.30 4.90 

nC=30 nT=15 1000 1081 872 87.20 5.23 

Permutation 

nC=15 nT=10 1000 811 628 62.80 4.58 

nC=20 nT=10 1000 894 707 70.70 4.68 

nC=20 nT=15 1000 989 794 79.40 4.88 

nC=30 nT=15 1000 1075 880 88.00 4.88 

Poisson 

nC=15 nT=10 1000 808 628 62.80 4.50 

nC=20 nT=10 1000 889 704 70.40 4.63 

nC=20 nT=15 1000 985 795 79.50 4.75 

nC=30 nT=15 1000 1074 877 87.70 4.93 

Negative Binomial 

nC=15 nT=10 1000 822 629 62.90 4.83 

nC=20 nT=10 1000 904 710 71.00 4.85 

nC=20 nT=15 1000 1002 796 79.60 5.15 

nC=30 nT=15 1000 1094 876 87.60 5.45 

 

Table 23. Poisson samples - detection rates (%) for fitted models 

Fitted Models Sampling 

Efforts 

Actual Detected True DE Gene TPR (%) FPR (%) 

T-test 

nC=15 nT=10 1000 929 723 72.30 5.15 

nC=20 nT=10 1000 1047 848 84.80 4.98 

nC=30 nT=15 1000 1086 892 89.20 4.85 

Permutation 

nC=15 nT=10 1000 900 706 70.60 4.85 

nC=20 nT=10 1000 1038 834 83.40 5.10 

nC=30 nT=15 1000 1070 893 89.30 4.43 

Poisson 

nC=15 nT=10 1000 910 711 71.10 4.98 

nC=20 nT=10 1000 1049 842 84.20 5.18 

nC=30 nT=15 1000 1076 894 89.40 4.55 

Negative Binomial 

nC=15 nT=10 1000 914 711 71.10 5.08 

nC=20 nT=10 1000 1049 834 83.40 5.38 

nC=30 nT=15 1000 1086 897 89.70 4.73 

 

Table 24. Negative Binomial samples - detection rates (%) for fitted models  

Fitted Models Sampling 

Efforts 

Actual Detected True DE Gene TPR (%) FPR (%) 

T-test 

nC=15 nT=10 1000 942 739 73.90 5.08 

nC=20 nT=15 1000 1071 885 88.50 4.65 

nC=30 nT=15 1000 1142 925 92.50 5.43 

Permutation 

nC=15 nT=10 1000 950 750 75.00 5.00 

nC=20 nT=15 1000 1069 890 89.00 4.48 

nC=30 nT=15 1000 1131 931 93.10 5.00 

Poisson 
nC=15 nT=10 1000 948 743 74.30 5.13 

nC=20 nT=15 1000 1073 886 88.60 4.68 
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nC=30 nT=15 1000 1145 932 93.20 5.33 

Negative Binomial 

nC=15 nT=10 1000 959 749 74.90 5.25 

nC=20 nT=15 1000 1079 889 88.90 4.75 

nC=30 nT=15 1000 1149 934 93.40 5.38 

 

IV. CONCLUSION 
Our study using Monte Carlo simulation suggest that the Permutation test is a valid competitive model for 

analyzing RNA-seq data. The results are consistent for both balanced and unbalanced designs.Not only did 

Permutationtests yield similar True positive rates as Poisson and Negative Binomial regression, but theyconsistently 

controlled the False Positive rate better than parametric counterparts.  

RNA-seq data are generally assumed to follow either a Poisson or Negative Binomial distribution. 

Traditional models developed for analyzing such data assume these distributions without providing a way to check 

whether the underlying assumptions are met. Our simulation results provide evidence that for both Poisson and 

Negative Binomial samples, the Permutation test is robust and offers good control of the False Positive rate.  
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