Common fixed point theorem through weak compatibility in Menger space

Ramesh Bhinde

Govt. P.G. College, Alirajpur, India

ABSTRACT: The object of this paper is removing the condition of continuity in[6] and establish a unique common fixed point theorem for six mappings using the concept of weak compatibility in Menger space which is an alternative result of Chandel and Verma[1].

KEYWORDS: Continuous t-norm, PM-space, Menger space, compatible, weak compatible.

I. INTRODUCTION

In 1942, Menger [4] has introduced the theory of probabilistic metric space in which a distribution function was used instead of non-negative real number as value of the metric. In 1962, Schweizer and Sklar [8] studied this concept and gave fundamental result on this space. In 1972, Sehgal and Bharucha–Reid[9] obtained a generalization of Banach Contraction principle on a complete metric space which is a milestone in developing fixed point theory in Menger space. In 1982, Sessa [10] introduced weakly commuting mappings in Menger space. In 1986, Jungck enlarged this concept to Compatible maps .in 1991, Mishra [5] has been introduced the notion of compatible maps in Menger space. In 1988 Jungck and Rhoades[3] introduced the concept of weakly compatibility and showed that each pair of compatible maps is wekly compatible but the converse need not to be true. In 2005 Singh and Jain [11]generalized the result of Mishra[5] using the concept of weak compatibility and compatibility of pair of self maps. In this paper prove a fixed point theorem for six weakly compatible mappings in Menger space. First recall some definitions and known result in Menger space.

II. PRELIMINARY NOTES

Definition 2.1*A* mapping $T: [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if T satisfied the following conditions: (1) T(a, 1) = a, T(0,0) = 0(2) T(a, b) = T(b, a),(3) T is continuous (4) $T(a, b) \leq T(c, d)$, whenever $a \leq c$ and $b \leq d$, and $a, b, c, d \in [0,1]$

(5) T(T(a, b), c) = T(a, T(b, c)) for all $a, b, c \in [0, 1]$

Definition 2.2 A Mapping $F: \mathbb{R} \to \mathbb{R}^+$ is said to be a distribution function if it is non-decreasing and left continuous with Inf $\{F(t): t \in \mathbb{R}\} = 0$ and Sup $\{F(t): t \in \mathbb{R}\} = 1$

We will denote the Δ the set of all distribution function defined on $[-\infty,\infty]$ while H(t) will always denote the specific distribution function defined by

$$H(t) = \begin{cases} 0, & \text{if } t \leq 0\\ 1, & \text{if } t > 0 \end{cases}$$

Definition 2.3(Schweizer and Sklar[8])The ordered pair (X,F) is called a probabilistic metric space(shortly PM-space) if X is nonempty set and F is a probabilistic distance satisfyin the following conditions: PM-1 $F_{x,y}(t) = 1$ if and only if x=yPM-2 $F_{x,y}(0) = 0$ PM-3 $F_{x,y}(t) = F_{y,x}(t)$ PM-4 If $F_{x,z}(t) = 1$ and $F_{z,y}(s) = 1$ then $F_{x,y}(t+s)=1$ for all $x,y,z \in X$ and t,s>0the ordered triple (X,F,T) is called Menger space if (X,F) is PM-space and T is a triangular norm such that for all $x,y,z \in X$ and t,s>0

 $PM-5 \qquad F_{x,y}(t+s) \ge F_{x,z}(t) + F_{z,y}(s)$

Definition 2.4A Menger space (X, F, T) with the continuous t-norm T is said to be complete iff every Cauchy sequence in X converges to a point in X.

Definition 2.5 The self maps A and B of a Menger Space (X,F,T) are said to be compatible ifF $_{ABxn,BAxn}(t) \rightarrow 1$ for all t>0Whenever $\{xn\}$ is a sequence in X such that $Axn,Bxn \rightarrow x$ for some $x \in X$ $asn \rightarrow \infty$

Definition 2.6 Two self-maps A and B of a non-empty set X are said to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e. if Ax = Bx for some $x \in X$, then ABx = BAx.

Lemma 2.7(Singh and Jain [11]) Let $\{x_n\}$ be a sequence in a Mengerspace (X, F, T) with continuous tnorm T and $T(a,a) \ge a$. If there exists a constant $k \in (0, 1)$ such that $F_{xn,xn+1}(kt) \ge F_{xn-1,xn}(t)$ for all t > 0 and n = 1, 2,...then $\{x_n\}$ is a Cauchy sequence in X.

Lemma 2.8 (Singh and Jain [11]) Let (X, F, *) be a Menger space. If there exists $k \in (0, 1)$ such that $Fx,y(kt) \ge Fx,y(t)$ for all $x, y \in X$ and t > 0, then x = y.

III. MAIN RESULT

Theorem 3.1: Let A, B, S, T, L And M be self maps on a Menger space (X, F, t) with continuous t-norm and defined by $t(a, b) = min\{a, b\}$ for alla $\in [0, 1]$ and satisfying the following: (3.1.1) AB $(X) \subseteq M(X)$ and $ST(X) \subseteq L(X)$ (3.1.2) M(X) and L(X) are complete subspace of X (3.1.3) (AB,L) and (ST,M) are weakly compatible (3.1.4) For all x, $y \in X$, $k \in (0,1)$, t > 0 $\mathcal{F}^{i}_{ABx,STy}(kt) \geq \min\{\mathcal{F}^{i}_{Lx,My}(t) \mathcal{F}^{j}_{ABx,Lx}(t) \mathcal{F}^{j}_{STy,Lx}(t) \mathcal{F}_{ABx,My}(2t)$ $F_{STv,Lx}(t) F_{STv,Mv}(t)$ Then AB, ST, L and M have a unique common fixed point in X. **Proof:** Let x_0 be any arbitrary point of X. Since AB (X) \subseteq M(X) and ST(X) \subseteq L(X).there exist $x_1, x_2 \in X$ such that $ABx_0 = Mx_1$, and $STx_1 = Lx_2$, Inductively we construct the sequence $\{x_n\}$ and $\{y_n\}$ in X such that $Mx_{2n-1} = ABx_{2n-2} = y_{2n-1}and$ $y_{2n} = Lx_{2n} = STx_{2n-1}for n = 1, 2, 3, \dots$ Step 1: By taking $x = x_{2n}$ and $y = x_{2n+1}$ in (iv), we have from (3.1.4) $F_{ABx2n,STx2n+1}^{\delta}(kt) \ge \min\{F_{Lx2n,Mx2n+1}^{\delta}(t) F_{ABx2n,Lx2n}^{\delta}(t)F_{STx2n+1,Lx2n}^{\delta}(t)\}$ $F_{ABx2n,Mx2n+1}(2t) F_{STx2n+1,Lx2n}(t) F_{STx2n+1,Mx2n+1}(t) \}$ $\Rightarrow F_{y2n+1,y2n+2}^{\sharp}(kt) \geq \min\{F_{y2n,y2n+1}^{\sharp}(t) F_{y2n+1,y2n}^{\sharp}(t) F_{y2n+1,y2n}^{\sharp}(t) F_{y2n+1,y2n}(t) F_{y2n+1,y2n+1}(t)\}$ $\Rightarrow F_{y2n+1, y2n+2} \quad (kt) \ge F_{y2n, y2n+1} (t)$ Similarly we can written as, $F_{y2n, y2n+1}$ (kt) $\geq F_{y2n-1, y2n}(t)$ In general, for all n even or odd, we have $F_{yn, yn+1}$ (kt) $\geq F_{yn-1, yn}(t)$ for $k \in (0,1)$ and all t > 0Thus by lemma 2.7 $\{y_n\}$ is a Cauchy sequence in X and subsequence are also Cauchy sequence in X. **Step 2.** Since M(X) is a complete subspace of X. Therefore $\{y_{2n+1}\}$ converges to $z \in X$ then Mu=zNow taking $x = x_{2n-2}$, y = u, we have from (3.1.4) $F'_{ABx2n-2,STu}(kt) \ge \min\{F'_{Lx2n-2,Mu}(t)F'_{ABx2n-2,Lx2n-2}(t)F'_{STu,Lx2n-2}(t)$ $F_{AB x 2n-2, Mu}(2t) F_{STu, L x 2n-2}(t) F^{*}_{STu, Mu}(t) \}$ *taking limit* $n \rightarrow \infty$ *,we have* $F_{z,STu}^{*}(kt) \geq \min\{F_{z,z}^{*}(t) F_{z,z}^{*}(t) F_{STu,z}^{*}(t)F_{z,z}(2t) F_{STu,z}(t) F_{STu,z}^{*}(t)\}$ This gives, $F_{z,STu}^{i}(kt) \geq F_{STu,z}^{i}(t)$ *Hence by lemma 2.8, STu* = z*. Therefore STu*=Mu=zWe can say, u is a coincidence point of ST and M. **Step 3.** Since L(X) is a complete subspace of X. Therefore $\{y_{2n+1}\}$ converges to $z \in X$ then Lv = z. Nowusing x = v and $y = x_{2n-1}$ we have from (3.1.4)

 $F_{ABv,STx2n-1}^{2}(kt) \geq \min\{F_{Lv,M,x2n-1}^{2}(t)F_{ABv,Lv}^{2}(t)F_{ST,x2n-1,Lv}^{2}(t)\}$ $F_{ABv,M\,x2n-1y}(2t) F_{ST\,x2n-1,Lv}(t) F_{ST\,x2n-1,My}(t) \}$ taking limit $n \rightarrow \infty$, we have $F^{3}_{ABv,z}(kt) \geq \min\{F^{3}_{z,z}(t) F^{3}_{ABv,z}(t) F^{3}_{z,z}(t) F^{3}_{ABv,z}(2t) F_{z,z}(t) F^{3}_{z,z}(t)\}$ $\Rightarrow F_{ABv,z}^{2}(kt) \geq F_{ABv,z}^{2}(t)$ Hence by lemma 2.8, ABv = z. Therefore ABv=Lv=zWe can say, v is a coincidence point of AB and L. Step 4. Since the pair $\{ST,M\}$ is weakly compatible for some $u \in X$ (ST)Mu=M(ST)u whenever STz=MzNow using $x = x_{2n-2}$ and y = z, we have from (3.1.4) $\begin{aligned} F_{ABx2n-1,STz}^{*}(kt) &\geq \min\{F_{Lx2n-1,Mz}^{*}(t) F_{ABx2n-1,Lx2n-1}^{*}(t) F_{STz,Lx2n-1}^{*}(t) F_{STz,Lx2n-1}^{*}(t) F_{STz,Lx2n-1}^{*}(t) F_{STz,Lx2n-1}^{*}(t) F_{STz,Mz}^{*}(t)\} \end{aligned}$ taking limit $n \rightarrow \infty$, we have Thus, $F_{z,STz}^{i}(kt) \ge min\{F_{z,z}^{i}(t),F_{z,z}^{i}(t),F_{z,z}^{i}(t),F_{z,z}^{i}(t),F_{STz,z}^{i}(t)$ Step5:Since the pair{ST,M} is weakly compatible for some $v \in X$ (AB)Lv = L(AB)v whenever ABz=Lznow x = z and $y = x_{2n-1}$, we have from (3.1.4) $F^{\delta}_{ABz,STx2n-1}(kt) = \min\{F^{\delta}_{Lz,M,x2n-1}(t)F^{\delta}_{ABz,Lz}(t)F^{\delta}_{ST,x2n-1,Lz}(t)F_{ABz,M,x2n-1}(2t)$ $F_{ST x 2n-1, Lz}(t) F_{ST x 2n-1, M x 2n-1}(t)$ Taking limit $n \rightarrow \infty$, we have $F_{AB_{z,z}}^{\delta}(kt) \geq \min\{F_{z,z}^{\delta}(t) F_{AB_{z,z}}^{\delta}(t) F_{z,z}^{\delta}(t) F_{AB_{z,z}}(t) F_{z,z}(t) F_{z,z}(t) F_{z,z}^{\delta}(t)\}$ $\Rightarrow \vec{F}_{ABz,z}(kt) \geq \vec{F}_{ABz,z}(t)$ Hence by lemma 2.8, ABz = z. Since Lz = ABz, Therefore ABz = Lz = z

Step6.Uniqueness Let $w \ (w \neq z)$ be another common fixed point of AB, ST, L and M, then w=ABw =STw =Lw=Mw taking x=z and y=w thenfrom (3.1.4) $\vec{F}_{ABz,STw}(kt) \geq \min\{\vec{F}_{Lz,Mw}(t), \vec{F}_{ABz,Lz}(t), \vec{F}_{STw,Lz}(t), \vec{F}_{ABz,Mw}(2t), \vec{F}_{STw,Lz}(t), \vec{F}_{STw,Mw}(t)\}$

 $\Rightarrow F_{z,w}^{\delta}(kt) \geq \min\{F_{z,w}^{\delta}(t) | F_{z,z}^{\delta}(t) | F_{w,z}^{\delta}(t) | F_{z,w}^{\delta}(t) | F_{z,w}^{\delta}(t) | F_{z,w}^{\delta}(t) | F_{z,w}^{\delta}(t) \geq F_{z,w}^{\delta}(t) | Hence by lemma 2.8, z=w which is a contradiction of our hypothesis. Therefore, z is a common fixed point of AB, ST, L and M.$

REFERENCES

- Chandel R.S. and VermaRakesh, Fixed Point Theorem in Menger Space using Weakly Compatible, Int. J. Pure Appl. Sci. Technol., 7(2) (2011), pp. 141-148
- [2] Jungck G., Compatible mappings and common fixed points, Internat. J. Math. Math.Sci., 9 (1986), 771-779.
- [3] Jungek G., Rhoades B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998) 227– 238.
- [4] Menger K., Statistical metrics, Proc. Nat. Acad. Sci. USA 28 (1942) 535–537.
- [5] Mishra S.N., Common fixed points of compatible mappings in PM-spaces, Math. Japon., 36(1991), 283-289.
- [6] Pant B. D. and Chauhan Sunny, Fixed Point Theorems in Menger Space no. 19(2010) 943 951
- [7] Pant R. P., Common fixed points of non-commuting mappings, J. Math. Anal. Appl. 188(1994), 436-440.
- [8] Schweizer B., Sklar A., Statistical metric spaces, Pacific J. Math. 10 (1960) 313–334.9.Sehga V. M. and Bharucha-Reid A. T., Fixed points of contraction
- [9] mappings on prob-abilistic metric spaces, Math. Systems Theory 6 (1972), 97–102.10.Sessa S., On a weak commutative condition in fixed point consideration, Publ. Inst. Math. (Beograd) 32(1982) 146–153.
- [10] 11.Singh B. and Jain S., A fixed point theorem in Menger space through weak compatibility, J.Math. Anal. Appl., 301(2005), 439-448.