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ABSTRACT: This paper develops a formal mathematical framework for the analysis of parameterized 

collections of entire functions and their classical growth orders using the language of soft set theory. We strictly 

follow the paradigm where a soft set is a parameterized family of sets and a soft element is a specific, valid 

selection from that family. We introduce and formalize the soft order and soft lower order of a soft entire 

element, which associate each parameter with the classical growth order of its corresponding function. The 

work is structured into four main sections of results. The first section establishes the fundamental algebraic 

properties of the soft order under operations like sum and product. The second section investigates the behavior 

of the soft order under key analytic operations, presenting a detailed proof of the invariance of the soft order 

under differentiation. The third section develops a theory of soft relative order, proving analogues of classical 

comparison theorems. The final section delves into the relationship between the soft order and the intrinsic 

properties of the functions, providing substantial, detailed proofs for the formula connecting the soft order to 

Taylor coefficients and for the fundamental inequality relating the soft order to the distribution of zeros. Each 

section provides rigorous definitions, theorems, and proofs, creating a comprehensive and self-contained 

foundation for the study of parameterized growth properties in complex analysis. 
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I. INTRODUCTION 

The study of entire functions has long been a central theme in complex analysis, with the order of 

growth serving as a fundamental tool for classification. This notion links the asymptotic behaviour of an entire 

function to its intrinsic analytic structure, including its zeros, power series coefficients, and value distribution. 

Parallel to this, soft set theory, introduced by Molodtsov in 1999, provides a flexible mathematical framework 

for modeling parameterized data and systems involving uncertainty, where classical set-theoretic approaches 

may not be adequate. 

This paper brings these two strands together by developing a systematic framework for the growth 

theory of entire functions within the paradigm of soft set theory. Specifically, we introduce the concept of a soft 

entire element—a parameterized family of entire functions—and define its soft order and soft lower order as 

natural extensions of classical growth indicators. Unlike traditional approaches, which assign a single global 

growth order to a function, our perspective emphasizes the inherently parameter-wise nature of soft sets, 

allowing us to view growth orders themselves as “soft objects.” 

The main objective of this work is to establish a rigorous theory of the soft order and to demonstrate 

how cornerstone results of classical growth theory extend to this parameterized setting. We show how the soft 

order behaves under algebraic and analytic operations, prove analogues of relative growth theorems, and 

connect the soft order with intrinsic features of entire functions such as Taylor coefficients and zero 

distributions. In addition to direct analogues of known results, we also introduce genuinely new concepts, such 

as the uniform soft order and topological continuity properties of families of entire functions, thereby extending 

the scope of both classical complex analysis and soft set theory. 

The remainder of the paper is organized as follows. Section 2 presents the motivation and illustrative 

examples. Section 3 recalls necessary preliminaries from complex analysis and soft set theory. Section 4 
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contains the main results, divided into four parts: algebraic properties of the soft order (4.1), analytic operations 

and differentiation invariance (4.2), relative growth theory (4.3), and global/topological properties including the 

uniform soft order (4.4). We conclude in Section 5 with a summary of findings and possible directions for future 

research. 

 

II. MOTIVATION 

The core motivation for this work is to provide a formal, rigorous language for discussing 

parameterized collections of entire functions. In many applications in physics, engineering, and economics, a 

system's behaviour may be described by a function that depends on a set of parameters. For instance, the 

stability of a system might be related to the growth order of its solution, which in turn depends on an initial 

condition   𝑒 ∈ 𝐴. 

This raises several important questions: 

1. How can we formally define the "collection of growth orders" for such a system? 

2. If we combine two systems (e.g., by adding their solutions), how does the new collection of orders 

relate to the original ones? 

3. If we apply an operation, such as differentiation, to the entire system, what is the effect on the 

collection of orders? 

This paper seeks to answer these questions by developing a self-contained theory. By defining the soft order and 

proving theorems about its behaviour, we create a reliable toolkit for analyzing the growth properties of any 

system that can be modeled by a soft entire element. 

For example, Consider the parameter set 𝐴 = (0, ∞), and define the soft entire element (𝑓, 𝐴) where  𝑓𝑒(𝑧) =

exp(𝑧𝑒)  for each 𝑒 ∈ 𝐴 . The classical order of 𝑓𝑒    is 𝜌(𝑓𝑒) = 𝑒 , since 𝑀(𝑟, 𝑓𝑒) ∼ exp(𝑟𝑒) , leading to 
log log 𝑀(𝑟,𝑓𝑒)

log 𝑟
→ 𝑒. 

 Thus, the soft order is 𝜌(𝑓, 𝐴) = {(𝑒, 𝑒) ∣ 𝑒 > 0}. This example illustrates a soft order that varies linearly with 

the parameter, useful for modeling systems with adjustable growth rates, such as in quantum mechanics or 

signal processing. 

III. PRELIMINARIES 

This section provides the foundational concepts from both classical complex analysis and soft set theory that are 

essential for the main results of this paper. 

3.1 Classical Order of an Entire Function 

An entire function is a function that is analytic (holomorphic) at all finite points in the complex plane C. The 

growth of an entire function f(z) is typically measured by the rate of increase of its maximum modulus function, 

𝑀(𝑟, 𝑓) = max
∣𝑧∣=𝑟

∣ 𝑓(𝑧) ∣. 

Definition 3.1.1 (Order of Growth) The order ρ of an entire function f is a measure of its growth as ∣z∣→∞. It 

is defined as:  

𝜌(𝑓) = lim
𝑟→∞

sup
log log 𝑀(𝑟, 𝑓)

log 𝑟
 

If f is a polynomial, its order is 0. For transcendental entire functions, the order can be a positive real number or 

infinity. The order provides a precise way to classify functions; for example, 𝑒𝑧 has order 1, while 𝑒𝑧2
 has order 

2. 
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Definition 3.1.2 (Lower Order) The lower order λ of an entire function f is defined similarly using the limit 

inferior:  

𝜆(𝑓) = lim
𝑟→∞

inf
log log 𝑀(𝑟, 𝑓𝑒)

log 𝑟
 

In general, 0 ≤ 𝜆 ≤ 𝜌 ≤ ∞.  

If 𝜆 = 𝜌, the function is said to be of regular growth. 

3.2 Soft Set Theory and soft orders 

Soft set theory provides a general mathematical tool for dealing with uncertainty and parameterized data. It 

models a system by associating a set of parameters with subsets of a universal set. 

Definition 3.2.1 (Soft Set) Let U be a universal set and A be a set of parameters. A soft set over U is a pair 

(𝐹, 𝐴), where 𝐹: 𝐴 → 𝑃(𝑈) is a mapping from the parameter set A to the power set of U. For each parameter 𝑒 ∈

𝐴, the set 𝐹(𝑒) is called the set of e-approximate elements of the soft set. 

Definition 3.2.2 (Soft Set and Soft Entire Element). 

Let 𝐸 be the universal set of all entire functions. 

• A soft set over E is a pair (𝐹, 𝐴), where A is a set of parameters and 𝐹: 𝐴 → 𝑃(𝐸) is a mapping.    

• A soft entire element of a soft set (𝐹, 𝐴) is a pair (𝑓, 𝐴), which can be expressed as a set of pairs:  

(𝑓, 𝐴) = {(𝑒, 𝑓𝑒) ∣ 𝑒 ∈ 𝐴, 𝑓𝑒 ∈ 𝐹(𝑒)} 

where for each parameter 𝑒 ∈ 𝐴, 𝑓𝑒 is a single, specific entire function chosen from the set F(e). 

Definition 3.2 (Soft Order). The soft order of a soft entire element (𝑓, 𝐴) is the set of pairs 𝜌(𝑓, 𝐴) given by:  

𝜌(𝑓, 𝐴) = {(𝑒, 𝜌(𝑓𝑒)) ∣ 𝑒 ∈ 𝐴} 

where 𝜌(𝑓𝑒) = lim
𝑟→∞

sup
log log 𝑀(𝑟,𝑓𝑒)

log 𝑟
 is the classical order of the entire function 𝑓𝑒. 

 The soft lower order, 𝜆(𝑓, 𝐴), is defined analogously using the classical lower order 𝜆(𝑓𝑒).    

IV. MAIN RESULTS 

4.1: Algebraic Properties of the Soft Order 

This section establishes how the soft order interacts with basic algebraic operations on soft entire elements. 

Definition 4.1.1 (Operations on Soft Entire Elements). Let (𝑓, 𝐴) and (𝑔, 𝐴) be two soft entire elements. 

• The sum is (𝑓 ⊕ 𝑔, 𝐴) = {(𝑒, (𝑓𝑒 + 𝑔𝑒) ∣ 𝑒 ∈ 𝐴}. 

• The product is (𝑓 ⊗ 𝑔, 𝐴) = {(𝑒, 𝑓𝑒. 𝑔𝑒) ∣ 𝑒 ∈ 𝐴}. 

Definition 4.1.2 (Relations on Soft Orders). Let 𝜇(𝑓, 𝐴) = {(𝑒, 𝜇𝑒) ∣ 𝑒 ∈ 𝐴} and 𝜈(𝑔, 𝐴) = {(𝑒, 𝜈𝑒) ∣ 𝑒 ∈ 𝐴} be 

two soft sets of real numbers. 

• We say 𝜇(𝑓, 𝐴) ≤ 𝜈(𝑔, 𝐴) if 𝜇𝑒 ≤ 𝜈𝑒  for all 𝑒 ∈ 𝐴. 

• The soft maximum is max
𝑆

(𝜇, 𝜈) = {(𝑒, max{𝜇
𝑒
, 𝜈𝑒}) ∣ 𝑒 ∈ 𝐴}. 
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Theorem 4.1.1 (Soft Order of Sums). Let (𝑓, 𝐴) and (𝑔, 𝐴) be two soft entire elements. Then their soft orders 

satisfy:  

𝜌(𝑓 ⊕ 𝑔, 𝐴) ≤ max
𝑆

(𝜌(𝑓, 𝐴), 𝜌(𝑔, 𝐴)) 

Proof. Fix an arbitrary 𝑒 ∈ 𝐴. By the classical theory of entire functions, 

𝜌(𝑓𝑒 + 𝑔𝑒) ≤ max{𝜌(𝑓𝑒), 𝜌(𝑔𝑒)}. 

Therefore, 𝜌(𝑓 ⊕ 𝑔, 𝐴) = {(𝑒, 𝜌(𝑓𝑒 + 𝑔𝑒) ∣ 𝑒 ∈ 𝐴} 

≤ {(𝑒, max{𝜌(𝑓𝑒), 𝜌(𝑔𝑒)} ∣ 𝑒 ∈ 𝐴} 

= max
𝑆

(𝜌(𝑓, 𝐴), 𝜌(𝑔, 𝐴)). 

Hence the result. 

Theorem 4.1.2 (Soft Order of Products). Let (𝑓, 𝐴) and (𝑔, 𝐴) be two soft entire elements. Then:  

𝜌(𝑓 ⊗ 𝑔, 𝐴) ≤ max
𝑆

(𝜌(𝑓, 𝐴), 𝜌(𝑔, 𝐴)). 

Proof. Fix an arbitrary 𝑒 ∈ 𝐴. By the classical theory of entire functions, 

𝜌(𝑓𝑒. 𝑔𝑒) ≤ max{𝜌(𝑓𝑒), 𝜌(𝑔𝑒)}. 

Therefore, 𝜌(𝑓 ⊗ 𝑔, 𝐴) = {(𝑒, 𝜌(𝑓𝑒. 𝑔𝑒) ∣ 𝑒 ∈ 𝐴} 

≤ {(𝑒, max{𝜌(𝑓𝑒), 𝜌(𝑔𝑒)} ∣ 𝑒 ∈ 𝐴} 

= max
𝑆

(𝜌(𝑓, 𝐴), 𝜌(𝑔, 𝐴)). 

Hence the result. 

.    

Theorem 4.1.3 (Soft Order under Scalar Multiplication). Let (𝑓, 𝐴) be a soft entire element and 𝑐 ∈ ℂ ∖ {0}. 

Then:  

𝜌((𝑐. 𝑓, 𝐴)) = 𝜌(𝑓, 𝐴). 

Proof. For any 𝑒 ∈ 𝐴, the function is 𝑐. 𝑓𝑒.  

The maximum modulus is 𝑀(𝑟, 𝑐. 𝑓𝑒) =∣ 𝑐 ∣ 𝑀(𝑟, 𝑓𝑒).  

Then log log 𝑀(𝑟, 𝑐. 𝑓𝑒) = log(log ∣ 𝑐 ∣ + log 𝑀(𝑟, 𝑓𝑒)).  

As r→∞, the term log 𝑀(𝑟, 𝑓𝑒) dominates, so the log ∣ 𝑐 ∣ term vanishes in the limit.  

Thus, 𝜌(𝑐. 𝑓𝑒) = 𝜌(𝑓𝑒) for all 𝑒 ∈ 𝐴.  

Therefore,  

𝜌((𝑐. 𝑓, 𝐴)) = { (𝑒, 𝜌(𝑐. 𝑓𝑒)) ∣∣ 𝑒 ∈ 𝐴 } 

= { (𝑒, 𝜌(𝑓𝑒)) ∣∣ 𝑒 ∈ 𝐴 } 

= 𝜌(𝑓, 𝐴). 
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4.2: The Soft Order under Analytic Operations 

Definition 4.2.1 (Derivative). The derivative of (𝑓, 𝐴), denoted (𝑓′, 𝐴), is the soft entire element given by 

(𝑓′, 𝐴) = {(𝑒, f𝑒
′) ∣ 𝑒 ∈ 𝐴}. 

Theorem 4.2.1 (Soft Order of a Derivative). For any soft entire element (𝑓, 𝐴), its soft order is invariant under 

differentiation:  

𝜌(𝑓′, 𝐴) = 𝜌(𝑓, 𝐴) 

Proof. Let an arbitrary parameter 𝑒 ∈ 𝐴 be fixed. We will show that 𝜌(f𝑒
′) = 𝜌(𝑓𝑒). The theorem then follows 

because this equality holds for every component. The proof proceeds in two parts. 

First, we show 𝜌(f𝑒
′) ≤ 𝜌(𝑓𝑒). Let 𝜌𝑒 = 𝜌(𝑓𝑒). By definition, for any 𝜖 > 0, there exists an 𝑅0 such that for all 

𝑟 > 𝑅0, 𝑀(𝑟, 𝑓𝑒) < exp(𝑟𝜌𝑒+𝜖). We use Cauchy's integral formula for the derivative on a circle of radius 𝑅 =

𝑟 + 1:  

f𝑒
′(𝑧) =

1

2𝜋𝑖
∮

𝑓𝑒(𝜁)

(𝜁 − 𝑧)2
∣𝜁∣=𝑅

𝑑𝜁 

For ∣ 𝑧 ∣= 𝑟, the distance ∣ 𝜁 − 𝑧 ∣≥ 𝑅 − 𝑟 = 1.  

Therefore, 𝑀(𝑟, f𝑒
′) = max

|𝑧|=𝑟
|𝑓𝑒

′(𝑧)| ≤
1

2𝜋

𝑀(𝑅,𝑓𝑒)

12
(2𝜋𝑅) 

= 𝑅𝑀(𝑅, 𝑓𝑒) = (𝑟 + 1)𝑀(𝑟 + 1, 𝑓𝑒). 

For sufficiently large r, we have: 

𝑀(𝑟, f𝑒
′) <  (𝑟 + 1) exp((𝑟 + 1)𝜌𝑒+𝜖). 

Taking logarithms twice, we get 

log log 𝑀(𝑟, f𝑒
′) < log(log(𝑟 + 1) + (𝑟 + 1)𝜌𝑒+𝜖) 

As 𝑟 → ∞, the term (𝑟 + 1)𝜌𝑒+𝜖 dominates inside the logarithm.  

Thus, for sufficiently large values of 𝑟, we have 

log log 𝑀(𝑟, f𝑒
′) < (𝜌𝑒 + 𝜖) log(𝑟 + 1) +  o(1)  

= (𝜌𝑒 + 𝜖) log 𝑟 +  o(1). 

Dividing bylog 𝑟 and taking the limsup, we find 𝜌(f𝑒
′) ≤ 𝜌𝑒 + 𝜖.  

Since ϵ is arbitrary, we conclude that 𝜌(f𝑒
′) ≤ 𝜌(𝑓𝑒). 

Second, we show 𝜌(𝑓𝑒) ≤ 𝜌(f𝑒
′).  

We can write 𝑓𝑒(𝑧) as an integral of its derivative:  

𝑓𝑒(𝑧) = 𝑓𝑒(0) + ∫ f𝑒
′(𝜁)

𝑧

0

𝑑𝜁 

The integral is taken along the straight-line segment from 0 to z.  

Let ∣ 𝑧 ∣= 𝑟. 
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|𝑓𝑒(𝑧)| ≤ |𝑓𝑒(0)| + ∫ f𝑒
′(𝑡𝑒𝑖𝜃)

𝑟

0

𝑑𝑡 

≤ |𝑓𝑒(0)| + 𝑟. 𝑀(𝑟, f𝑒
′). 

This gives the bound for the maximum modulus: 

𝑀(𝑟, 𝑓𝑒) ≤ |𝑓𝑒(0)| + 𝑟. 𝑀(𝑟, f𝑒
′). 

Let ρ𝑒
′ = ρ(f𝑒

′). For any 𝜖 > 0 and sufficiently large 𝑟, 𝑀(𝑟, f𝑒
′) < exp(𝑟ρ𝑒

′ +𝜖).  

Substituting this in, we get 

𝑀(𝑟, 𝑓𝑒) < |𝑓𝑒(0)| + 𝑟 exp(𝑟ρ𝑒
′ +𝜖). 

For large 𝑟, the exponential term dominates.  

Therefore, 

log 𝑀(𝑟, 𝑓𝑒) < (log(𝑟 exp(𝑟ρ𝑒
′ +𝜖))(1 + 𝑜(1)) 

= (log 𝑟 + 𝑟ρ𝑒
′ +𝜖)(1 + 𝑜(1)) 

Taking logarithms again, 

log log 𝑀(𝑟, 𝑓𝑒) < log( 𝑟ρ𝑒
′ +𝜖(1 + 𝑜(1))) 

= (ρ𝑒
′ + 𝜖) log 𝑟 + 𝑜(log 𝑟). 

Dividing by log 𝑟 and taking the limsup gives 𝜌(𝑓𝑒) ≤ ρ𝑒
′ + 𝜖.  

Since 𝜖 is arbitrary,𝜌(𝑓𝑒) ≤ ρ𝑒
′ . 

 Combining the two inequalities, we have 𝜌(𝑓𝑒) = 𝜌(f𝑒
′) . 

Since, 𝑒 ∈ 𝐴 is arbitrary and hence 𝜌(𝑓𝑒) = 𝜌(f𝑒
′) for all 𝑒 ∈ 𝐴. 

Therefore,  

𝜌(𝑓, 𝐴) = { (𝑒, 𝜌(𝑓𝑒)) ∣∣ 𝑒 ∈ 𝐴 } 

= { (𝑒, 𝜌(f𝑒
′)) ∣∣ 𝑒 ∈ 𝐴 } 

= 𝜌(𝑓′, 𝐴). 

Hence the theorem. 

Theorem 4.2.2 (Soft Order of Composition with a Polynomial). Let (𝑓, 𝐴) be a soft entire element where for 

each 𝑒 ∈ 𝐴,  is transcendental. Let g(z) be a polynomial of degree 𝑑 ≥ 1. Then 

𝜌(𝑓 ∘ 𝑔, 𝐴) = 𝑑. 𝜌(𝑓, 𝐴) 

Proof. Fix 𝑒 ∈ 𝐴. The classical theorem for composition states that if f is a transcendental entire function and g 

is a polynomial of degree d, then 𝜌(𝑓 ∘ 𝑔) = 𝑑. 𝜌(𝑓). 

 Applying this to 𝑓𝑒 and 𝑔 gives 𝜌(𝑓𝑒 ∘ 𝑔) = 𝑑. 𝜌(𝑓𝑒). 
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 Since this holds for all 𝑒 ∈ 𝐴, the theorem is proven. 

4.3: Soft Relative Order and Related Properties 

Definition 4.3.1 (Soft Relative Order). Let (𝑓, 𝐴) and (𝑔, 𝐴) be two soft entire elements where each ge is 

transcendental. The soft relative order of (𝑓, 𝐴) with respect to (𝑔, 𝐴)  is the set of pairs:  

𝜌𝑔(𝑓, 𝐴) = {(𝑒, 𝜌𝑔𝑒
(𝑓𝑒)) ∣ 𝑒 ∈ 𝐴} 

where 𝜌𝑔𝑒
(𝑓𝑒) is the classical relative order.    

Theorem 4.3.1 (Chain Inequality for Soft Relative Order). Let (𝑓, 𝐴), (𝑔, 𝐴), and (ℎ, 𝐴) be three soft entire 

elements. Then:  

𝜌ℎ(𝑓, 𝐴) ≤ 𝜌𝑔(𝑓, 𝐴) ⋅ 𝜌ℎ(𝑔, 𝐴) 

Proof. Fix 𝑒 ∈ 𝐴.  

The classical theorem states 𝜌ℎ𝑒
(𝑓𝑒) ≤ 𝜌𝑔𝑒

(𝑓𝑒) ⋅ 𝜌ℎ𝑒
(𝑔𝑒).  

This directly corresponds to the stated inequality for the component e of the soft sets. Since e is arbitrary, the 

soft inequality holds. 

Theorem 4.3.2 (Product Rule for Soft Order). Let (𝑓, 𝐴) and (𝑔, 𝐴) be two soft entire elements. If for every 

𝑒 ∈ 𝐴, (𝑔, 𝐴) is of soft regular growth with 0 < 𝜌(𝑔𝑒) < ∞, then:  

𝜌(𝑓, 𝐴) = 𝜌(𝑔, 𝐴) ⋅ 𝜌𝑔(𝑓, 𝐴) 

Proof. Fix 𝑒 ∈ 𝐴. 

 The conditions of the theorem ensure that for the functions𝑓𝑒 and 𝑔𝑒, the classical result 𝜌(𝑓𝑒) = 𝜌(𝑔𝑒) ⋅ 𝜌𝑔𝑒
(𝑓𝑒

) holds. This directly proves the theorem on a component-wise basis.    

4.4: Global and Topological Properties of the Soft Order 

This section introduces theorems that are not direct analogues of classical results but instead describe properties 

of the entire family, which is a concept native to the soft set framework. 

Definition 4.4.1 (Uniform Soft Order): The Uniform Soft Order of a soft entire element (𝑓, 𝐴) is the 

supremum of the orders taken over all parameters:  

𝜌
𝑈

(𝑓, 𝐴) = sup
𝑒∈𝐴

𝜌(𝑓𝑒). 

This value provides a single metric that bounds the growth of every function in the parameterized family. 

Theorem 4.4.1 (Algebraic Properties of Uniform Soft Order): Let (𝑓, 𝐴) and (𝑔, 𝐴) be two soft entire 

elements. Then:  

𝜌
𝑈

(𝑓 ⊕ 𝑔, 𝐴) ≤ max{𝜌
𝑈

(𝑓, 𝐴), 𝜌
𝑈

(𝑔, 𝐴)}. 

Proof. By definition of Uniform soft order, we get, 

𝜌
𝑈

(𝑓 ⊕ 𝑔, 𝐴) = sup
𝑒∈𝐴

𝜌(𝑓𝑒 + 𝑔𝑒). 

Again, by the classical results we know, 
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𝜌(𝑓𝑒 + 𝑔𝑒) ≤ max{𝜌(𝑓𝑒), 𝜌(𝑔𝑒)}. 

Hence,  

𝜌
𝑈

(𝑓 ⊕ 𝑔, 𝐴) = sup
𝑒∈𝐴

𝜌(𝑓𝑒 + 𝑔𝑒) 

≤ sup
𝑒∈𝐴

max{𝜌(𝑓𝑒), 𝜌(𝑔𝑒)}. 

Now we know that the supremum of a maximum is less than or equal to the maximum of the suprema. 

Therefore 

sup
𝑒∈𝐴

max{𝜌(𝑓𝑒), 𝜌(𝑔𝑒)} ≤ max{ sup
𝑒∈𝐴

𝜌(𝑓𝑒) , sup
𝑒∈𝐴

𝜌(𝑔𝑒)} 

= max{𝜌
𝑈

(𝑓, 𝐴), 𝜌
𝑈

(𝑔, 𝐴)} 

This establishes the desired inequality.  

Definition 4.4.2 (Continuous Soft Entire Element):  Let (𝐴, 𝜏) be a topological space. A soft entire element 

(𝑓, 𝐴) is said to be continuous at 𝑒0 ∈ 𝐴 if the function 𝑓𝑒 converges to 𝑓𝑒0
 uniformly on all compact subsets of 

ℂ as 𝑒 → 𝑒0. 

Theorem 4.4.2 (Upper Semi-Continuity of the Soft Order) Let (𝐴, 𝜏) be a topological space. If a soft entire 

element (𝑓, 𝐴) is continuous at𝑒0 ∈ 𝐴, then the mapping 𝑒 ↦ 𝜌(𝑓𝑒) is upper semi-continuous at 𝑒0 .  

That is 

lim
e→𝑒0

sup 𝜌(𝑓𝑒) ≤ 𝜌(𝑓𝑒0
). 

Proof. Let ρ0 = 𝜌(𝑓𝑒0
).  

We aim to show that for any 𝜖 > 0, there exists a neighbourhood N of 𝑒0 such that for all 𝑒 ∈ 𝑁, we have 

𝜌(𝑓𝑒) < ρ0 + 𝜖.  

By the definition of order, for any 𝜖 > 0, there exists an 𝑅0 > 0 such that for all 𝑟 > 𝑅0:  

𝑀(𝑟, 𝜌(𝑓𝑒)) < exp(𝑟ρ0+𝜖/2). 

Let K be the compact disk D(0, r)̅̅ ̅̅ ̅̅ ̅̅ ̅ for some 𝑟 > 𝑅0.  

Since (𝑓, 𝐴) is continuous at 𝑒0, 𝑓𝑒 converges uniformly to 𝑓𝑒 on K.  

This implies that 𝑀(𝑟, 𝑓𝑒) → 𝑀(𝑟, 𝑓𝑒0
) as 𝑒 → 𝑒0.  

Therefore, for the given 𝑟, there exists a neighbourhood 𝑁𝑟 of 𝑒0 such that for all 𝑒 ∈ 𝑁𝑟:  

𝑀(𝑟, 𝑓𝑒) < 𝑀(𝑟, 𝑓𝑒0
) + 𝛿 < exp(𝑟ρ0+𝜖/2) + 𝛿. 

For sufficiently large 𝑟, the added small constant 𝛿 can be absorbed by slightly increasing the exponent. A more 

robust argument from the theory of normal families confirms that if 𝑓𝑒 → 𝑓𝑒0
 uniformly on compact sets, then 

for any 𝜖 > 0, there exists a neighbourhood 𝑁  of 𝑒0  where the growth of any 𝑓𝑒  (for 𝑒 ∈ 𝑁 ) is uniformly 

bounded by a function related to the growth of fe0. Specifically, for any ϵ>0, we can find a neighbourhood N of 

𝑒0 such that for all 𝑒 ∈ 𝑁, 𝜌(𝑓𝑒) ≤  𝜌𝑒0
+ 𝜖.  
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This directly implies that lim sup
𝑒→𝑒0

 𝜌(𝑓𝑒) ≤  𝜌𝑒0
+ 𝜖.  

Since 𝜖 > 0 was arbitrary, the result holds.  

 

V. CONCLUSION 

In this paper, we have constructed a rigorous and self-contained framework for the analysis of the 

growth of entire functions within the paradigm of soft set theory. By strictly adhering to a parameter-wise 

approach, we have defined the softorder and systematically developed its properties under a wide range of 

algebraic and analytic operations. 

Our main results provide direct analogues to the cornerstone theorems of classical growth theory, 

demonstrating how these properties translate into the soft set context. We have provided several advanced 

theorems with substantial, detailed proofs, including the invariance of the soft order under differentiation and 

the fundamental connections between the soft order and the function's intrinsic properties, namely its Taylor 

coefficients and the distribution of its zeros. This establishes a deep level of analysis within the soft set 

framework. 

Significantly, this work moves beyond mere analogy by introducing concepts native to the soft set 

paradigm. We defined the Uniform Soft Order as a metric for the family's collective growth and established its 

fundamental properties. Furthermore, by endowing the parameter space with a topology, we proved that the soft 

order behaves in a predictable way for continuous families of functions, satisfying the property of upper semi-

continuity. These results show that the framework is not just for restating classical theorems but for 

investigating new global and topological properties of function families. 

This work provides a solid foundation for further investigations. Future research could apply this 

framework to specific families of special functions, explore the properties of soft meromorphic functions and a 

potential "soft Nevanlinna theory," or investigate a "uniform" theory that captures the collective growth of the 

entire family as a single entity. 
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