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Abstract: In this study, we introduce the uphill Sombor and modified uphill Sombor indices and their
corresponding exponentials of a graph. Furthermore, we compute these indices for some standard graphs,
wheel graphs, gear graphs, helm graphs.
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I. Introduction

In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set and
edge set of G. The degree d (u) of a vertex u is the number of vertices adjacent to u. Any undefined
terminologies and notations may be found in [1].

A u-v path P in G is a sequence of vertices in G, starting with u and ending at ¥, such that consecutive
vertices in P are adjacent, and no vertex is repeated. A path 7 = V|,V,,...v,,; in G is a downhill path if for

every ;1 <i<k dg; (Vi) 2dg (Vi+1)'

A vertex vis downhill dominates a vertex u if there exists a dowmbhill path originated from u to n.
The downhill neighborhood of a vertex vis denoted by N, (v) and defined as: N, (v) = {u: v downhill

dominates v }. The downhill degree d,, (v) of a vertex vis the number of downhill neighbors of v [2].

Recently, some downhill indices were studied in [3-11].
The uphill domination is introduced by Deering in [12].

A u-v path P in G is a sequence of vertices in G, starting with u and ending at v, such that consecutive
vertices in P are adjacent, and no vertex is repeated. A path 7 = Vv{,V,,...v,; in G is a uphill path if for every

[1<i<k dG(Vi)SdG(VHl)‘

A vertex vis uphill dominates a vertex u if there exists an uphill path originated from u to v. The
uphill neighborhood of a vertex vis denoted by Nup (v) and defined as: Nup (v) = {u: vuphill dominates

u}. The uphill degree dup (v) of a vertex vis the number of uphill neighbors of v, see [13].

Recently, the F-hill index was studied in [14, 15].

The Sombor index was introduced in [16] and it is defined as

S0(G@) = Y \dg Wl +d, ().

uveE(G)
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Motivated by the definition of Sombor index, we introduce the uphill Sombor index of a graph and it is
defined as

UsO(@)= Y d, W) +d,, ().

up
uveE(G)

Considering the uphill Sombor index, we introduce the uphill Sombor exponential of a graph G and
defined it as

USO(G X Z d“/,(u) +dl,)(v
uveE(G)

We define the modified uphill Sombor index of a graph G as
"USO(G) =

uveE(G)\/d ) +d, (v)

up
Considering the modified uphill Sombor index, we introduce the modified uphill Sombor exponential of a

graph G and defined it as
1

"Uso(G,x)= A, @, oF

uveE(G)
Recently, some Sombor indices were studied in [17-30].

In this paper, the uphill Sombor index, modified uphill Sombor index and their corresponding
exponentials of certain graphs, honeycomb networks are computed.

II.  Results for Some Standard Graphs

Proposition 1. Let G be r-regular with n vertices and > 2. Then
nr(n—1)

NG

nr
Proof: Let G be an r-regular graph with n vertices and » = 2 and ? edges. Then d

USO(G) =

wp (v)=n-1 for every v

in G.

uso(G)= Y \/dup W) +d,, ()’

uveE(G)

=”—2W(n-1)2+(n_1)2

_ nr(n—1)

2

Corollary 1.1. Let C, be a cycle with n> 3 vertices. Then

Uso(C,)=~2n(n-1).

Corollary 1.2. Let K, be a complete graph with n> 3 vertices. Then
2
n(n-1)
N

Proposition 2. Let G be r-regular with # vertices and 7= 2. Then

USO(K, )=
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USO(G,x) = ”—Z”xﬁ("*“.

Proof: Let G be an r-regular graph with n vertices and » > 2 and n_zr edges. Then dup (v)=n-1 for every v
in G.

USO(Gx)= Y V@ sl

uveE(G)

Zﬂx\/(n*1)2+(n*1)z
2

_ ﬂxﬁ(n—l)‘
2

Corollary 2.1. Let C, be a cycle with n> 3 vertices. Then
USO(C,,x)=nxV2"D.

Corollary 2.2. Let K, be a complete graph with n> 3 vertices. Then
-1 _
USO(KH,x):—”(”2 ) D,

Proposition 3. Let G be r-regular with n vertices and 7> 2. Then
"USO(G) =~

22(n-1)

Proof: Let G be an r-regular graph with n vertices and » > 2 and n—zr edges. Then dup (v)=n-1 for every v

in G.

1

"USO(G) = _ _
wiEG) \/dup (W) +d,, (v)

_nr 1

2 (1)

nr

2\/5 n—1) .
Corollary 3.1. Let C, be a cycle with n> 3 vertices. Then

"USO =2n(n-1).

(Cn): J2(n-1)

Corollary 3.2. Let K, be a complete graph with n> 3 vertices. Then
n
2\2°

Proposition 4. Let G be r-regular with # vertices and 7= 2. Then

"USO(G) = %xﬁ(’“l).

"USO(K, )=
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Proof: Let G be an r-regular graph with n vertices and » > 2 and n_zr edges. Then dup (v)=n-1 for every v

in G.

1
USO(Gox)= Yl

uveE(G)

1

:ZX (n-1)*+(n-1)°
2

1
— ﬂxﬁ(nfl) .
2

Corollary 4.1. Let C, be a cycle with n> 3 vertices. Then
1

"USO(C,,x)=nx\2n=D,

Corollary 4.2. Let K, be a complete graph with n> 3 vertices. Then

1
"USO(K,,x)= —n("z_l) 20,

Proposition 5. Let P be a path with n>3 vertices. Then

USO(P) = 242n* =100 +13 +2 (n —3)*.

Proof: Let P be a path with n>3 vertices. Clearly, P has two types of edges based on the uphill degree of end

vertices of each edge as follows:

Ei={uv e E(P)|dyp(u)y=n -2, dp(v)=n—3},| Ei|=2.
E>,={uv € E(P) | dyp(u)=dyp(v)=n—3}, |E2j=n-3.

uso(P)= Y \Jd,, W)’ +d,, ()

uveE(P)

(-2 +(n=3)> +(n=3)(n=3)> +(n—-3)

—2\2n2 —10n+13 +2 (n—3).

Proposition 6. Let P be a path with n>3 vertices. Then
USO(P x) = 2xm + (n _ 3)x(n—3)\/5.

Proof: We obtain

USO(Px)= 3 Vil s

uveE(P)
=9 =243 (n— 3))6\/(;173)%("73)2
_ 2x\/2n2—10n+13 +(n— 3)x(n—3)\/5.

Proposition 7. Let P be a path with n>3 vertices. Then
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"USO(P) = 2 L

o2 —10n+13 V2

Proof: We obtain

"USO(P) =

uvem)\/d (W) +d,, (v)?

up

_ (n=3)
\/(n—2) +(n-3) \/(n—3)2+(n—3)2

_ 2 L
S22 —1lon+13 V2

Proposition 8. Let P be a path with n>3 vertices. Then
1

_— 1
MUSO(P,x) = 2x 2 10m13 4y (1 —3) x (=312
Proof: We obtain

1

mUSO(P’x) _ Z x«'dw)(u).erw(V)

uveE(P)
1 1

_ 2)6\/(r1—2)2+(n—3)2 +(n— 3)x\/(n—3)2+(n—3)2

1 1

— o xN2n-10n+13 (n- 3)x(1173)\/5.

III.  Results for Wheel Graphs

Let W, be a wheel with n+1vertices and 2n edges, n>4. Then there are two types of edges based on the uphill
degree of end vertices of each edge as follows:

Ei={uv e EW,) | dp(u)=0,d,(v)=n}, | Ey|=n.
Ey={uv e EW,) | dyp(u)= dyp(v)=n}, | E> | =n.

Theorem 1. Let ¥, be a wheel with n+1vertices and 2n edges, n>4. Then

uso(w,)=(1++2)n?.

Proof. We deduce
2 2
uso(w, \/d ()" +d,, ()

uveE
= n\/02+ n°+ n\/n2+ n’

=+ V2.

Theorem 2. Let W, be a wheel with n+1vertices and 2n edges, n>4. Then

USO(W,,x)=nx" + —cy

Proof. We obtain

USO(W, . x) = Z @+, (7

uveE

— nx\)O +n? + nx\)nz+n2
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= mx" + ',

Theorem 3. Let W, be a wheel with n+1vertices and 2n edges , n>4. Then

’"USO(Wn)=1+L.

NG

Proof. We deduce

"USO(W,

uveE \/d (u) +d ()

Theorem 4. Let ¥, be a wheel with n+1vertices and 2n edges, n>4. Then
1 L
"USO(W,,x)=nx" + nx 2.

Proof. We obtain

1
"USO(W,,x)= Y A @, 0

uveE(W)
1 1

— nx\/02+”2 + nxx/n2+n2
1 L
= nx" + nxﬁ".

IV.  Results for Gear Graphs
A bipartite wheel graph is a graph obtained from W, with n+1 vertices adding a vertex between each
pair of adjacent rim vertices and this graph is denoted by G, and also called as a gear graph. Clearly, |V(G,)| =
2n+1 and |E(G»)| = 3n. A gear graph G, is depicted in Figure 1.

Figure 1. Gear graph G,

Let G, be a gear graph with 3 edges, n>4. Then there are two types of edges based on the uphill degree of end
vertices of each edge as follows:

= {u € E(G,) | dp(u) =1, dup(v) = 0}, |Er|[=n.
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Er={u € E(G,) | dpp(u) =1, , dup(v) = 3}, | E> [ =2n.

Theorem 5. Let G, be a gear graph with 2n+1vertices, n>3. Then the uphill Sombor index of G, is

USO(G,)= (1+ 210)n.

Proof: We deduce

Uso(G,)= Y \d, @)’ +d,, ()’
uveE(G,)

= 12+ 02 + 2n12 + 3
= 1+ 2410)n.

Theorem 6. Let G, be a gear graph with 2n+1vertices, n>3. Then the uphill Sombor exponential of G, is
USO(G,,x)= nx' + 2nx 10

Proof: We deduce

USO(Gyox)= 3 i@ o)

uveE(G,)
o + 2nx iz
\/—.

= nx

= nx'+ 2nx

Theorem 7. Let G, be a gear graph with 2n+1vertices, n>3. Then the modified uphill Sombor index of G, is
& 20
"USO(G,)= g + —mn
Proof: We deduce

"USO(G,

o3 ), ) +d,, ()’
n 2n
J12+ 02 JP+ 3

&ﬂyo

I
Theorem 8. Let G, be a gear graph with 2n+1vertices, n>3. Then the modified uphill Sombor exponential of G,
is
1

"USO(G,,x)= nx'+ 2nx®

Proof: We deduce

1
’”USO G, x Z d,w)+d,, ()’

uveE )
1
= nx‘/lz*_02 + omx T
L
= nx' + 2nx 10,
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V.  Results for Helm Graphs
The helm graph H, is a graph obtained from W, (with n+1 vertices) by attaching an end edge to each
rim vertex of W,. Clearly, |V(H,)| = 2n+1 and |E(H,)| = 3n. A graph H, is shown in Figure 2.

&,

[}
Us

Figure 2. Helm graph H,

Let H, be a helm graph with 3n edges, n>3. Then H, has three types of the uphill degree of edges as follows:

Ey={uv € E(H,) | dup(u) = n+1, dyp(v) = n}. | Ey|=n.
Ey={uv e E(H,) | dip(u) =dip(v) =n }. | E>|=n.
Es={uv € E(H,) | dp(u) =n , d,p(v) = 0}. | E3|=n.

Theorem 9. Let H, be a helm graph with 2n+1 vertices, n>3. Then the uphill Sombor index of H, is

USO(H,)= ny2n* + 2n+ 1+ 2+ Dn’.

Proof: We obtain

USO(H,)= > \/dup ) +d,,(»)’

uveE(H,)

@+ 1 + 0+ nn’ + 0’ + nfn’ + 02
n\/2n2 +2n+ 1+ (\/5-1- l)nz.

Theorem 10. Let H, be a helm graph with 2n+lvertices, n>3. Then the uphill Sombor exponential of H, is
USO(H,,,x)= nx">" "2 1 4 pxV 4+

Proof: We deduce

USO(H,,x)= Y Ay v, 0

uveE(H,)
\/(n-*-l)2+n2 + nx'\ln2+n2 + nx\/112+02
\jZn +2n+1

+ nx "+ nx"
Theorem 11. Let A, be a helm graph with 2a+1vertices, n>3. Then the modified uphill Sombor index of H, is

n 1
"USO(H, )=~ —=+ 1
2w+ 2nt1 A2

Proof: We deduce
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"USO(H,

uveE \/d W) +d,, (v

n

+
\/(n+1)2+n \/n 0’ nt+ 0

S R S

2P+ 2n+ 1 \/5

Theorem 12. Let H, be a helm graph with 2n+1vertices, #n>3. Then the modified uphill Sombor exponential of

H,is

1

. 1
. . !
"USO(H,,x)= mx"V>" 21 4 pxm 4 pxn,

Proof: We deduce

"USO(H
( uveE \/d (u) +d ()

up
1

— nx\/(n+1) +n? 4 nx»\/n +n? + nx«/nZJrO2

1

! 1
> -
— nx«hn +2nt+1 + nxn\/z + nx".

VI. Conclusion

In this paper, the uphill Sombor index, modified uphill Sombor index and their corresponding exponentials of
certain graphs are determined.
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