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ABSTRACT: This study first examines a number of widely used fuzziness metrics for discrete fuzzy collections. 

We present a novel informative measure for discriminating between two fuzzy sets after examining a few of the 

current fuzzy set measures. We demonstrate that every class fulfills five well-known fuzziness measure axioms 

and show how a number of current measurements are related to these classes. The non-negative, monotony 

rising concave functions form the foundation of the multiplicative class. The only functions needed for the 

additive class are non-negative concave functions. There are also some connections between the many chances 

that now exist. 
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I. INTRODUCTION 

Zadeh's[31] research launched one of the most innovative and successful representational capacities of 

logic for quantifying fuzzy uncertainty. "Fuzzy Sets." Beginning with the concept of gradual membership, it 

served as the foundation for the logic of gradualness in properties as well as a brand-new, incredibly 

straightforward and useful uncertainty calculus known as "Possibility Theory," which handles the concepts of 

possibility and certainty as gradual modalities. Zadeh specifically focused on fuzzy sets' potential contributions 

to pattern categorization, information processing and communication, abstraction, and summarization when he 

proposed them. When the assertions that fuzzy sets were pertinent in these fields were initially made, in the 

early 1960s, they didn't seem to be supported. Although the assertions that fuzzy sets were pertinent in these 

fields didn't seem to be supported when they were initially made, namely in surpassing all predictions, the 

subsequent advancements in engineering and information sciences demonstrated that these intuitions were 

correct in the early 1960s. With the use of examples, Kapur has provided a clear explanation of fuzzy 

uncertainty. In general, fuzzy entropy is the quantitative representation of fuzziness in fuzzy sets, while 

Shannon's  entropy quantifies the average uncertainty in bits related to the prediction of results in a random 

experiment. Some criteria that reflect our perception regarding the degree of fuzziness were given by De Luca 

and Termini .One of the key digital characteristics of fuzzy sets is fuzzy entropy, which is also crucial for 

system modeling and design. For instance, efficient structural parameters are rapidly obtained when generalized 

fuzzy entropy is employed as the learning criterion for neural networks. Stated differently, the guidance function 

of generalized fuzzy entropy in neural network system architecture is superior.  

Following Zadeh's introduction of the theory of fuzzy sets [31], other scholars began focusing on this area after 

it was well accepted by various quarters. De Luca and Termini [6] thus established a fuzzy entropy measure that 

corresponds to Shannon's [29] measure, keeping in mind the concept of fuzzy sets 

The concept of fuzzy sets (FS) was first introduced by Zadeh (1965). Its primary purpose is to model 

non-statistical vague phenomena, and as a result, the theory of FS has drawn interest from a wide range of 

scientific fields, including but not limited to engineering, image processing, data mining, medical science, 

clustering, information technology, and statistical information theory. Fuzziness as a feature of uncertainty can 

be explained as the result of a particular decision regarding whether or not an event should be considered a 

member of a set; in these situations, the event is regarded as a fuzzy rather than a sharply defined collection of 

points (Zadeh, 1968). It is used as a measure of such fuzziness (Bhat and Baig, 2017). The information theory 
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has been used extensively in fuzzy set theory due to the principle of entropy's ability to deal with a lack of 

information models. A number of FE measures have been discussed in the literature. De-Luca and Termini 

(1972) proposed the first entropy extension of Shannon's (1948) entropy; by proposing a nonprobability FE, 

they also defined the fundamental characteristics of the proposed FE as sharpness, maximality, resolutions, and 

symmetry. This served as a roadmap for the development of any new FE measures. Later, a number of authors 

introduced modified FE measures (Ohlan, 2015; Naidu et al, 2017; Zhang et al, 2012; Al-Sharhan et al. 2001; 

Bhatri and Pal, 1993; Kapur, 1997; Parkash and Sharma, 2002). 

some application of entropy in goodness of fit tests for non-fuzzy datasetsare possible to be generalized to the 

fuzzy entropy. (Zamanzadeand Mahdizadeh,(2016, 2017); Zamanzade andArghami, 2011;Zamanzade, 2014) as 

other applications were generalized to the fuzzy sets and fuzzy entropyin different fields, such as sampling (see; 

Greenfield, 2012;Cetintav, 2016), goodness of fit (see; Grzegorzewski and Szymanowski, 2014;Eliason and 

Stryker, 2009), testing (see; Xie, 2010), and many other fields. 

II. NEW RESULT 

A fuzzy entropy measure that correlates to Shannon's  measure was presented by De Luca and Termini  [6 ] and 

is provided by 

𝐻(𝐴) =  − ∑ [𝜇𝐴(𝑥𝑖) ln 𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)) ln(1 − 𝜇𝐴(𝑥𝑖))]𝑛
𝑖=1                                                                          

(1) 

 

Following this development, numerous fuzzy entropy measures were examined, described, and expanded upon 

by different writers. The fuzzy entropy metric that Kapur  introduced is as follows: 

𝐾𝛼,𝛽 (𝐴) =  
1

𝛽−𝛼
log

∑ 𝐻𝑖
𝛼(𝐴)𝑛

𝑖=1

∑ 𝐻
𝑖
𝛽𝑛

𝑖=1 (𝐴)
    ,𝛼 ≠ 𝛽 , 𝛼 > 0, 𝛽 > 0 

=  
1

𝛽−𝛼
log

∑𝑛
𝑖=1 [𝜇𝐴

𝛼(𝑥𝑖) ln 𝜇𝐴
𝛼(𝑥𝑖)+ (1−𝜇𝐴

𝛼(𝑥𝑖)) ln(1−𝜇𝐴
𝛼(𝑥𝑖))]

∑𝑛
𝑖=1 [𝜇𝐴

𝛽(𝑥𝑖) ln 𝜇𝐴
𝛽(𝑥𝑖)+ (1−𝜇𝐴

𝛽(𝑥𝑖)) ln(1−𝜇𝐴
𝛽(𝑥𝑖))]

                                                                                                

(2) 

Sharma and Taneja Suggested the following measure of entropy involving two real parameters 

HS−T (A) =  
1

𝛽−𝛼
[∑ 𝐻𝑖

𝛼(𝐴) − ∑ 𝐻𝑖
𝛽𝑛

𝑖=1 (𝐴)𝑛
𝑖=1 ] ,𝛼 ≠ 𝛽 

=  
1

𝛽 − 𝛼
{[∑

𝑛

𝑖=1

[𝜇𝐴
𝛼(𝑥𝑖) ln 𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴
𝛼(𝑥𝑖)) ln(1 − 𝜇𝐴

𝛼(𝑥𝑖))]

− ∑

𝑛

𝑖=1

[𝜇𝐴
𝛽(𝑥𝑖) ln 𝜇𝐴

𝛽(𝑥𝑖) + (1 − 𝜇𝐴
𝛽(𝑥𝑖)) ln (1 − 𝜇𝐴

𝛽(𝑥𝑖))]]} 

=  
1

𝛽 − 𝛼
{[∑ 𝜇𝐴

𝛼(𝑥𝑖) ln 𝜇𝐴
𝛼(𝑥𝑖) − ∑ 𝜇𝐴

𝛽(𝑥𝑖) ln 𝜇𝐴
𝛽(𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

]

+ ∑ [(1 − 𝜇𝐴
𝛼(𝑥𝑖)) ln(1 − 𝜇𝐴

𝛼(𝑥𝑖)) − (1 − 𝜇𝐴
𝛽(𝑥𝑖)) ln (1 − 𝜇𝐴

𝛽(𝑥𝑖))]

𝑛

𝑖=1

} 
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=  
1

𝛽 − 𝛼
{[∑ 𝜇𝐴

𝛼(𝑥𝑖) ln 𝜇𝐴
𝛼(𝑥𝑖) − ∑ 𝜇𝐴

𝛽(𝑥𝑖) ln 𝜇𝐴
𝛽(𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

]

+ ∑ [ln(1 − 𝜇𝐴
𝛼(𝑥𝑖)) − ln (1 − 𝜇𝐴

𝛽(𝑥𝑖))]

𝑛

𝑖=1

− ∑ [𝜇𝐴
𝛼(𝑥𝑖) ln(1 − 𝜇𝐴

𝛼(𝑥𝑖)) + 𝜇𝐴
𝛽(𝑥𝑖) ln (1 − 𝜇𝐴

𝛽(𝑥𝑖))]

𝑛

𝑖=1

} 

                                =   
1

𝛽−𝛼
{∑ 𝜇𝐴

𝛼(𝑥𝑖) ln
𝜇𝐴

𝛼(𝑥𝑖)

1−𝜇𝐴
𝛼(𝑥𝑖)

− ∑ 𝜇𝐴
𝛽(𝑥𝑖) ln

𝜇𝐴
𝛽

(𝑥𝑖)

1−𝜇𝐴
𝛽(𝑥𝑖)

𝑛
𝑖=1

𝑛
𝑖=1 + ∑ ln

(1−𝜇𝐴
𝛼(𝑥𝑖))

(1−𝜇𝐴
𝛽

(𝑥𝑖))

𝑛
𝑖=1 }                        

(3) 

According to fuzzy set theory, entropy is a fuzziness metric that indicates the average degree of ambiguity or 

difficulty in determining whether an element is a member of a set or not. 𝐻(𝐴), a fuzziness measure  

 

a fuzzy set A must possess at least the four qualities listed below. 

(1) 𝐻(𝐴) is at least A crisp set is one in which 𝜇𝐴(𝑥𝑖) = 0 or 1 for every x.  

 

(2)The greatest  𝐻(𝐴), if A, where 𝜇𝐴(𝑥𝑖) = 0.5 for all x, is the most fuzzy set. 

 

(3)  𝐻(𝐴) ≥ 𝐻(𝐴∗)), where A* is A modified by sharpening. Where x is A's complement set, 

(4)𝐻(𝐴)  =  𝐻(𝐴), Where x is 𝐴 complement set, 

 

Different expressions for the entropy of a fuzzy set have been provided by various authors.  

 

If Xand Y are two fuzzy subsets of U, we can write using Kosko's fuzzy conditioning or subset hood measure.  

 

Since  𝑆(𝑋, 𝑌) =  
∑ 𝜇𝑋∩𝑌 𝑥 (𝑥)

∑ 𝜇𝑋𝑥 (𝑥)
 

 

Therefore  

                                                                                 
𝑆(𝑌,𝑋)

𝑆(𝑋,𝑌)
 =   

∑ 𝜇𝑌∩𝑋(𝑥)𝑥
∑ 𝜇𝑌𝑥 (𝑥)

∑ 𝜇𝑋∩𝑌  (𝑥)𝑥

∑ 𝜇𝑋𝑥 (𝑥)

 

 

                                                                                           =  
∑ 𝜇𝑋(𝑥)𝑥

∑ 𝜇𝑌𝑥 (𝑥)
 

 

Taking logarithm both sides ,we have 

 

log
𝑆(𝑌, 𝑋)

𝑆(𝑋, 𝑌)
   =  log

∑ 𝜇𝑋(𝑥)𝑥

∑ 𝜇𝑌𝑥 (𝑥)
 

 

Now for,                                                           log
𝑆(𝑌,𝑋)

𝑆(𝑋,𝑌)
   =  log

∑ 𝜇𝑋(𝑥𝑖)𝑖

∑ 𝜇𝑌𝑖 (𝑥𝑖)
 

 

Currently, the amount of information for discriminating for a specific fit value for 𝜇𝐴  (𝑥𝑖) 𝑓𝑜𝑟 𝑥𝑖,𝑖 =
1,2, … … . . , 𝑛 is provided by 

 

𝐼′(𝑋, 𝑌; 𝑥𝑖)  =   log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
 

Therefore, it is possible to write the fuzzy anticipated information for discrimination in favor of X against Y as 
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𝐼′(𝑋, 𝑌) =  ∑ 𝜇𝑋(𝑥𝑖)

𝑖

log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
 

 

Likewise, the quantity of fuzzy information needed to distinguish x from 𝑌 is provided by 𝑋 

 

𝐼′(𝑋, 𝑌)  =  ∑(1 − 𝜇𝑋(𝑥𝑖))

𝑖

log
(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))
 

 

However, in general 𝐼′(𝑋, 𝑌) ≠ 𝐼′(𝑋, 𝑌), 

 the discriminability between (𝑋, 𝑌) and (𝑋, 𝑌)should be uniform. To do so, the fuzzy data for discrimination 

against Y in favor of X can be described as 

 

𝐼(𝑋, 𝑌) =  𝐼′(𝑋, 𝑌) + 𝐼′(𝑋, 𝑌) 

                                                                                  =  ∑ 𝜇𝑋(𝑥𝑖)𝑖 log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
+  ∑ (1 − 𝜇𝑋(𝑥𝑖))𝑖 log

(1−𝜇𝑋  (𝑥𝑖))

(1−𝜇𝑌  (𝑥𝑖))
          

(4) 

 

Equation (4) has previously shown us the fuzzy information needed to distinguish between A and B. Likewise, 

we may have as 

 

𝐼(𝑌, 𝑋)  =  ∑ 𝜇𝑌(𝑥𝑖)

𝑖

log
𝜇𝑌  (𝑥𝑖)

𝜇𝑋  (𝑥𝑖)
+  ∑(1 − 𝜇𝑌(𝑥𝑖))

𝑖

log
(1 − 𝜇𝑌  (𝑥𝑖))

(1 − 𝜇𝑋  (𝑥𝑖))
 

                                 −𝐼(𝑌, 𝑋)  =  ∑ 𝜇𝑌(𝑥𝑖)𝑖 log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
+ ∑ (1 − 𝜇𝑌(𝑥𝑖))𝑖 log

(1−𝜇𝑋  (𝑥𝑖))

(1−𝜇𝑌  (𝑥𝑖))
                                          

(5) 

 

Let us now define the fuzzy divergence 𝐷(𝑋, 𝑌)between X and Y as 

 

𝐷(𝑋, 𝑌) =  𝐼(𝑋, 𝑌) + 𝐼(𝑌, 𝑋) 

 

=  ∑(𝜇𝑋(𝑥𝑖) − 𝜇𝑌(𝑥𝑖))

𝑖

log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
+ ∑ log

(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))
−  ∑ 𝜇𝑋(𝑥𝑖)

𝑖𝑖

log
(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))

− ∑ log
(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))
+  ∑ 𝜇𝑌(𝑥𝑖)

𝑖𝑖

log
(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))
 

 

                  =  ∑ (𝜇𝑋(𝑥𝑖) − 𝜇𝑌(𝑥𝑖))𝑖 log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
 +  ∑ (𝜇𝑌(𝑥𝑖) − 𝜇𝑋(𝑥𝑖))𝑖 log

(1−𝜇𝑋  (𝑥𝑖))

(1−𝜇𝑌  (𝑥𝑖))
                                              

(6) 

 

Two fuzzy sets can be distinguished by this measure. In relation to𝜇𝑋 and𝜇𝑌, take note that is 

𝐷(𝑋, 𝑌)symmetric. Additionally, it meets the following requirements.  

(1) If 𝑋 = 𝑌, then𝐷(𝑋, 𝑌) = 0, 𝐷(𝑋, 𝑌) > 0 

(2). 𝐷(𝑋, 𝑌) = 𝐷(𝑌, 𝑋) 

 

III. PROPOSITION 

 

Let X and Y be two fuzzy subsets of  S then 

 

𝐷(𝑋 ∪ 𝑌, 𝑋 ∩ 𝑌) = 𝐷(𝑋, 𝑌) 

Proof.Let 𝜇𝑋 and𝜇𝑌 be the fuzzy membership functions of X and Y, respectively.  

           Let 𝑆+  =  {𝑥 ∈ 𝑆 ∕  𝜇𝑋(𝑥) ≥   𝜇𝑌(𝑥)} and 𝑆−  =  {𝑥 ∈ 𝑆 ∕  𝜇𝑋(𝑥) < 𝜇𝑌(𝑥)} 

 

        Therefore 
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𝐷(𝑋 ∪ 𝑌, 𝑋 ∩ 𝑌)  =  ∑ (𝜇𝑋(𝑥𝑖) − 𝜇𝑌(𝑥𝑖))

𝑥𝑖∈ 𝑆+

log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
+ 

 

∑ (𝜇𝑌(𝑥𝑖) −  𝜇𝑋(𝑥𝑖))

𝑥𝑖∈ 𝑆+

log
(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))
  + 

∑ (𝜇𝑌(𝑥𝑖) − 𝜇𝑋(𝑥𝑖))𝑥𝑖∈ 𝑆− log
𝜇𝑌  (𝑥𝑖)

𝜇𝑋  (𝑥𝑖)
 + 

∑ (𝜇𝑋(𝑥𝑖) − 𝜇𝑌(𝑥𝑖))

𝑥𝑖∈ 𝑆−

log
(1 − 𝜇𝑌  (𝑥𝑖))

(1 − 𝜇𝑋  (𝑥𝑖))
 

=  ∑ (𝜇𝑋(𝑥𝑖) − 𝜇𝑌(𝑥𝑖))

𝑥𝑖∈ 𝑆+

log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
+ 

 

∑ (𝜇𝑌(𝑥𝑖) −  𝜇𝑋(𝑥𝑖))

𝑥𝑖∈ 𝑆+

log
(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))
  + 

∑ (𝜇𝑋(𝑥𝑖) − 𝜇𝑌(𝑥𝑖))𝑥𝑖∈ 𝑆− log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌 (𝑥𝑖)
 + 

∑ (𝜇𝑌(𝑥𝑖) − 𝜇𝑋(𝑥𝑖))

𝑥𝑖∈ 𝑆−

log
(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))
 

=  ∑ {(𝜇𝑋(𝑥𝑖) − 𝜇𝑌(𝑥𝑖)) log
𝜇𝑋  (𝑥𝑖)

𝜇𝑌  (𝑥𝑖)
+ (𝜇𝑌(𝑥𝑖) −  𝜇𝑋(𝑥𝑖)) log

(1 − 𝜇𝑋  (𝑥𝑖))

(1 − 𝜇𝑌  (𝑥𝑖))
}

𝑛

𝑖=1

= 𝐷(𝑋, 𝑌) 

 

IV. ESSENTIAL PROPERTIES OF FUZZY SET 

 (1)Hα(A) ≥ 0 

 (2)
∂2Hα(A)

∂μA
2(xi)

< 0.Thus Hα(A) is a concave function of  𝜇𝐴(𝑥𝑖) ∀ 𝑖 

 (3)Hα(A) does not change when 𝜇𝐴(𝑥𝑖) is replaced by 1 − 𝜇𝐴(𝑥𝑖) 

 (4)Hα(A) is an increasing function of 0 ≤  𝜇𝐴(𝑥𝑖) ≤
1

2
 

[Hα(A) 𝜇𝐴(𝑥𝑖) = 0⁄ ] = 0  and  [Hα(A) 𝜇𝐴(𝑥𝑖) =
1

2
⁄ ] = 𝑛 log 2 > 0 

 (5)Hα(A) is  decreasing function of 𝜇𝐴(𝑥𝑖) 𝑓𝑜𝑟
1

2
≤  𝜇𝐴(𝑥𝑖) ≤ 1 

 

[Hα(A) 𝜇𝐴(𝑥𝑖) =
1

2
⁄ ] = 𝑛 log 2 

[Hα(A) 𝜇𝐴(𝑥𝑖) = 1⁄ ] = 0 

 (6)[Hα(A) = 0] 𝑓𝑜𝑟 𝜇𝐴(𝑥𝑖) = 0 𝑜𝑟 1  

 

Under these conditions ,the measures Hα(A) is a valid measures of fuzzy entropy. 

Applying Havrda and Charvat Concept to Fuzzy Entropy. The entropy of order (𝛼) of a probability distribution 

(𝑥1, 𝑥2, … . . , 𝑥𝑛) was defined by Havrda and Charvat as 

 

                                                 Hα(A) =  
1

1−𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]𝑛
𝑖=1 }                                        

(7) 
(1)𝐇𝛂(𝐀) = 𝟎  

First let Hα(A) = 0, ∀ 𝐴 ∈ 𝑃(𝑋) 

Then  

1

1 − 𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]

𝑛

𝑖=1

} = 0 

Or         

(𝜇𝐴(𝑥𝑖))
𝛼

+ ((1 − 𝜇𝐴(𝑥𝑖)))
𝛼

= 1 

Now for 𝛼 > 0,when either 𝜇𝐴(𝑥𝑖) = 0 𝑜𝑟 1∀ 𝑖 = 1,2, … . , 𝑛 and so 𝐴 ∈ 𝑃(𝑋) 

 

Conversely , 
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                         If 𝐴 ∈ 𝑃(𝑋)therefore either  𝜇𝐴(𝑥𝑖) = 0 𝑜𝑟 1∀ 𝑖 = 1,2, … . , 𝑛 

It gives  

(𝜇𝐴(𝑥𝑖))
𝛼

+ ((1 − 𝜇𝐴(𝑥𝑖)))
𝛼

= 1 for all 𝛼 > 0 

i,e.       Hα(A) = 0, ∀ 𝐴 ∈ 𝑃(𝑋) 

 

(𝟐)
𝛛𝟐𝐇𝛂(𝐀)

𝛛𝛍𝐀
𝟐(𝐱𝐢)

< 0 . Thus Hα(A) is a concave function 

 

Differentiating (7) with respect to 𝜇𝐴(𝑥𝑖) and then putting  

 
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
 = 0 ,we get 

 Or    𝛼 (𝜇𝐴(𝑥𝑖))
𝛼−1

+  𝛼 (1 − 𝜇𝐴(𝑥𝑖))
𝛼−1

(0 − 1) − 0 = 0 

 

 Or     𝛼 [(𝜇𝐴(𝑥𝑖))
𝛼−1

− (1 − 𝜇𝐴(𝑥𝑖))
𝛼−1

] = 0 

 

Or     (𝜇𝐴(𝑥𝑖))
𝛼−1

− 1 + (𝜇𝐴(𝑥𝑖))
𝛼−1

= 0 

 

Or     2(𝜇𝐴(𝑥𝑖))
𝛼−1

= 1 

 

Or      (𝜇𝐴(𝑥𝑖))
𝛼−1

 =  
1

2
 

   i.e.  
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
= (𝜇𝐴(𝑥𝑖))

𝛼−1
−  

1

2
(8) 

 

        Clearly                           
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
 ≥ 0 as 𝛼 > 1 

 Which implies that function is increasing function in 

 

0 ≤  (𝜇𝐴(𝑥𝑖)) <
1

2
 

Similarly, from the symmetry of function, it is a decreasing function in 
1

2
≤  𝜇𝐴(𝑥𝑖) ≤ 1 . Again we have 

 

𝜇𝐴(𝑥𝑖) = 0 𝑎𝑛𝑑 𝜇𝐴(𝑥𝑖) = 1 

 

 Differentiating (8) with respect to 𝜇𝐴(𝑥𝑖) and  taking  
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
= 0 ,we get 

 

𝜇𝐴(𝑥𝑖) =  
1

2
 

Again ,we get 

𝜕2Hα(A)

𝜕𝜇𝐴
2(𝑥𝑖)

 =  (𝛼 − 1)(𝜇𝐴(𝑥𝑖))
𝛼−2

 

 

When 𝛼 < 1 ,we have 
𝜕2Hα(A)

𝜕𝜇𝐴
2(𝑥𝑖)

< 0 

Clearly ,we see that  Hα(A) is a concave function of  𝜇𝐴(𝑥𝑖) ∀ 𝑖. 
 

 

 

 

(3)Hα(A) does not change when 𝜇𝐴(𝑥𝑖) is replaced by 1 − 𝜇𝐴(𝑥𝑖) 

 

From (7) ,we have 
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Hα(A) =  
1

1 − 𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]

𝑛

𝑖=1

} 

Replace 𝜇𝐴(𝑥𝑖) by 1 − 𝜇𝐴(𝑥𝑖) 

 

Hα(A) =  
1

1 − 𝛼
{∑ [(1 − 𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]

𝑛

𝑖=1

} 

=  
1

1 − 𝛼
{∑[2(1 − 𝜇𝐴(𝑥𝑖))

𝛼
− 1]

𝑛

𝑖=1

} 

𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
 = 0 ,we get 

Therefore    
𝜕

𝜕𝜇𝐴(𝑥𝑖)
{∑ [2(1 − 𝜇𝐴(𝑥𝑖))

𝛼
− 1]𝑛

𝑖=1 }  = 0 

     Or       
𝜕

𝜕𝜇𝐴(𝑥𝑖)
[2(1 − 𝜇𝐴(𝑥𝑖))

𝛼
− 1] = 0 

     Or       2𝛼 ((1 − 𝜇𝐴(𝑥𝑖))
𝛼−1

) (−1) = 0 

     Or       (𝜇𝐴(𝑥𝑖))
𝛼−1

= 1 

 

     Or         𝜇𝐴(𝑥𝑖) =  1
1

𝛼−1⁄  

 

               As 𝛼 > 1,we get , 𝜇𝐴(𝑥𝑖) = 1 

     Therefore     
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
> 0 

 

Hence ,Hα(A) does not change when 𝜇𝐴(𝑥𝑖) is replaced by 1 − 𝜇𝐴(𝑥𝑖). 

 

(4)Hα(A) is increasing on 0 ≤  𝜇𝐴(𝑥𝑖) ≤
1

2 
and decreasing on

1

2
≤  𝜇𝐴(𝑥𝑖) ≤ 1 

Let  Hα(A) =  
1

1−𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]𝑛
𝑖=1 } 

 

then 

                                                          
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
= (𝜇𝐴(𝑥𝑖))

𝛼−1
−  

1

2
                                                                                 

(8) 

 

For ,0 ≤  𝜇𝐴(𝑥𝑖) ≤
1

2 
,we have 0.5 ≤  1 − 𝜇𝐴(𝑥𝑖) ≤ 1, if 0 < 𝛼 < 1 

Then  

(𝜇𝐴(𝑥𝑖))
𝛼−1

−  
1

2
 ≥ 0 

𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
    ≥ 0 

 

If 𝛼 > 1 ,then  

(𝜇𝐴(𝑥𝑖))
𝛼−1

−  
1

2
≤ 0 

Thus  
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
    ≥ 0 

This means that Hα(A) is increasing function in 0 ≤  𝜇𝐴(𝑥𝑖) ≤
1

2 
. 

Similarly ,we have to be Hα(A) is decreasing function in
1

2
≤  𝜇𝐴(𝑥𝑖) ≤ 1. 

 
(5)Hα(A) ≥ 0  

 

Since  Hα(A) =  
1

1−𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]𝑛
𝑖=1 } 

Therefore    
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𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
= (𝜇𝐴(𝑥𝑖))

𝛼−1
− 

1

2
 

 

 

Now , 
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
> 0 ⇒   𝜇𝐴(𝑥𝑖) < 1 − 𝜇𝐴(𝑥𝑖)for 𝑡 ∈ 0 ≤  𝜇𝐴(𝑥𝑖) ≤

1

2 
                                                                                  

(9) 

 

 
𝜕Hα(A)

𝜕𝜇𝐴(𝑥𝑖)
< 0 ⇒   𝜇𝐴(𝑥𝑖) > 1 − 𝜇𝐴(𝑥𝑖)   for  0.5 ≤  1 − 𝜇𝐴(𝑥𝑖) ≤ 1                                                                         

(10) 

 

Combining (9) and (10) 

 

Hα(A) ≥ 0 

 

 

A mapping 𝐻 ∶ 𝑃(𝑋) → ℝ that quantifies the level of fuzziness in A is a measure of fuzziness for a discrete 

fuzzy set. According to Ebanks [7], fuzziness measures should meet the following requirements for 𝐴, 𝐵 ∈
 𝑃(𝑋) 

 
(𝑃1)Sharpnes : 

Hα(A) = 0 ⟺ 𝐴  𝑖𝑠 𝑐𝑟𝑖𝑠𝑝 𝑠𝑒𝑡 ∀ 𝑥 ∈ 𝑋 

 
(𝑃2)Maximally: 

Hα(A)is maximum ⟺  𝜇𝐴(𝑥𝑖) = 0.5  ∀ 𝑥 ∈ 𝑋 

 
(𝑃3)Resolution: 

Hα(A) ≥ Hα(𝐴∗), where 𝐴∗ is a sharped version of A. 

 
(𝑃4)Symmetry: 

ifHα(A) = Hα(1 − A),then 𝜇1−𝐴(𝑥)  = 1 − 𝜇𝐴 (𝑥) ∀ 𝑥 ∈ 𝑋 

 
(𝑃5)Valuation: 

 

𝐻(𝐴 ∪ 𝐵) + 𝐻(𝐴 ∩ 𝐵) = 2 𝐻(𝐴) 

Ebanks provided the necessary and sufficient conditions listed below for functions that meet P1–P5 

requirements for discrete fuzzy sets: 

 

V. SOME  PROPOSITION RELATED TO ABOVE PROPERTY FOR MEASURES OF FUZZINESS 

 
(P1)Hα(A) = 0 ⟺ A  is crisp set ∀ x ∈ X  

 

Proof:    Let A be a crisp set 

 

                      Since     𝑆 =  𝑆𝑛𝑒𝑎𝑟  

 

⟹ 𝐷(𝑆, 𝑆𝑛𝑒𝑎𝑟) = 0 

                         Hence 𝑆(𝐴) = 0 

If 𝑆 = 𝐴 

                       Therefore Hα = 0 

 

LetHα = 0 

                     So,  

𝐷(𝑆, 𝑆𝑛𝑒𝑎𝑟) = 0 

   ⟹  𝑆 =  𝑆𝑛𝑒𝑎𝑟  

Hence A is a crisp set. 
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(𝑃2)Maximally 

 

Proof:Let A be the most fuzzy set, 𝜇𝐴 (𝑥) = 0.5 ∀ 𝑥 

Hence Hα(A) − 1 ,which is maximum. 

Let Hα(A) − 1 or 𝐷(𝑆, 𝑆𝑛𝑒𝑎𝑟) −  𝐷(𝑆, 𝑆𝑓𝑎𝑟) 

Simplifying we have 

 

⋃ 𝐹(𝜇𝐴 (𝑥𝑖))

𝑛

𝑖=1

= ⋃ 𝐹(𝜇𝐴 (𝑥𝑖))

𝜇𝐴 (𝑥𝑖)<0.5

−  ⋃ 𝐹(𝜇𝐴 (𝑥𝑖)) = 0

𝜇𝐴 (𝑥𝑖)>0.5

 

 

Where 

𝐹(𝜇𝐴 (𝑥𝑖)) =
1

1 − 𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]

𝑛

𝑖=1

} 

 

 

𝐹(𝜇𝐴 (𝑥𝑖))  =  {

𝐹(𝜇𝐴(𝑥𝑖)) < 0,   𝑖𝑓  𝜇𝐴(𝑥𝑖) < 0.5 

𝐹(𝜇𝐴(𝑥𝑖)) > 0 , 𝑖𝑓  𝜇𝐴(𝑥𝑖) > 0.5

𝐹(𝜇𝐴(𝑥𝑖)) = 0 , 𝑖𝑓  𝜇𝐴(𝑥𝑖) = 0.5

 

 

𝐹(𝜇𝐴 (𝑥𝑖)) = 0 ⟹ 𝜇𝐴 (𝑥𝑖) = 0.5 ∀ 𝑥 

This implies Hα(A) is maximum iff A is most fuzzy set, that is 𝜇𝐴 (𝑥) = 0.5 ∀ 𝑖 = 1,2, … … , 𝑛  

 
(𝑃3)Resolution 

 

Hα(A) ≥ Hα(𝐴∗), where 𝐴∗ is a sharped version of A. 

 

Proof: It is clear that Hα(A) is an increasing function of 𝜇𝐴 (𝑥𝑖),whenever 0 ≤  𝜇𝐴(𝑥𝑖) ≤
1

2 
 

 

And is a decreasing function of 𝜇𝐴 (𝑥𝑖),whenever 
𝟏

𝟐
≤  𝜇𝐴(𝑥𝑖) ≤ 1 

 Therefore       𝜇𝐴∗(𝑥𝑖)  ≤  𝜇𝐴 (𝑥𝑖) 

⇒  Hα(A) ≥ Hα(𝐴∗) in  0 ≤  𝜇𝐴(𝑥𝑖) ≤
1

2 
 

⟹  𝐷(𝑆, 𝑆𝑛𝑒𝑎𝑟) ≥   𝐷(𝑆∗ , 𝑆𝑛𝑒𝑎𝑟
∗ ) 

⇒ 𝑖𝑓  𝑆 = 𝐴, 𝑡ℎ𝑒𝑟𝑓𝑜𝑟𝑒 𝐷(𝐴, 𝐴𝑛𝑒𝑎𝑟) ≥   𝐷(𝐴∗ , 𝐴𝑛𝑒𝑎𝑟
∗ )                                                                                            

(11) 

 

Again          𝜇𝐴∗(𝑥𝑖)  ≥  𝜇𝐴 (𝑥𝑖) 

⇒  Hα(A) ≤ Hα(𝐴∗) in  
𝟏

𝟐
≤  𝜇𝐴(𝑥𝑖) ≤ 1 

 

⟹  𝐷(𝑆, 𝑆𝑛𝑒𝑎𝑟) ≤   𝐷(𝑆∗ , 𝑆𝑛𝑒𝑎𝑟
∗ ) 

⇒ 𝑖𝑓  𝑆 = 𝐴, 𝑡ℎ𝑒𝑟𝑓𝑜𝑟𝑒 𝐷(𝐴, 𝐴𝑛𝑒𝑎𝑟) ≤   𝐷(𝐴∗ , 𝐴𝑛𝑒𝑎𝑟
∗ )                                                                                            

(12) 

 

 

From (11) and (12) taking together, 

 

Hα(A) ≥ Hα(𝐴∗) 

 
(𝑃4)Symmetry : 

            if  Hα(A) = Hα(1 − A),then 𝜇𝐴(𝑥)  = 1 − 𝜇𝐴 (𝑥) ∀ 𝑥 ∈ 𝑋 

 

Proof: We have from the definition of divergence 
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Since 𝐷(𝑆, 𝑆𝑛𝑒𝑎𝑟) = 𝐷(𝑆̅ , 𝑆𝑛̅𝑒𝑎𝑟) = 𝐷(𝑆̅, 𝑆𝑓𝑎𝑟) 

 

And            𝐷(𝑆, 𝑆𝑓𝑎𝑟) = 𝐷(𝑆̅ , 𝑆𝑓̅𝑎𝑟) = 𝐷(𝑆̅, 𝑆𝑛𝑒𝑎𝑟) 

 

if  Hα(S) = Hα(1 − S), 

 

since   Hα(𝑠) =  
D(S,Snear)

D(S,Sfar)
 

 

=  
𝐷(𝑆̅, 𝑆𝑓𝑎𝑟)

𝐷(𝑆̅, 𝑆𝑛𝑒𝑎𝑟)
 

                                                                                  =  
𝐷(𝑆 ,𝑆𝑛𝑒𝑎𝑟)

𝐷(𝑆 ,𝑆𝑓𝑎𝑟)
 

 

                                                                                  =  Hα(𝑠)                                                                                  

(13) 

                                                                                  = 1 − Hα(𝑠)  

Therefor if 𝑆 = 𝐴 and 𝜇𝐴(𝑥) = Hα(𝐴) 

 

By substituting 1 − μA(x)instead of μA(x)in Equation (13),we get 

That   𝜇𝐴(𝑥)  = 1 − 𝜇𝐴 (𝑥)∀ 𝑖 = 1,2, … … . . , 𝑛 

 

 
(𝑃5)Valuation 

H(A ∪ B) + H(A ∩ B) = 2 H(A )Let𝑋+ =  {𝑥 ∈ 𝑋 , 𝜇𝐴(𝑥𝑖) ≥  𝜇𝐵(𝑥𝑖)} and  𝑋− =  {𝑥 ∈ 𝑋 , 𝜇𝐴(𝑥𝑖) < 𝜇𝐵(𝑥𝑖)} 

Where  

𝜇𝐴(𝑥𝑖) = 𝜇𝐵(𝑥𝑖) = 𝑓𝑢𝑧𝑧𝑦 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓  𝐴 𝑎𝑛𝑑 𝐵 

 

Since  from equation (7) we have 

H(A ) =  
1

1 − 𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]

𝑛

𝑖=1

} 

 

Therefore , H(A ∪ B) =
1

1−𝛼
{∑ [(𝜇A ∪B(𝑥𝑖))

𝛼
+ ((1 − 𝜇A ∪B(𝑥𝑖)))

𝛼

− 1]𝑛
𝑖=1 } 

 

=  
1

1−𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]𝑛
𝑖=1 } + 

1

    1−𝛼
{∑ [(𝜇𝐵(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐵(𝑥𝑖)))

𝛼

− 1]𝑛
𝑖=1 } 

 

=  
1

1−𝛼
[∑ {(𝜇𝐴(𝑥𝑖))

𝛼
+  (𝜇𝐵(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

+ ((1 − 𝜇𝐵(𝑥𝑖)))
𝛼

− 2}𝑛
𝑖=1 ]                                

                                                                                                                                                                                    

(14) 

 

and  H(A ∩ B) =  
1

1−𝛼
{∑ [(𝜇A ∩B(𝑥𝑖))

𝛼
+ ((1 − 𝜇A ∩B(𝑥𝑖)))

𝛼

− 1]𝑛
𝑖=1 } 

 

=
1

1 − 𝛼
{∑ [(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]

𝑛

𝑖=1

}

−                                     
1

1 − 𝛼
{∑ [(𝜇𝐵(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐵(𝑥𝑖)))

𝛼

− 1]

𝑛

𝑖=1

} 

 

=  
1

1−𝛼
[∑ {(𝜇𝐴(𝑥𝑖))

𝛼
−  (𝜇𝐵(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− ((1 − 𝜇𝐵(𝑥𝑖)))
𝛼

}𝑛
𝑖=1 ]                                                  

(15) 

 

Adding (14) and (15), we get 
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H(A ∪ B) + H(A ∩ B) =  
1

1 − 𝛼
[∑ {2(𝜇𝐴(𝑥𝑖))

𝛼
+ 2 ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 2}

𝑛

𝑖=1

] 

= 2 [
1

1 − 𝛼
∑ {[(𝜇𝐴(𝑥𝑖))

𝛼
+ ((1 − 𝜇𝐴(𝑥𝑖)))

𝛼

− 1]}

𝑛

𝑖=1

] 

= 2 H(A ) 

 

V. CONCLUSION 

There is a new set of fuzzy set measures. Under certain conditions, the fuzzy entropy of Deluca and 

Termini [7] can be used to establish an information theoretic discrimination measure. It  

has since been applied to define divergence, D(A, B), a pseudo-distance measure between two sets A and B. 

We have examined a few popular fuzziness metrics, and each of these classes' fuzzy-ness metrics meet 

five well-known Ebanks axioms. Specifying a Given the limited constraints of the underlying functional form, 

measuring fuzziness under either of these classes is simple. Non-negative, monotone-ly rising concave functions 

form the foundation of the multiplicative class. Only non-negative concave functions are needed for the additive 

class, which is more expansive. Numerous instances of 

Additionally, we showed how these classes connect to a number of fuzziness measurements currently 

in use. Theoretical characteristics Investigated were a few new and current measures. The idea of fuzzy entropy 

was also presented, and its potential to include subjectivity in the fuzzy-ness metric was examined. 
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