Generalized Siamese Primes

M.Lewinter and S.Reyman

Abstract

The odd primes, p and q, are called Siamese primes, if there exists a natural number, n, such that $p = n^2 - 2$ and $q = n^2 + 2$. Letting a be a natural number which is not a square, we present properties of p and q, that satisfy the equations, $p = n^2 - a$ and $q = n^2 + a$.

Date of Submission: 08-09-2025 Date of acceptance: 19-09-2025

I. Siamese Primes

The odd primes, p and q, are called *Siamese primes*, if there exists a natural number, n, such that

$$p = n^2 - 2$$
 and $q = n^2 + 2$

Examples:

n	p, q
3	7, 11
9	79, 83
15	223, 227
21	439, 443

 n^2 is odd, implying that n is odd, so $n^2 = 1$

(mod 4). Since q - p = 4, $q = p \pmod{4}$.

As odd numbers are 1 or 3 (mod 4), $q = p \pmod{4}$, either $p = q = 1 \pmod{4}$ or $p = q = 3 \pmod{4}$. Since $q = n^2 + 2$, we see that $q = 3 \pmod{4}$, so $p = q = 3 \pmod{4}$, as exemplified by the table above.

Theorem 1: $3 \mid n$.

Proof: Observe that $n^2 = 0$ or 1 (mod3). Also, q = 1 or 2 (mod 3). We have two cases.

Case 1: $q = 1 \pmod{3}$. Since $n^2 = q - 2$, $n^2 = -1 = 2 \pmod{3}$, which is impossible.

Case 2: $q = 2 \pmod{3}$. Since $n^2 = q - 2$, $n^2 = 0 \pmod{3}$, implying that $n = 0 \pmod{3}$, so $3 \mid n$.

II. Generalized Siamese Primes

(a) We consider the system, $p = n^2 - 3$ and $q = n^2 + 3$.

Examples: $\begin{vmatrix} n & p,q \\ 4 & 13,19 \\ 8 & 61,67 \\ 10 & 97,103 \\ 14 & 193,199 \end{vmatrix}$

Since n^2 is even, $n^2 = 0 \pmod{4}$. Then $p = 0 - 3 = 1 \pmod{4}$ and $q = 0 + 3 = 3 \pmod{4}$. Note, too, that $n^2 = 0 \pmod{4}$ implies that n = 0 or $2 \pmod{4}$. See the above table.

We bypass the system $p = n^2 - 4$ and $q = n^2 + 4$, since $n^2 - 4 = (n - 2)(n + 2)$ which is composite for n > 3. When n = 3, we have the only solution, p = 5, q = 13.

(b) We consider the system, $p = n^2 - 5$ and $q = n^2 + 5$.

Examples:

n	p,q
6	31,41
12	139,149
36	1291,1301
72	5179,5189

Since n^2 is even, we have $n^2 = 0 \pmod{4}$. Then $p = 0 - 5 = 3 \pmod{4}$ and $q = 0 + 5 = 1 \pmod{4}$. **Theorem 2:** 3 |n|.

Proof:Observe that $n^2 = 0$ or 1 (**mod 3**). Also, q = 1 or 2 (mod 3). If $n^2 = 1$ (mod 3), we find that $n^2 = q - 5$ becomes $1 = q - 5 = \pmod{3}$, in which case $q = 6 = 0 \pmod{3}$, which is impossible. It follows that $n^2 = 0 \pmod{3}$, so $n = 0 \pmod{3}$.

There are two kinds of odd primes, p, and they have different properties. If $p=1 \pmod{4}$, then p can be written in only one way as $a^2 + b^2$. If $p=3 \pmod{4}$, then p cannot be written as the sum of two squares. This makes the following theorem noteworthy.

Theorem 3: Let $p = n^2 - a$ and let $q = n^2 + a$. If a is even, then $p = q \pmod{4}$. If a is odd, then either (a) $p = 1 \pmod{4}$ and $q = 3 \pmod{4}$, or (b) $p = 3 \pmod{4}$ and $q = 1 \pmod{4}$.

Proof: q - p = 2a. (a) If *a* is even, we have $q - p = 0 \pmod{4}$, so $p = q \pmod{4}$. (b) If *a* is odd, let a = 2k + 1, so 2a = 4k + 2. Then $q - p = 2 \pmod{4}$, so $p = 1 \pmod{4}$ and $q = 3 \pmod{4}$, or $p = 3 \pmod{4}$ and $q = 1 \pmod{4}$.

Bibliography

- [1] David Wells, Prime Numbers, Wiley, 2005.
- [2] M.Lewinter, J.Meyer, Elementary Number Theory with Programming, Wiley & Sons. 2015.
- [3] D. Burton, Elementary Number Theory, McGraw-Hill, 2005.