International Journal of Mathematics and Statistics Invention (IJMSI)
e-1SSN: 2321 — 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 13 Issue 3 || May - June 2025 || PP: 10-18

AN ANALYTICAL FRAMEWORK OF SHORTEST PATH OPTIMIZATION USING
GRAPH THEORY

Mrs. R. Devi** and R. Krishnaloshini*

** Assistant Professor, PG Department of Mathematics, Bon Secours Arts and Science College for
Women, Mannargudi, India.
*Master of Science, PG Department of Mathematics, Bon Secours Arts and Science College for
Women, Mannargudi, India

Date of Submission: 05-05-2025 Date of acceptance: 18-05-2025

ABSTRACT

This project presents an analytical framework for shortest path optimization using graph theory, with a focus
on real-world applications in logistics, transportation, telecommunications, and finance. By modeling complex
systems as graphs, we explore how graph-theoretic algorithms can enhance decision-making and operational
efficiency. The study primarily investigates two widely used shortest path algonithms such as Dijkstra’s
Algorithm and the Bellman-Ford Algorithm. We evaluate their performance in terms of computational
efficiency, accuracy, and applicability to various network conditions, including graphs with negative edge
weights. Through a series of experiments and real-world case studies, we demonstrate how these algorithms
can be effectively applied to optimize routes and minimize travel distances. The findings provide comparative
msights into the strengths and limitations of each approach, offering practical guidance on selecting the
appropriate algorithm based on specific problem constraints. This research underscores the eritical role of

graph theory in solving optimization problems and improving network-based decision-making,

KEYWORDS: Shortest path optimization, Graph theory, Transportation, Telecommunications, Finance,
Graph-theoretic Algorithms, Dijkstra’s Algorithm, Bellman-Ford Algorithm, Optimize routes, Minimize

Travel distances, Network-based Decision-making,.

1. INTRODUCTION

Optimization challenges are central to many modern industrics, including logistics, transportation,
telecommunications, and finance where efficient decision-making is critical to operational success. As
problems in these domains grow increasingly complex and large-scale, traditional optimization methods often
fall short in delivering scalable and effective solutions. Graph theory, with 1ts mathematical foundation for

modeling relationships between entities, offers a powerful framework to tackle such challenges.
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This paper focuses on the intersection of graph theory and optimization modeling, particularly in the context
of shortest path algorithms. By representing systems as graphs, we can capture complex interdependencies
and apply structured approaches to decision-making. Graph-based models enable the development of efficient
algorithms that improve routing, reduce operational costs, and enhance performance across a range of real-

world applications.

We explore key graph-theoretic techniques especially shortest path algorithms such as Dijkstra’s Algorithm
and the Bellman-Ford Algorithm and analyze their practical relevance in solving optimization problems. From
optimizing delivery routes in logistics to managing data flow in telecommunications networks, these

algorithms offer scalable and precise solutions for dynamie, real-time environments.
2. DEFINITIONS
2.1. OPTIMIZATION MODELING:

An optimization modeling is a mathematical tool, that is used to determine the most optimal solution to a
problem through the examination of constraints and objectives. It is utilized to assist people and groups in
making well-informed choices by optimizing or minimising a specific objectives while following particular

limitations.
2.2. GRAPH THEORY:

Graph theory is the branch of mathematics, which is the study of structures made up of nodes connected by
links, used to represent relationships and networks.

2.3. GRAPH:
A graph (denoted as G = (V, E)) consists of a non-empty set of vertices V and a set of edges E. A vertex a
represents an endpoint of an entities. An edge e joins two vertices a, b and is represents the relationship.
Where V= {a,b,c,d} and E= {e, f, g, h}
2.4. PATH:
A sequence of edges that connects a sequence of vertices in a graph is said to be path.

2.5. WEIGHTED GRAPH:

A weighted graph is a graph in which cach edge is assigned a numerical value, called a weight. These weights

can represent various metrics, such as distance, cost, or time, depending on the context.
2.6. DIRECTED GRAPH

A directed graph is a graph in which the edges may only be traversed in one direction. Edges in a simple
directed graph may be specified by an ordered pair (v, v } of the two vertices that the edge connects. We

say that v;is adjacent to vyand v is adjacent from v; .
2.7 SHORTEST PATH ALGORITHM

In shortest path routine the path length between each node is measured as a function of distance, bandwidth,
average traflic, communication cost, measured delay eic, in a graph The node representing a router and arc
of the graph representing a communication link each link has a cost associated with it. To choose a route

between a given pair of routers, the algorithm just finds the shortest path between them on the graph.
3. DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm is a popular algorithm for solving many single source shortest path problems having non-
negative edge weight in the graphs. i.e., it is to find the shortest distance between two vertices on a graph. This
algorithm is called single source shortest path because in this algorithm, for a given vertex called source. The

shortest path to all other vertices is obtained.
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3.1. STEPS OF DILIKSTRA’S ALGORITHM
STEP 1 - Set the starting node (Source node):
Set the starting node’s distance to zero and mark it as current node and the rest with infinity.
STEP 2 — Calculate distances:
Find all vertices that lead to the current node and calculate their distances.
STEP 3 — Mark the current node as visited:
Once all the neighbours of the current node have been visited, mark it as visited.
STEP 4 — Find the next current node:
Choose the unvisited node with the smallest distance as the current node.
STEP 5 — Repeat :
Repeat the process until the shortest distance to the end node is found.
3.3. FINDING SINGLE SOURCE SHORTEST PATH USING DIJKSTRA'S ALGORITHM

The steps involved in Dijkstra’s Algorithm to find the single source shortest distance.

« Step 1: Mark the source node with a current distance of 0 and the rest with infinity.

« Step 2: Set the non-negative node with the smallest current distance as the current node.

« Step 3: For each neighbour(N) of the current node adds the current distance of the adjacent node with
the weight of the edge connecting 0 — 1. If it is smaller than the current distance of node, set it as new
current distance N.

« Step 4: Mark the current node 1 as visited.

« Step 5: If there are any nodes unvisited, repeat the process from step 2.

4. BELLMAN-FORD ALGORITHM

Bellman-ford algorithm is the extension of Dijkstra’s Algorithm that can be handle negative weight edges. It
works by relaxing the edges of the graph repeatedly.

4.1. STEPS OF BELLMAN-FORD ALGORITHM

STEP 1 — Initialization:

Set the distance of the source vertex to 0 and all the vertices to infinity. Also, set the predecessor of all the
vertices to null.

STEP 2 — Relaxation:

Repeat this step for each edge in the graph |V| - 1 times. During each iteration, update the distance to each

vertex if there is a shorter path through another vertex.
STEP 3 - Check for negative cycles:

Perform one final iteration to check for negative cycles. If a shorter path can still be found, then there is a

negative cycle in the graph.

STEP 4- Output the shortest paths:

Return the shortest distances and predecessors.

4.2. FINDING SHORTEST PATH USING BELLMAN-FORD ALGORITHM

The steps involved in bellman-ford Algorithm to find the single source shortest distance.

* Step 1: Set the distance of the source vertex to 0 and all the vertices to infinity.

DOI: 10.35629/4767-13031018 WWW.ijmsi.org 12 | Page



AN ANALYTICAL FRAMEWORK OF SHORTEST PATH OPTIMIZATION USING

* Step 2: Repeat this step for each edge in the graph |V] - 1 times, where |V] is the number of vertices in

the graph. For each edges (u,v) with weight W, check if the distance from the source vertex to v can

be reduced by going through u. If so, update the distance to v to the new, shorter distance.

*  Step 3: Check the negative weight cycles. If there is a negative weight cycle in the graph, the algorithm

will never converge and will keep reducing the distance to some vertices with each iteration. To detect

such cycles, repeat step to one more time. If any distance is updated in this extra iteration, there must

be a negative weight cycle in the graph.

* Step 4 : [f there is no negative weight evcle, the shortest distance to each vertex from the source vertex

has been found.

5. DIFFERENCE BETWEEEN SHORTEST PATH ALGORITHMS

SHORTEST PATH ALGORITHM

from a single source.

DIJKSTRA’S ALGORITHM BELLMAN-FORD ALGORITHM
# Itis greedy algorithm. »# It is dynamic programming algorithm.
#  All edge weight must be non-negative. # Can handle negative edge weights, but
may not work correctly if there are
negative weight cycles.
# Perform in the weighted and » Perform in the weighted and directed
unweighted graphs. graph.
» It is efficient for finding shortest paths » Suitable for graphs with negative edge

welghts or when negative weight

cycles need to be detected.

6. ALGORITHM BASED PROBLEM

Determine the shortest path to help the person to see the lion in a weighted graph representing the zoological

park.

The graph is
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The graph G(S,D) where S are the nodes and D are the arcs which contains 10 nodes and 13 arcs.
Here the nodes are spots in the zoological park and the arcs are distance from one spot to another in it.

Where the nodes are {P, B,A, W, E,L, R, H, T, G}

v" P —Person ¥v" L—Lion

v B-—Birds v R —Rhinoceros

v A—Aquarium v H-— Hippopotamus
v W —Wolf v T—Tiger

v" E—Elephant v G- Giraffe

And the edges are | (P, B), (P, A), (B, W), (B, T), (W, E), (E. L), (E, T), (L, R), (R, T), (R, H), (H, G), (G,
A) (AT ).

SOLUTION

DIJKSTRA’S ALGORITHM

Let the given graph be,

STEP 1: Mark the source node with a current distance of 0 and the rest with infinity.
Therefore, select the node P is initialised as source node,

Write the distance from source node to other node.
S={P}

H={B,AWELRIT G}

v D(P,B)=1KM (min) v D(P,R) =0
v D(P,A)=5KM v D(P,H)=o0
v D(EW)=w v D(P,T)=om
v D(P,E)=oo v D(P,G)=oo
v D(P,L)=c0

# Here D stands for distance
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STEP 2: Set the non-negative node with the smallest current distance as the current node.
In the above distance, D (P, B) is the minimmuum weight which is 1 KM.
Therefore choose the node B.

STEP 3: For each neighbour(N) of the current node adds the current distance of the adjacent node with the
weight of the edge connecting 0 — 1. If it 1s smaller than the current distance of node, set it as the new current

distance N.

Hence, the pathis P — B

STEP 4: Mark the current node B as visited.

STEP 5: If there are any nodes are unvisited, repeat the process from step 2.

Here there are more unvisited nodes. So, we repeat the process from step 2. The current node are
8= {P,B}

H={A WEL R HT G}

v D(P,A)=5KM v D(PL)=co
v D (P, W)=1KM 600M v D(P,R)y=00
v D(P,T)=4KM v D(PH) =0
v D(PE)=0m v D(P,G)=w

Here the node W be the new current node,
Therefore the path becomesP—B — W

The current node are
S=1{P,B, W}

H={A,ELRIHTG

v D(P,A)=5KM v D(P,R)=0o0
v D(P,T)=4KM v D H)=00
v D(P.E)= 1KM610M v D(P G)=oo
v D(P.L)=w

Here the minimum distance is 1 KM 610 M, therefore we connect the path as

P—-B—-W—=E
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The current node are
S={P,B,W,E} & H={ALRHTG}

D(P,A)=5KM
D (P, T)~ 4 KM

D (P, L) = 2KM 410M
D(P,R)=co

D (P, H) = o

A N T

D (P, G)= o0

Here the minimum distance is 2 KM 410 M, therefore we connect the path as

P-B-W-E->L

Therefore, we reach the destination, which is Person to Lion.
The shortest pathisP =B - W —=E —=L
Whose total distance is 2ZKM 410M Which is the shortest distance.
BELLMAN-FORD ALGORITHM

The given graph is
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STEP 1: Set the distance of the source vertex to 0 and all the vertices to infinity.
Here, Node P is initialized as source node.

STEP 2: Repeat this step for each edge in the graph [V - 1 times, where |V| is the number of vertices in the
graph. For each edges (u,v) with weight W, check if the distance from the source vertex to v can be reduced

by going through u. If so, update the distance to v to the new, shorter distance.
Distance PB is shorter than the PA, so we chosen the route PB
d(PB) < d(PA)
The distances are

v d(PB)=1KM

V' d(PW) =1 KM 600M

v d(PT)=4 KM

d(PW) < d(PT)
So, d(PW) is chosen.

STEP 3: Check the negative weight cycles. If there 1s a negative weight cycle in the graph, the algorithm will
never converge and will keep reducing the distance to some vertices with each iteration. To detect such cycles,
repeat step to one more time. If any distance is updated in this extra iteration, there must be a negative weight

cycele in the graph.
In the given graph there is no negative edges. Hence it has no negative cycle.

STEP 4 : If there is no negative weight cycle, the shortest distance to each vertex from the source vertex has

been found.
The node W an only one adjacent node, hence we chosen d(PE).

Likewise, for the node E, it also has an only one adjacent node,

Therefore the shortest path is PBWEL Which has the shortest distance 2KM 410M.
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From this two algorithm, we conclude that, to finding the shortest path, Dijkstra's algorithm is
generally considered better than Bellman-Ford, as it is significantly faster, especially when dealing with graphs
with non-negative edge weights; however, Bellman-Ford is the preferred choice if your graph contains

negative edge weights because Dijkstra cannot handle them properly.
7. CONCLUSION

Through analytical evaluation and real-world testing, this study demonstrates the effectiveness of graph theory
in solving shortest path problems across various domains, By comparing the performance of Dijkstra’s
Algorithm and the Bellman-Ford Algorithm, we found that Dijkstra’s Algorithm consistently outperforms in
terms of speed and efficiency on graphs with non-negative edge weights, making it highly suitable for most
practical applications such as transportation and logistics. While the Bellman-Ford Algorithm remains
valuable for handling graphs with negative weights, Dijkstra’s Algorithm proves to be the optimal choice when
negative weights are not a concern, due to its faster execution and lower computational complexity. Overall,
our findings affirm that graph-theoretic approaches, particularly Dijkstra’s Algorithm, are powerful tools for

enhancing optimization and decision-making in complex network environments.
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