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ABSTRACT: This paper is centered on the eigenvalue problem with homogeneous mixed boundary conditions
and introduces a two-grid discretization scheme based on shifted inverse iteration for the discontinuous Galerkin
method. It presents the interior penalty discontinuous Galerkin method for second-order elliptic problems with
homogeneous mixed boundaries, along with an a priori error estimate. Building upon the a priori error estimate,
it provides an error estimate for the proposed scheme and demonstrates that the approximate solution obtained
can achieve optimal convergence order when the grid size satisfies certain relationships. Finally, numerical
results are included to showcase the effectiveness of the approach.
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I. INTRODUCTION

Many scholars have conducted meaningful research on eigenvalue problems. In practical computations,
we hope to obtain approximate solutions to problems with less CPU time without sacrificing accuracy. To meet
this requirement, two-grid and multigrid discretization have been introduced in the finite element method, both of
which are highly efficient. The two-grid discretization was first introduced by Xu [1] for hon-symmetric and
bilinear elliptic problems. In reference [2], Xu and Zhou first applied this approach to eigenvalue problems, and
since then, many scholars have conducted in-depth research. In reference [3], a two-grid discretization and
multigrid discretization scheme were established for self-adjoint elliptic differential operator eigenvalue problems.
It also combined the finite element method with the shifted inverse iteration method to establish a two-grid
discretization scheme based on inverse iteration. In reference [4], it was applied to Maxwell eigenvalue problems,
in reference [5] it was applied to Stokes eigenvalue problems, and in reference [6], it was applied to integral
operator eigenvalue problems, and so on. Using this method, solving an eigenvalue problem on a fine grid reduces
to solving this problem on a coarse grid and solving a linear algebraic equation on a fine grid. Based on the above
work, there is currently no research on the two-grid discretization of the shifted inverse iteration discontinuous
Galerkin method for eigenvalue problems with homogeneous mixed boundary conditions. This paper mainly
discusses the second-order elliptic eigenvalue problem with homogeneous mixed boundary conditions, presents
its interior penalty discontinuous Galerkin method, establishes a priori error estimate, and then, based on the a
priori error estimate, provides a two-grid discretization scheme based on shifted inverse iteration and gives an
error estimate for the proposed scheme.

Il. BASIC THEORETICAL PREPARATION
Let Q c R? be a bounded domain with a Lipschitz boundary dQ, where dQ = I}, UTy, letn be the
outward unit normal vector of dQ. Consider the eigenvalue problem with mixed boundary conditions: Find A € C
and u € Hf, (), such that
—Au = Au, in Q,

u=0, OTlFD, (21)
n_p T '
==0 on Ty.

Denote
(u,v) =J- uvdx ,
Q

and define a continuous bilinear form
atu,v) = (Vu,Vv), VYu,vE H%D(Q) ) (2.2)
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There exist two positive constants A and B independent of u, v such that the bilinear form a(:,) satisfies
la@u, V)| <Al uloll v, VYuv€HE (Q)
a(v,v) > Blvliig, Vv € Hf, (Q)
The weak form of (2.1) isto find (1,u) € C X H}D(Q), u # 0, such that the following equation holds.
a(u,v) =A(u,v), Vuve H%D Q). (2.4)

Let 7, = {x} be a shape-regular mesh of 2, where an internal edge of 7;, is the non-empty interior of dx™ N
dx~, with k* and k™ being two adjacent elements of 7}, not necessarily matching. An external edge of 7, is the
non-empty interior of dk N Q. Let € = &; U Ep U E,-,Where &; denotes the set of interior edges, £;, denotes an
edge on the boundary I}, and €, denotes an edge on the boundary T.

h, = diam(x), VK € Ty; h, = diam(e), Ve € E.
Introduce the space of piecewise functions over the mesh 7;,:
H3(T) = {v € L*(Q): v|, € HS(k) ,Vk € T},}.

Define the average and the jump of v on e:

1
{v}} = W), [l =vint vt

where e = dk* N dk~, vt = v|+, v~ = V|, nis the unit outward normal vector from k* to k™.
If e € EHUE),, define the average and the jump of v on e:

{W=v, [Wll=vn

2.3)

Define
ano) = Y [ @wpevoddx= Y [ () [wallds
KETR K ee&qUep €
= 0 [t (owdlas Y we | [walwallds
ee&qUED € e€€yUép €

where 1 is the penalty parameter.
Define the space of DG finite elements:
V, ={veL*Q): v|,eP,(k) ,Vk € T}.
where P,, (k) is the m-th order polynomial space on k.
The finite element approximation of (2.4) is to find (4, ,u,) € C XV}, u;, # 0, such that

ah(uh ,Uh) = Ah(uh ,Uh), Vvh € Vh' (25)
The source problem for (2.4) is to find w € Hf_ (), such that
a(w,v) = (f,v), Vv € Ht (Q). (2.6)
The DG approximation of (2.6) is to find w;, € V,, such that
anWp,vp) = (f,vn), Vv € V. (2.7)
Define the linear bounded operator T: L2(Q) — H}D (Q) satisfying
Tf:i=w, (2.8)
The equivalent operator form of (2.4) is:
Tu =u. (2.9)
T,: L?(Q) — V,, can be defined as the corresponding discrete solution operator of (2.8), satisfying
Thf = wy, (2.10)
The equivalent operator form of (2.5) is:
Thuh = iuh. (211)
Introduce the summation space V(h) =V}, + H%D (Q) endowed with the DG norm, where the DG norm is defined
as:
vl = Z IVwRlg . + 1 Z het f I[[v]]17ds.
KETR ee&yuéyp €
And define the norm on the piecewise function space H*(t,)(s > g) as
_ he
Ivll; = ZKETh ||Vv||5,k +7 ZEEEjUED hi? fe |[[17]]|2d5 + ZEEE;]UED 7]; |{{VU}}|2dS (2.12)
Note that on the discontinuous finite element space V;,, Il - I, and |l - ll; are equivalent.

By Proposition 3.3 in reference [7] and the Green's formula, we can derive the consistency of the discontinuous
finite element method. Furthermore, by considering equation (2.7), we obtain:

ap(w—wy,v,) =0, Vv, €V, (2.13)
Proof. Letw € H%D () and v, € V}, be given. We can break a; (w,,, vy,) into four terms as follows:
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ap(w,vy) = Z f (Vw - Vo,)dx — Z f {{VW}} . [[vh]]ds

K e

KETR ee&qulp
= > [ty Iwtlas D) het [ [wllwallas
eegjuEp € e€gUED €
=T, —-T,—Ts+T, (2.14)
According to [[w]]|. = 0, we can deduce T; = T, = 0.
By applying the Green's formula to T;, we have:
Ty = Yxer, (J, — Awvpdx + [, Vw - nv,ds) (2.15)
According to
YikeTh f,c — Awvydx = fg fvndx (2.16)
YkeTy fax YW -0, vpds = Yeeesuey fe {{VW}} : [[Uh]]ds =T, (2.17)
we candeduce Ty, = T, + T3 + Ty + [, fvudx,
then
ap(w,vy) = [, fopdx, Vv, €V, (2.18)

From the above equation and (2.7), we can obtain (2.13).
It is not difficult to see that the following continuity and ellipticity hold:
lap (up, vi)| S Nlugll, llvell,,  Yup, v, € V(R), (2.19)
lunl? S ap(upup), Yuy € Vy (2.20)
According to equation (2.8) w = Tf , and assuming f € L?>(©) and w € H'*"(Q), we can assume the following
regularity estimate holds:

1
Wlyer S Ifllyg (5<7<1).

Lemma 2.1.B Let x € T, and v € H¢(k), s,, > % Then there exists the polynomial I1, v € IP,, (x), satisfying

” v— Hhv "q‘Ks hll?in(m+1,5x)_q”v"smx , (221)
min(m+1,s )—l
Il v—T,v llesS hy 2wl - (2.22)

Now we introduce the global interpolation operator Hh:H%D(Q) - Vg, such thatIl, (w)|, = I, (ulx), for the
vector-value function r = (ry, r,),define I, (1) |, = (1, H,15).

Theorem 2.1. Let w and wy, be the solutions to (2.6) and (2.7), respectively. Assuming that w satisfies w|,. €
H*x(k), the following inequalities hold for all k¥ € 7;, and s, > ;

w—wyll, S inf llw=vl,, 2.23)
VREVH
. 1
W = Wil S (Drery (20,523, 220)

Proof. Firstly, we prove (2.23) by utilizing (2.13), (2.19), and (2.20), we can obtain
[lw— whllfl S ap,(w—wp,w —wy)
Say(w—wp,w—v) +a,(w—wy, vy —wy)
S llw —wpll, lw — vl
According to the triangle inequality and the above equation, we can obtain
lw —wpll, S llw—=vpll, + lvy = will, S lw —wvpll, + llvy — wll,.
Therefore, equation (2.23) is proven.
Next, we prove (2.24). From (2.12), setting E,(w) = w — I, w, we have:

2 2 -1 2 he 2
BT, = D WEWI+n Y it [IlEwlRds+ Y 22 [ {Taem)eds
KET}, e€€UED e e€€[UED €
2 2 he 2
S ) UREMIG+n Y wAEIG, + ) S ATEw;,
KETh eejuEp ee&juép
.= 11 + 12 + 13 (2.25)

An estimation for I; can be obtained using (2.21)
Yeer, IVhExWI . S Ser, IERWIIT

. ~ (2.26)
S Se, (RO ) )2
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An estimation for I, can be obtained using (2.22)
- 2 _
n ZEEE]UE'D helll[[Eh(W)]]”O‘e s ZKETh (Zeeax nhe 1"Eh(W)"§'e)

. 1
min (Mm+1,5,)—

S Yer, Nhie* (hy 2wl ) (2.27)

min (m+1,5,)—1 2
S ZKETh (hk,' * "W"SK,K)

Estimation for I5 can be obtained, using (2.22), where e = k* N~ kt = Kk~
Seeeven NTRERI;, S = (hITRER W), I ¢, + IVAER (W) )
R IVREn W)l )
S Seer, ey (e IVAER WG, + B2V, Ep (w)I2,0) (2.28)
S Sen, (™ O w02 4 2 (R RO T T 02

S Teen, (e O Wil )2
From (2.26), (2.27) and (2.28), we can obtain

i — 1
hw =Tw s O G0 )7

KETh
According to the error estimation formula and the interpolation error formula, we have:
inf llw—wvpll, Slw—Tpw I, (2.29)

VhEVH

From (2.23), (2.29) and the above equation, we can derive (2.24), the proof is completed.

Theorem 2.2. Let w and w,, be the solutions to (2.6) and (2.7), respectively. Assuming that w satisfies w|,. €
H?®(k), the following inequalities hold forallk € 7, ands > 1+ r

Iw—=wylly, S A lIlw —wyll,,, (2.30)
Il w—wy llgqS RPROMHLIFT=1 |y 1 (2.31)

where h = maxh, .
KETR

Proof. Firstly, to prove equation (2.30), considering the primal problem of the dual problem (2.4) denoted as
a(v,w') = (v,g), Vv € Hf (Q), for any fixed g € L?(Q) ,where w' € H™*"(Q), a regularity estimate
W lisra S liglly g holds. Let w;, = II,w’,By utilizing (2.13), we can derive

W —wp, g) = ap(w —wp,w') = ap(w —wy,w' —Tw")

S w = will, lw" = Tw'll,.
From (2.24) and the elliptic regularity estimate, we can obtain
Iw" = Tpw'll, S RTIW g S A7HGIHG g (2.33)

From (2.32) and (2.33), we can obtain

(2.32)

lw—wpllpo= sup Jw — wi, )| S K llw — wyll,
gerz@) 11 glloq

that is (2.30).
Next, we will prove (2.31). From (2.24) and (2.30) we have
Iw—wp llooS A llw — wyll, = ™0 (LT o

that is (2.31), the proof is completed.

From (2.24) and regularity estimate, we derive the stability estimation:
ITofNl, = Ifllg

111. APRIORI ERROR ESTIMATES FOR THE EIGENVALUE PROBLEM
Assume A is the jth eigenvalue of (2.4) with the algebraic multiplicity g and the ascent « = 1,
Aj = Ajyr = = Ajyq-1- When |IT, =Tl , = 0, q eigenvalues 4; p, -+, 4;.4-1,,0f (2.6) will converge to 4. Let
M (A)be the space of generalized eigenvectors of (2.4) associated with A, and M, (1) be the direct sum of the
generalized eigenspace of (2.8) associated with A, that converge to A.
Given two closed subspaces V and U, denote
6(U, V) = sup infllu—v IIO_Q,S(U, V) =max{6(U,V),8(V,U)}.
uev llullgn=1veU
And denote the arithmetic mean 1, = éZ{:}‘.’_l Ain-
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Theorem 3.1. Assume M(1) c HS(Q)(s = 1+71), t = min{m + 1,s} — 1, then

A — A| S h?t, (3.1)
Suppose u, € M, (4) is a direct sum of generalized eigenvector spaces for (2.5). Then there exists an
eigenfunction u for the eigenvalue problem (2.4) such that

"u - uh‘”O,Q < ht‘l“l"’ (32)
llu —upll, < h. (3.3)
Note that Tf = w and T, f = wy,. With the operator form, regularity estimate, and (2.31), we can obtain
N Tf—T,f Il
[ — Th ||0'Q= sup M
0%fEL2(Q) I flloq
ht+r
< P71 Noa Sh*" -0, (h-0).
ozferz) I f lloa
From Theorem 7.1, Theorem 7.2, Theorem 7.3 and Theorem 7.4 in [9], we have
, S§(MQ), My (D) SI (T = Twlu log » 34)
2=l = 2047 (T = Tew @)+ (T = T lu T » (3.5)
A=l s B0 1((T = T )] + 1T = Tlu I, (36)
lu — Uh”(m sl (T — Th)|M(/1) oo - (3.7)

where {¢;}/277" is basis for M(2) .

From Theorem 2.1 and Theorem 2.2, we derive

(T - Th)|M(A) lo,0= Sup I Tf —Tnf lloa
FeM)|Ifllo,n=1 (3.8)
S sup R I TS le+1,0
FeM)|Ifllo,n=1
Substituting (3.8) into (3.7), we can obtain (3.2).
By utilizing the properties of the operator and regularity estimates, from (2.13), we can obtain that
(T =T, e) = an(Te; — Ty, Toy)
= ap(To; — Tapi, T — The)
SITe; — T Il Ty, — Thop Nl (3.9)
SRENTQ; s R Toy lleys
< th
Substituting (3.8), (3.9) into (3.6), we get (3.1).
From u = ATu and u, = 1, T,uy,using the triangle inequality, (2.31), (3.1) and (3.2), we derive
lu — upll, — llu — ATxull, |$ lup — ATpull, = 1Ty (Apup — AW, S IApuy, — Au”O,Q S httT
(3.10)
From (2.9) and (2.11), we get
lu — ATpull, = IATu — ATpull, < AlTu — Thull, S Lrel]; ITu —vpll, S llu —upll, = ht
v,
o (3.11)

From (3.10) and (3.11), we can obtain (3.3).
The proof is completed.

IV. TWO-GRID DISCRETIZATION
In this section, we present a two-grid discretization scheme based on the shifted inverse iteration. We
propose Scheme 4.1 and conduct a rigorous theoretical analysis. Denote Vy, €V, , h < H .

Scheme 4.1(Two-grid discretization based on shifted inverse iteration)
Step 1: Solve on the coarse grid 7y (2.5): Find 14, uy) € R X Vy, such that |luyll,, = 1 and
ay(uy, v) = Ay(uy,v), Vv € Vy
Step 2: Solve a linear system on the m;,: Find u € 1}, such that
ap(u,v) — Ay (u,v) = (uy, v), Vv € V).
Setu} = ﬁ .
h
Step 3: Compute the Rayleigh quotient
PACATD
S
Next, we will perform an error analysis for scheme 4.1.
We first present the following lemma to prepare for the error analysis.
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Lemma 4.1. Let (4, u) be an eigenpair of (2.4), then for any v € V,, and ./(v,v) # 0, the Rayleigh quotient
__ap(vyw) . g

R(w) = I satisfies

ap(v-u,v-u) _ (v—u,v-u)

(ww) (ww)

R(w)—21= (4.1)
Proof. From (2.13) we have
ap(u,v) = (u,v) = Au,v), Vvevl,,
thus,
a,(v-—u,v—u)—Alv—-u,v-—u)

=a,(v,v) — 2a,(u,v) + ap(u,u) — A(v,v) + 24w, v) — A(u, u)

=ap(v,v) — 2w, v) + a(u,u) — A(v,v) + 24w, v) — A(u,u)

=ay(v,v) —A(v,v)
dividing both sides by (v, v) we get (4.1)

Lemma 4.2. For any non-zero elements u, v in any normed linear space (V, II-Il), it holds that:
v ” < 2IIu—vII lu— vl

u u v
Il =2l =2
] flull vl lull flull  Nwll vl
Proof See Lemma 3.1 in [10]

Lemma 4.3. P Let (10, u,) be the jth approximate eigenpair of (2.4), where y, is not an eigenvalue of T, ,
Uy € Vi, lluell, = 1, such that
(C)dist (uo, My (1)) <5

9
(C2) o — 1| <% [pen — | <

constant of the eigenvalue u; ;
(C3)u eV, and u}' €V, satisfy

9, k=j—-1,j,j+q(+0),whered = min |u, — p;| is the separate
4 Hr*Hj

— h__Uu
(uo — Tu = uy, uj = Tl ? (4.2)
then
. 4 .
dist(uf’, My (1) <5 _max  |uo = pn|dist(uo, Ma(k))) .
Now we can use Theorem 3.1 and the above lemma to analyze the error of the two-grid discretization Scheme
4.1.

Theorem 4.1.  Suppose that M(4;) c HS(Q) (s > %) , and t =min{m+1,s} —1. Let (A},u]") be an
approximate eigenpair obtained by Scheme 4.1 and H is sufficiently small, then there exists u; € M(4;) such
that

||u}‘ — u]-||h < C(H3"*" + hY) (4.3)

e =l , < CCH3*T + R (4.4)

|A — 4| < C(H3**T + ht)? (4.5)

Proof. We will use Lemma 4.3 to complete the proof. Take u, = i, Uy = AHTRYH_ Erom (3.3) we know that
A 12 Thunlly,

there exists u € M(4;), such that Ay T,uy — u satisfy (3.2) and (3.3). From (2.10), Schwarz’s inequality and
(3.2), we get ) ) ) ]
an(Th(uy —»u), Ty (uy — u))_ = (ug — U, Tp(uy —u))
O X
< C(Ht+r)2
then, )
|7 — u)”h < CH™*" (4.6)
From (4.10), (3.1) and (3.3), we get ) ) ) )
|26 e — u”h = || (Thun — Thw) + A (Tou — Tu) + (A — /1)Tu||h

< c(Ttu —w]), + 1T =Tl + 14 = 2D
< C(H™ + h* + H?)
< C(H'*™ + hY)
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Denote u' = ——, from Lemma 4.2 we can obtain
il
lup —'ll, = [lug — ﬁ <C ||/1HThuH - u||h < C(H™" +ht) 4.7)
u
h%h
From (3.3) we know that there exists u, € My (4;) , such that
lup —wll, = |lun — = < Ch® (4.8)
0,1,
From the triangle inequality, (4.11) and (4.12) we get

dist(ug, My, (4))) < llug — upll, < llug —u'll, + lluy, —u'll, < C(H™ + hY)
where H is small enough, the condition (C1) in Lemma 4.3 is valid.
From (3.1) we get

(4.9

|24 — 4] 9
—uj| =——=<CH? <—;
|.UO .u]| |AHAJ| 4

|ien — A 9
| = then| = ——<Ch¥*<—, k=j—-1,j,....j+qk=#0.
|Ak,hlk| 4
Then, the condition (C2) in Lemma 4.3 is valid.
According to the definition of T;,, Step 3 of Scheme 4.1 is equivalent to
ap(u,v) — Agay (Thu, v) = ap(Tyuy, v), vv eV,
and ul = ——.
lullp
u
Aa' = Tu = ' Thuy,  uft = .
llull,
Note that AT, uy and u, differ by only one constant, so Step 3 is equivalent to
u
A7t —T)u = uy, ul = )
( H h) 0 j ”u"h
Therefore, all the conditions in Lemma 4.3 are valid.
Since the dimension of M, (4;) is q, there exists u™ € M, (4;) such that
||u}‘ - u*||h = dist(u}l, My (4))).
where k =j,j+1,...,j + g — 1, according to (3.1), we have
o — tien| = |- —— AH=Akh
Ho = Hion A Aknl T | AHAKR 4.10
< C(|Aw = 4] + |4 = A (4.10)
< C(H?' + h?%) < CH?.
Therefore, from Lemma 4.3, (4.13) and (4.14) we get
luft —wll, = dist ], Mp(3))
c .
<5 max_ |10 — tx | dist (uo, My (1) (4.11)
< CHZt(Ht+r + ht) — C(H3t+r + htHZt)_
From (3.3) we know exists u; € M(4;)such that [lu” — w|, = dist(u", M(%;)), and
lw* —wll, < Ch* (4.12)
Therefore, from (4.15) and (4.16) we get
haf =l < N =l + e =l < CCH* + ht)
This (4.3) is proven.
Next, we will prove (4.4), from (3.2) we have
lu* —wll < Ch*™*"
0,Q
similarly,
[l —

u}'llo‘Q < "u]h - u*llo,n + "u* — uj”o,n < C(H3'*T + ht*7)
Finally, we use Lemma 4.1 to derive (4.5), from Step 4 of Scheme 4.1, Lemma 4.1, (4.7) and (4.8) we derive that
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j (' —w,u —w)

j
n||2 n||2
ksl Ml
< C(luwf - u,-llfl + |2 lu ~ ujllilﬂ)

< C(H3t+r + ht)z

an(uf' —uwj, uft — u;) _

)

|4 =] =

The proof is completed.

V. NUMERICAL EXPERIMENTS
In this section, we will report some numerical experiments to show the efficiency of our method. We

consider problem (2.1), where the penalty parameter is set to 8. Our program was compiled under the iFEM
software package. We consider the following two test domains: a square region Qg = (0,1)? and an L-shaped

domain (0,1)%\ (%, 1)2. The initial mesh is a uniformly triangulated mesh with edge length 1/2, and the mesh is

uniformly refined by dividing each triangle into four congruent triangles. We directly use linear elements to obtain
an approximate solution for the eigenvalues. Since the exact eigenvalues are unknown, we use higher-dimensional
computations to obtain their eigenvalues as reference values. For example, we take reference eigenvalues 4, =
2.467401100, 1, ~ 12.337005, 1; ~22.2066 in the square domain, and A, = 1.26503, 1, ~ 10.4193, 1; =
24.1361 in the L-shaped domain. From the two figures below, the first figure shows the error curve obtained by
solving the linear elements in a square region, while the second figure represents the error curve obtained by
solving the linear elements in an L-shaped region. In the square region, the error curves of the eigenvalues are all
parallel to a straight line with a slope of 2, whereas in the L-shaped region, the error curves of the first and second
eigenvalues have slopes of 1.33 and 1.37 respectively, which are not parallel to the straight line with a slope of 2.
Therefore, the first and second eigenvalues of the L-shaped region are singular, while the error curves of the
remaining eigenvalues have slopes close to 2. Hence, except for the first and second eigenvalues of the L-shaped
region, all other eigenvalues can achieve optimal convergence rates. In Tables 1 and 2, we list the solutions
obtained directly using linear elements on fine meshes in the square domain and L-shaped domains, and the
solutions obtained using the two-grid discretization method based on the shifted inverse iteration method in
Section 4.1, along with the solution times required by these two methods. From the comparison of the data in the
two tables, it is evident that our method in Section 4.1 is more efficient and the solutions obtained still maintain
optimal accuracy.

Error

= — — — -The line with slope 2

1072 107
The mesh size h
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—A—),
—o—,
—k— 2,
10° fl—o—2,
—— )
——2

—;‘3—)\7

10" |

10-1 L

— — — -The line with slope 2 [~ _

- 25

Error

1072 107
The mesh size h

Figure: The above two graphs describe the error curves obtained by solving on linear elements. The first graph
shows the error curve on the test domain (g, while the second graph shows the error curve on the test domain ;.
The initial mesh has an edge length of 1/2.

Table 1: The first three eigenvalues of (2.1) solved using linear elements on domain (g , based on scheme 4.1.

j H h Ain Ain CPU(s) ar CPU(s)
1| v2/16 J2/128 2.4689387917 24674254560 135 24674254561 0.68
1| v2/16 V21256 2.4689387917 2.4674071945 6.89 24674071949 361
1| V232 J2/512 2.4677886497 2.4674026245 4957 24674026260 30.89
2| V216 J2/128 12.3832323 12.3377415 1.19 12.3377415 0.68
2| V216 V21256 12.3832323 12.3371897 5.36 12.3371897 3.46
2| V232 J2/512 12.3486973 12.3370516 4718 12.3370516 32.74
3| vzne J2/128 22.33084 22.20858 1.03 22.20858 064
3| vzne V21256 22.33084 22.20710 5.26 22.20710 3.65
3| vzm2 J2/512 22.23798 22.20673 46.65 22.20673 30.78

Table 1: The first three eigenvalues of (2.1) solved using linear elements on domain €, , based on scheme 4.1.

j H h A An CPU(s) A CPU(s)
1 V2/16 V21128 1.267879655 1.265207079 0.74 1.265207079 0.49
1 V2116 V21256 1.267879655 1.265099724 3.45 1.265099725 2.23
1 V2132 V2/512 1.266163395 1.265057232 21.81 1.265057233 13.23
2 V2/16 V2/128 10.4564 10.4208 071 10.4208 043
2 V2116 V21256 10.4564 10.4199 3.60 10.4199 2.23
2 V2132 V2/512 10.4313 10.4195 21.61 10.4195 13.69
3 V2116 V2/128 24.3042 24.1397 0.70 24.1397 0.48
3 V2116 V21256 24.3042 24.1372 351 24.1372 2.27
3 V2132 V2/512 24.1816 24.1365 23.02 24.1365 14.14

VI. CONCLUSIONS
This paper presents a study on the two-grid discretization of eigenvalue problems with homogeneous
mixed boundary conditions using the discontinuous Galerkin method. Based on our approach, we solve the
eigenvalue problem on the fine grid nA using linear elements and also provide solutions using Scheme 4.1.
Numerical experiments are conducted on Qg and Q; . The numerical results show that compared to directly solving
the eigenvalue problem on the fine grid, the two-grid discretization method based on shifted inverse iteration
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requires less CPU time. Furthermore, as the grid size decreases, the advantages of the two-grid discretization
method with shifted inverse iteration become more apparent, indicating the efficiency of our approach. Therefore,
this method has strong practical value for solving eigenvalue problems with homogeneous mixed boundary
conditions.
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