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ABSTRACT: Biharmonic eigenvalue equation is a typical fourth-order partial differential equation, which is an 

important partial differential equation model in elastic thin plate, biophysics and other fields, and its efficient 

numerical solution has been a hot spot and difficulty in related fields. The discontinuous finite element method 

has high plasticity and adaptability, and has become an important numerical method for solving various kinds 

of partial differential equations and practical problems. In this paper, we use the discontinuous finite element 

method to study the eigenvalue problem of biharmonic equations with simply supported boundary conditions, 

and introduce a posterior error index based on residual through discontinuous Galerkin discretization, and 

obtain the complete posterior error estimation results of this method. The performance of this index is verified 

in an adaptive mesh refiner. 
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I. INTRODUCTION  

The biharmonic equation originates from the elastic thin plate theory in the field of continuum 

mechanics. The fourth-order boundary value problem is a kind of special boundary value problem of partial 

differential equations, which often appears in thin plate theory of elasticity, phase field model and mathematical 

biology, which makes biharmonic equations widely used. Many scholars have also been committed to the 

numerical solution of biharmonic equations, and its solution methods are constantly optimized and innovative. 

The finite difference method was used to solve biharmonic equations[1]. Liu used the mixed finite element 

method to solve the biharmonic equation[2], that is, by introducing intermediate variables, the biharmonic 

equation was reduced to two second-order equations, and the mixed finite element space satisfying certain 

conditions was used to discretize corresponding mixed variational problem, so as to obtain the numerical 

solutions of the original variables and intermediate variables satisfying the original equation. Discontinuous 

Galerkin finite element method is a kind of finite element method using completely discontinuous basis function, 

which can solve more complex boundary problems, and is easy to realize the selection of local mesh and each 

element polynomial. Therefore, discontinuous Galerkin method is often used to solve various eigenvalue 

problems, such as Steklov eigenvalue problem, Laplacian eigenvalue problem, biharmonic eigenvalue problem, 

etc. Emmanuil derived the DG scheme of the biharmonic equation[3]. The internal penalty discontinuous finite 

element method is to penalty the jump of the approximating solution on the common edge or common surface of 

the element, which is more flexible than the finite element method. [4] constructed the hp internal penalty 

discontinuity Galerkin finite element method for biharmonic equations and analyzed the prior error of the 

method. In this paper, the biharmonic eigenvalue problem with simply supported boundary is studied by 

discontinuous finite element method in internal penalty discontinuous galerkin(IPDG) format, and a posterior 

error estimation is established to verify the reliability and validity of the posterior error estimation of the 

discontinuous finite element method. The results show that the adaptive algorithm can achieve the optimal 

convergence order. 

 

II. BASIC THEORETICAL PREPARATION  

      to represent a standard Lebesgue space, where           , The corresponding norm is 

expressed by         . In this paper, the norm of       is represented by       We also use       to express 

the standard Hilbert Sobolev space of real functions defined at      with index      and the corresponding 

norm and semi-norm are        and       . Let   be the bounded open polygon region of   , and let    represent 

its boundary. Consider the simply supported boundary condition eigenvalue problem: find    and   
  

          , such that 
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     {
                          
                      

                                                              

Denote 

      ∫  
 

      

and define a continuous bilinear form 

                      
                                                       

Then, there exists two positive constants   and   independent of   and  , such that the bilinear form        is 

satisfied 

      
|      |                 

           

                    
           

                                             

The weak form of (2.1) is to find           
                such that  

                   
                                                                

Let   be a conforming subdivision of   into disjoint triangular or quadrilateral elements    , on 

this assumption that the subdivision is shape regular and constructed by affine mapping   , where     ̂   , 

with nonsingular Jacobin, where  ̂ is the reference triangle or quadrilateral. It is assumed that the mapping is 

constructed to ensure that  ̅       ̅  and the elemental edges are straight line segments. 

The broken Laplacian     is defined by 

                       

For a non-negative integer  ,     ̂  is used to represent the set of all polynomials of degree at most   

if  ̂ is a reference triangle, and     ̂  is used to represent the set of polynomials of tensor product if  ̂ is a 

reference quadrilateral. For    , consider its finite element space 

                                                                         ̂      .  

We use    to represent the union (including the boundary) of all one-dimensional unit edges 

associated with the subdivision  . In addition, we decompose    into two disjoint subsets, i.e.           , 

where            . 

Let   and    be two elements of the shared edge                . Define the outward normal 

unit vectors on   corresponding to     and    , respectively, as    and   . For functions        and 

      , these functions may be discontinuous in    , the following is defined for       |          
 |           |     , 

                      
 

 
       ,        

 

 
       ,  [ ]           ,   [ ]             . 

If        , then these definitions are changed as follows: 

                                                             ,            ,     [ ]     ,     [ ]      . 

With the above definition, it can be verified 

∑ ∫       
     

 ∫ [ ]       
  

 ∫    [ ]  
    

                                                   

To define            , and collect them into the elementwise constant function        , with     
      , and             . We always assume that the families of meshes considered are locally quasi-

uniform, there are constants     independent of  , for any pair of elements    and    in  , that share an edge, 

we have  

          
 

  

   
  . 

We first introduce the lifting operator            
               by 

∫  
 

        ∫  
  

[ ]         ∫  
    

   [  ]                                                     

And the lifting operator   has stability: for     , there is 

       
   ( √ [ ]    

   √ [  ]      

 )    

Where       ,      . 

Proof. See [5]. 

Define bilinear form as          by 

          ∫  
 

                                 

 ∫  
  

 [ ][ ]   ∫  
    

 [  ][  ]                                                                  

here the internal penalty parameter       ,          of the segmentation constant is defined as 

 |  
     |      |    

     |                                                                 
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where           , in order to guarantee the stability of the IPDG method defined in (2.7),  ,   must be 

selectively large enough. 

The finite element approximation of (2.4) is to find             , such that 

                                                                                     

The source problem of (2.4) is to find     
          , such that 

                  
                                                               

The DG approximation of (2.10) is to find      , such that  

                                                                                       

Define the linear bounded operator           
           satisfying 

                           
                                                  

The equivalent operator from of (2.4) is  

   
 

 
                                                                                                         

By using (2.10), the corresponding discrete solution operator             can be defined: 

                                                                                           
The equivalent operator from of (2.10) is 

     
 

  

                                                                                                    

From the consistency of discontinuous finite element method, let   be the solution of (2.12), and        , 

then 

                                                                                          
From (2.11) and (2.16), we obtain 

                                                                                          

For any function    , introduce sum space         
           , that assigns a locally discontinuous 

finite element norm, where the energy norm is defined as follows: 

            
   √ [ ]    

   √ [  ]      

  
 

                                                   

There is         is continuous and coercive： 

|       |                                                                             

              
                                                                    

where                 is a piecewise continuous function,    and    are positive constants depending 

only on the mesh parameters. 

Proof. For       , using the Cauchy-Schwarz inequality, we have 
|       |                                          

  √ [ ]    
 √ [ ]    

  √ [  ]      
 √ [  ]      

           

 

Continuity is valid. 

Next, we prove (2.20), using the definition of norm and the Young’s inequality, we obtain 

            
   ∫  

 

         

     
          

  
 

 
      

 

 
 

 
      

  √    ( √ [ ]    
   √ [  ]      

 ) 

 

When     
 

 
, the proof is completed. 

Let                  be the solution of (2.12), and        , assuming the following 

regularity estimate holds: 

                                                                                            

Let    be the quadratic interpolation of  , then: 

                                                                                      

also [    ]   . 

 

Lemma 2.1. (Proposition 4.9 in [6]) Let     and                then there exists the polynomial 

      , satisfying          

            
    

                                                                       

             

   
 

                                                                        



Discontinuous Finite Element Adaptive Methods for Biharmonic Eigenvalue Problems with .. 

DOI: 10.35629/4767-12020314                                     www.ijmsi.org                                                      6 | Page 

Introduce the global interpolation operator      
                such that     |     |  , for the 

vector-value function                 define     |                   
 

Lemma 2.2. (lemma 2.1 in [7]) Let    ,     , and     
 

 
, for any           with         , there 

exists a positive constant C independent of   such that  

                          
  

 

 
  

  (          
   

       )  

 

Theorem 2.1. Let   and    be the solution of (2.10) and (2.11), for all    , and           
 

 
, then 

there holds 

           
     

                                                  

        ∑  

   

  
    

                                                                                    

Proof. Firstly, we prove (2.25) by utilizing (2.17), (2.19) and (2.20), we obtain 

        
                                                 

                 

 ∫  
  

           [     ]             [    ]   

 ∫  
    

          [        ]            [       ]    

 

From lemma 2.2, the inverse estimate and the definition of energy norm, we deduce 

∫  
  

          [     ]   

 ∑  

    

              
  

 

 
  

 [     ]   

 
    

 ∑  

 

(                
   

             )    (   
 

 [     ]     
 )

 

 

 (                     )                                                                                    

 

Also 

∫  
  

           [    ]                                                                                                       

From the trace inequality, the definition of energy norm and (2.21), we deduce 

∫  
    

         [        ]  

 ∑  

      

             [        ]     

 ∑  

 

(  
 

                

 

              )  
 

     
 

 [        ]     
  

 

 

                            

                                                                                                                          

 

Similarly, 

∫  
    

          [       ]  

 ∑  

      

              [       ]     

 ∑  

 

(  
 

                 

 

               )  
 

     
 

 [       ]     
  

 

 

                                                                                                                                               

 

Then 
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Using the triangle inequality, we get (2.25). 

Next, we prove (2.26). By (2.18), let           , having 

        
  ∑  

   

            
  ∑  

    

   
 

 [     ]      

  ∑  

      

   
 

 [      ]        

 

                 ∑  

   

            
  ∑  

    

   
 

 [     ]      

  ∑  

    

   
 

 [      ]      
 

                                                                                                              
                                     

 

   can be estimated from (2.23): 

            
                                                                                           

   can be estimated from (2.24), the trace inequality and the inverse estimate: 

   
 

 [     ]     
     

 

                            
 

       

 
 

                  

 

                  

       

 
 

                 

                                                                                                                

 

Similarly, we get   : 

   
 

 [      ]     
     

 

                              
 

       

 
 

                  

                                                                                                                

 

Using (2.32), (2.33) and (2.34), we get 

        ∑  

   

                                                                            

By using the error estimate and the interpolation estimate, we obtained 

   
     

                                                                 

Then (2.26) directly from (2.25), (2.35) and (2.36), the proof is completed. 

 

Theorem 2.2. Let   and    be the solution of (2.10) and (2.11), then there holds: 

                                                                                

                                                                                                    
 

Proof.    is the quadratic interpolation of  , form (2.17) and (2.22), we have 

                                 

               

 ∫  
  

           [    ]            [    ]   

 ∫  
    

          [       ]           [       ]                       

 

From [    ]   , we derive 

∫  
  

          [    ]                                                                          

From lemma 2.2, the inverse estimate, definition of energy norm, (2.21) and taking      , we deduce 

∫  
  

          [    ]   ∑  

    

         
  

 

 
  

 [    ]   

 
    

 (                     )        

                                                                              

 

By the trace inequality with 
 

 
    , the interpolation estimates and the definition of energy norm, we get 

∫  
    

         [       ]   ∑  

      

               [       ]      
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 ∑  

 

 
 

 (  
 

                

  
 

 |       |   ) (   
 

 [       ]     
 )

 

 
 

                        

                                                                                                                                           
 

From the trace inequality, (2.21), (2.22) and the definition of energy norm, we derive 

∫  
    

         [       ]   ∑  

      

 
 

             (   
 

 [       ]     
 )

 

 

 ∑  

 

 
 

        (  
 

                

 

              )

  
 

     (  
 

             

 

         )

                        
                                                                                                     

 

Then (2.37) directly from (2.39), (2.40), (2.41) and (2.43). 

Next, we prove (2.38). From (2.26), (2.37) and (2.43), we get 

                                 

                        

                                                                                                       

 

So, (2.38) is valid. 

Taking              in (2.26), and the regularity estimate yields the following stable 

estimate: 
                                                                        

Let   be the  th eigenvalue of (2.4), with algebraic multiplicities   and the ascent    ,where 

                . When            ,   eigenvalue                of (2.9) will converge to  . Let 

     be the generalized eigenvector space of (2.4) related to  ,       be the direct sum of the generalized 

eigenvector space of (2.9) related to   , and    converge to  . 

 The following theorem can be proven using a similar method as proof Theorem 3.1 in reference [8]. 

 

Theorem 2.3. The following inequality holds 

|    |                                                                                        

Let          be the direct sum of the generalized eigenvector space of (2.9), with     
 

 
 ,then there 

exists eigenvalue function   of (2.4) such that 

                                                                                                                    

                                                                               
 

 

III. POSTERIOR ERROR ESTIMATION  

i. Estimators of eigenfunctions and their reliability 

 

Let         be the eigenpair of (2.9), and define element residuals and surface residuals on each 

element     and     , respectively, as follows, 

          
    

     [  ]            [   ]         

     [    ]              [   ]         

 

Define local error indicators on the     of each unit 

  
  ∑  

 

             
        

     ∑  

    

            
  ∑  

      

            
  

 ∑  

      

        |   
  ∑  

      

          
                                                                 

 

where                   
    

  . 

The global error indicator is 

       ∑  
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Lemma 3.1. We assume that the mesh   is constructed as above. Then there exists an operator       ̃  
   

            that satisfies  

∑  

   

|        |   
   (  

 

 
  [  ]    

    
 

 
  [   ]      

 )  

with         and     being a constant that is independent of   and   . 

Note that the recovery operator   maps elements of    onto a   -conforming space consisting of macro-

elements of degree 4. 

Proof. See [3]. 

 

Theorem 3.1. Let       and         be the eigenpairs of (2.4) and (2.9), for any     
          , the 

following formula holds 

       
                   

                                                                

Proof. Let           
                 , with        ̃     

            in lemma 3.1, then 

the error can be decomposed into 

       (       )                    

Since   is the solution to the weak-form problem, we have               , where            . We 

have 
                        

                             

                                                                                                        
 

Then  

                                                                                                   

By     
                  ̃     

           , there is              
          , then 

       , and by      in (3.5), there is  

                 

                                                
                                                                                                                    

 

We have          is a linear approximation to   , then     is a constant independent of  ,       
     , from [9] we get 

     |       
   

  |                                                                                         

By (3.7), then 

                                                                                               

By (2.5), (2.7), Green's formula and the definition of the lifting operator, there is 

   ∫  
 

        
        ∫  

 

           ∫  
    

     [    ]  

 ∫  
    

   [     ]   ∫  
  

 [  ][ ]   ∫  
    

 [   ][  ]   
 

From the inverse estimate, the stability of the lifting operator, the trace inequality, (3.7) and Poincaré-Friedrichs 

inequalities, we get  

|  |  (           
        √ [  ]    

   √ [   ]      

 )
 

 |  |   

   
 

 [    ]]      
|  |      

 

 [     ]]      
|  |   

     
 

 [  ]    
     

 

 [   ]      

  
 

 |  |                                                                     

 

Using       [  ]|  
 [   ]|    

  , the triangle inequality and the stability of the lifting operator 

|  |  | ∫  
 

                                

 ∫  
  

 [  ][  ]   ∫  
    

 [   ][   ]  |

         
   √ [  ]    

   √ [   ]      

  
 

                                                  

 

Substituting (3.8), (3.9) and (3.10) into (3.6), and using the Cauchy-Schwarz inequality, we obtain 

                        

            
      

     
 

 [  ]    
     

 

 [   ]      

 

   
 

 [     ]      

    
 

 [    ]      
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Then  

      
  ∑  

   

|        |   
      

 

 
  [  ]    

    
 

 
  [   ]      

                             

Theorem 3.1 can be proved by Lemma 3.1, (3.11), (3.12) and the triangle inequality. 

For the residual term            
      , reference [3] shows that it does not affect the upper 

bound, and it can be seen from theorem 2.3 that when ascent    ,              and           are 

both small quantities of higher order        . Therefore, it can be seen from (3.3) that the indicator of error 

estimation       is one of the upper bounds of the discontinuous finite element energy norm, so the error 

estimation is reliable. 

 

ii. Effectiveness of the eigenfunction estimator 

 

Theorem 3.2. Under theorem 3.1, there is 

    for any    , 

                
                

       
   

     for any     , 

            
      [  ]     

      [ ]     
   

      for any       , 

            
      [   ]     

      [  ]     
   

     for any         

  
 

          

                    
           

   

    for any         

  
 

          

                    
           

   

Proof. First prove      Given that   
     is a subspace of   

          . Fix    , and let     
     

  
    , with  |     , be a polynomial function on  . Setting      and taking   as above in (3.4) yields 

∫ 
 

       ∫ 
 

             ∫ 
 

               ∫ 
 

                              

noting that             on   and that [ ]|  
 [  ]|  

    |  
     |  

  . We have 

|∫ 
 

              |                                                      

Letting  |               
 , where        is the standard internal bubble function (which is defined by 

      ̂    , where          are the barycentric coordinates of the reference triangle  ̂, then   ̂          , 

and if  ̂ is the reference rectangle, then   ̂       
       

  . We have 

              
   ∫ 

 

             
     ∫ 

 

                                 

Then applying (3.14), (3.15) and the Cauchy-Schwarz inequality yields 

              
                       

         

          
                

                                                 
 

    is valid. 

For any     , we have [ ]|  
  , which gives      For any       , we have [  ]|    

  , then 

we get        
Next prove     . For each inner edge  , we define the largest diamond in       as  ̃, where   is the 

diagonal of the diamond  ̃. And we define the bubble function   ̃  ̃    on the diamond  ̃. And there is an 

affine     ̃    which has a value of 0 along edge e, i.e.        |     | . Thus    is fully defined as a 

symbol, which is irrelevant to the discussion. The above definition gives the function       , where 

  | ̃      ̃
 , and on    ̃, where      , then we have the following properties: 

           
     [  ]|  

 [   ]|  
     |  

   

         |        ̃
  |       |                                                           

 

and along edge   we have    ̃     . 

We set        where   is a constant function in the direction of   normal, i.e.,       |   , and 

substitute   and      into (3.4), we deduce 

∫  
    

[   ]         ∫  
     

             ∫  
     

               ∫  
     

                  

Letting  |      [   ]    |  in (3.18), we derive 
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∫  
    

[   ]           
 ̃

 

    [   ]      

       [   ]      

                             

From scaling argument and norm equivalence, let      , where      represents the length of a line 

perpendicular to   in  ̃ intersecting at point    , so there is 

        
          

   ∫           
 

 
 

     
 

         
 

 [   ]                 

From (3.18) and (3.19), we have 

    [   ]      

 

                 
        

                 
        

          
         

 (  
 

                
   

 

                  
    

 

         
)    

 

         
            

 

Substitute (3.20) and      into (3.21), by the Cauchy-Schwarz inequality, and multiply (3.21) by   , so      is 

proved. 

Similarly,     the same as the above, have 

  ̃
          

     [  ̃
 ]|  

 [   ̃
 ]|  

      ̃
     |  

          ̃
                         

Letting      ̃
 ,   is defined the same as  , and substitute   and      into (3.4), we have 

∫  
    

[    ]        ∫  
     

             ∫  
     

               ∫  
     

                  

Let  |   [    ]|  into (3.23), there is 

∫  
    

[    ]          
 ̃

 

 [    ]      

    [    ]      

                                  

From the above, there are the following 

        
          

    
 

        
 

 [    ]                              

The following can be obtained by (3.23) and (3.24) 

 [    ]      

     
 

                

     
 

        

    
 

                  

     
 

         

     
 

        
                     

 

By substituting     and (3.25) into (3.26) and multiplying both sides of (3.26) by   ,     is proved. 

 

Theorem 3.3. Under Theorem 3.1 and theorem 3.2, we have 

  
  ∑  

   

               
       

   ∑  

    

   
 

 [    ]   
 

 ∑  

      

   
 

 [       ]   
                                                                                          

              
                

                                                                             

 

Proof. According to the definition of    and theorem 3.2, (3.27) can be obtained, and using the definition of 

energy norm, (3.28) can be obtained. 

Theorem 3.3 shows that the error estimation indicator is valid. 

 

iii. The reliability of the estimators for the eigenvalues  

 

Lemma 3.2. Let       and         be the eigenpairs of (2.4) and (2.9), respectively, then  

     
            

       
 

             

       
                                               

 

Theorem 3.4. Under the condition of lemma 3.2, let                  
 

 
, then  

                        
            

            
                          

Proof. Theorem 2.3 shows that           is a term higher than        , so from lemma 3.1 and (3.3), 

we have 

              
  ∑ ∫          [    ]

 

  

    

 ∑ ∫         [       ]
 

  

      

           

From lemma 2.2, the inverse estimate and the definition of energy norm, we deduce 
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∑  

    

∫ 
 

          [    ]  

 ∑  

    

              
  

 

 
  

 [    ]   

 
    

 ∑  

 

    (                
   

             )    
 

 [    ]     
  

 

 

 (                       )                                                                     

 

From the trace inequality and the definition of energy norm, we derive 

∑  

      

∫ 
 

         [       ]  

 ∑  

      

 
 

               (   
 

 [       ]     
 )

 

 

 ∑   
 

 

 

(  
 

               
 

              )        

 (                      )                                                                

 

Substituting (3.32) and (3.33) into (3.31), and then from (3.3) and the Cauchy-Schwarz inequality, we get (3.30), 

that is, the proof is complete. 

From theorem 3.1 and theorem 3.3, we know that the estimator        of the eigenfunction error 

       
  is reliable and efficient. Therefore, an adaptive algorithm based on this estimator indicator can 

generate a good gradient grid such that the approximate eigenfunction reaches the optimal convergence rate 

         in     
 . Thus, we expect: 

          
            

            

Therefore, from (3.30), we get |    |          . Thus,        can be regarded as the error estimation 

indicator of   . The following numerical experiments show that       as the error estimation indicator of   is 

reliable and efficient. 

 

IV. NUMBERICAL EXPERIMENTS 

In this section, we report some numerical experiments to demonstrate the effectiveness of our 

approach. Considering the problem (2.1), our program is compiled under the iFEM package and we use the DG 

method where the penalty coefficient is           to do the calculation. Consider the following two test 

domain: square domain    with vertex of                         , hexagonal domains    with vertex of 

                                                  Since the exact eigenvalue is unknown, we take the reference 

eigenvalue             in the square domain and the first two reference eigenvalues 

                  ，                    in the hexagon domain. 

 

Table 1: Results of numerical solutions of quadratic eigenvalues for region   ,with an initial grid of 1/8 

 

                     

 

 

 

 

   

1 768    1.0e+02*4.804360813618129 90.7995813618128 

2 1056 1.0e+02*4.0162473161865 11.98823162 

4 1728 1.0e+02*3.92381659951859 2.74515995185873 

6 3888 1.0e+02*3.90616393229752 2.62161409558774 

8 8760 1.0e+02*3.92258114095587 0.979893229753657 

10 18564 1.0e+02*3.9012227109147 0.485771091471861 

12 42378 1.0e+02*3.89847285964222 0.210785965330899 

14 87588 1.0e+02*3.89736006335979 0.099506810507876 

16 206172 1.0e+02*3.89680850296493 0.044593973099722 

Table 2: Results of numerical solutions of quadratic eigenvalues for region   ,with an initial grid of 1/8 

 

                     

 

 

 

1 2304 56.681054076591394 5.482175956805392 

2 2616 54.063730945910883 2.864852826124881 

4 4512 52.744740755403164 1.545862635617162 
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6 8334 52.153313504680995 0.954435384894992 

8 15468 51.745061666227073 0.546183546441071 

10 28248 51.509294035452548 0.310415915666546 

12 53400 51.376378012289926 0.177499892503924 

14 99072 51.290365005390711 0.091486885604709 

15 136656 51.266349425181744 0.067471305395742 

 

Table 3: Results of numerical solutions of quadratic eigenvalues for region   ,with an initial grid of 1/8 

 

                     

 

 

 

 

   

1 2304 1.0e+02 *3.614939016628592 32.736159444206237 

2 2838 1.0e+02*3.425149701035349 13.757227884881900 

4 5502 1.0e+02* 3.364259155266177 7.668173307964651 

6 11460 1.0e+02* 3.333056194237199 4.547877205066868 

8 22872 1.0e+02*3.313142058416707 2.556463623017692 

10 45060 1.0e+02* 3.300261319939643 1.268389775311334 

12 89652 1.0e+02*3.294558000135493 0.698057794896329 

14 174900 1.0e+02*3.291024325952683 0.344690376615290 

16 341610 1.0e+02*3.289234693276596 0.165727109006639 

 

Figure 1: On the test domain   , the initial grid is 1/8 quadratic adaptive mesh and error curve 

     
 

Figure 2: On the test domain   , the reference eigenvalue is    with an initial grid of 1/8 quadratic adaptive 

mesh and error curve 
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Figure 3: On the test domain   , the reference eigenvalue is    with an initial grid of 1/8 quadratic adaptive 

mesh and error curve 

   

The numerical solution results of eigenvalues obtained through adaptive calculation are listed in table 

1 to Table 3, and the figure illustrates the adaptive mesh and error curve. From Figure1 to Figure3, we can see 

that the error curve of the numerical solution for eigenvalues is approximately parallel to the error index curve 

to a certain extent, the error curve of the quadratic discontinuity element exhibits a nearly parallel relationship 

with a line having a slope of -1. It shows that all the posterior error indexes of numerical eigenvalues are reliable 

and effective. The results show that the adaptive algorithm can achieve the optimal convergence order, you can 

also see from the error curve that for the same degree of freedom       , the approximation obtained by the 

adaptive algorithm is more accurate than that obtained by the uniform grid calculation. 
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