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ABSTRACT : In this paper, we attempt to answer the question “Is it possible to reduce the order of the 

Homotopy Analysis Method (HAM ) approximation to obtain the required approximation analytical solution to 

a given accuracy “?  YES.  Based on the Homotopy Analysis Method, we developed two iterative methods, 

namely; Integrated Chebyshev Homotopy Analysis Methods (HC-HAM) and Integrated Chebyshev-Tau 

Homotopy Analysis Method (HC-THAM) for solving higher-order parametric boundary-value problems. 

Homotopy Aalysis Method is blended with Integrated Chebyshev  Polynomials and Tau Methods and this is 

done by using Integrated Chebyshev Polynomials to represent the initial approximation and the derivative 

corresponding to m=1 and also by introducing a perturbation terms in the deformation equation. The 

performance of the proposed methods is validated through examples from literature. Apart from ease of 

implementation, better accuracy is obtained. Comparison with existing methods such as Standard Homotopy 

Analysis Method, Adomian Decomposition Method, Extended Adomian Decomposition Method, Optimal 

Homotopy Asymptotic Method and Homotopy Perturbation Method are made to show the superiority and simple 

applicability of the proposed iterative methods. 

 

KEYWORDS: Homotopy analysis method, integrated Chebyshev polynomial, Tau method, Parametric 
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I. INTRODUCTION 
 Higher-order parametric differential equations [14] appear frequently in physical problems and there 

are numbers of real time phenomena which are modeled by such equations [13]. Since exact solutions to these 

differential equations are very rare, so researchers always look for the best approximation solution [1]. The 

recent literature for the solutions of differential equations includes: the Adomian Decomposition Method 

(ADM) [3], the Differential Transform Method (DTM) [5], the Variation Iteration Method (VIM) [9],the 

Homotopy Perturbation Method (HPM) [7,8], the Extended Adomian Decomposition  Method (EADM) [4], 

Homotopy Analysis Method [2,13]. etc. The classical Perturbation Methods are restricted to small or large 

parameters and hence their use is confined to a limited class of problems. The HPM as well as HAM, which are 

the elegant combination of Homotopy from topology and perturbation techniques, overcomes the restrictions of 

small or large parameters in the problems [1]. Liao [11,12] developed Homotopy Analysis Method as this 

method has been applied on a wide class of initial and boundary value problems [2]. Also, Marinca and 

Herisanu [15,16 ] introduced the Optimal Homotopy Asymptotic Method (OHAM), which uses the more 

generalized auxiliary function (HCP). They reported different forms of auxiliary that can be expressed in a 

compact form as H(P)=f(r)g(P, C i ) is the power series in P, and the unknown constants C i , which control the 

convergence of the approximating series solution, are optimally determined [1]. G. Ebadietal [4] used Extended 

Adomian Decomposition Method for the solutions of fourth-order parametric boundary value problems, J. A li. 

et al [1] applied Optimal Homotopy Asymptotic Method for solving parameterized sixth-order boundary-value 

problem and S.T. Mohyus Din [13] solved higher-order parametric differential equations by Homotopy Analysis 

Method.  In this paper, we solved higher-order parametric differential equations by IC-HAM and IC-THAM. 

The results are then compared with those of exact solution and the solution obtained by HAM, HPM, OHAM, 

ADM and EADM. The structure of this paper is organized as follows; brief discussion on Chebyshev 

Polynomials is presented in sections 2. Section 3 is devoted to the construction of the proposed methods. In 

sections 4, the new methods are applied to some numerical examples and finally, section 5 is devoted to 

conclude the paper. 

II. CONSTRUCTION OF CHEBYSHEV POLYNOMIALS 
 The Chebyshev Polynomial of degree n over {-1,1} is defined by the relation  

   xnxTn

1coscos                                                                                   (2.1) 
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And, 

      1,2 11   nxTxxTxT nnn         (2.2) 

Equation (2.2) is the recurrence relation of the Chebyshev Polynomials in the interval [-1, 1]. Few terms are: 

        xxxTxxTxxTxT 34,12,,1 3

3

2

210 
 

etc 

These could be converted into any interval of consideration. For example, in [a , b],we have  
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        (2.3) 

And the recurrence relation is given as 

      1,
2

2 1 











  nxTxT

ab

bax
xT nnn        (2.4) 

Numerical Solution Techniques 

 It is necessary in the first instance to give a brief review of the Homotopy Analysis Method since our 

techniques build on this method and serve to improve the accuracy of the HAM. The new methods refined the 

HAM by using a more accurate initial approximation solution and other derivatives corresponding to m=1 by 

integrating truncation Chebyshev polynomial and solving the higher-order deformation equations using tau 

methods, known for better higher accuracy. 

 

Basic idea of HAM 

 Consider the following differential equation 

 N[U(t)]=0           (3.1) 

Where N is a nonlinear operator, t denotes independent variable, U(t) is an unknown function respectively. By 

means of generalizing the traditional Homotopy Method, Liao [11,12] constructs the so-called zero-order 

deformation equation  

           qtNtHqctUqtLq ,,1 00         (3.2) 

Where  1,0q is the embedding parameter, 00 C is a non-zero auxiliary parameter, H(t)  0 is an auxiliary 

function, L is an auxiliary linear operator,  tU o is an initial guess of U(t),  qt, is an unknown function 

respectively. Obviously, when q=0 and q=1, it holds for  

       tUttUt o  1,,0,          (3.3) 

Thus, as q increase from 0 to 1, the solution  qt, varies from initial guess  tU 0  to the 

solution   andingtU exp,
 

 tU 0 in Taylor series with respect to q, we have  

      m

m

m qtUtUqt 





1

0,         (3.4) 

Where  
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        (3.5) 
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If the auxiliary linear operator, the initial guess, the auxiliary function and convergence-control parameter, are 

properly chosen, the series (3.4), converges at q=1, then we have 

     tUtUtU
m

m





1

0          (3.6) 

According to the definition (3.5), the governing equation can be deduced from the zero-order deformation 

equation (3.2) 

Define the vector  

      tUtUtUU nm ,..........,, 10         (3.7) 

Differentiating equation (3.2) m times with respect to the embedding parameter q and then setting q=0 and 

finally dividing them by m!,  we have the so-called mth-order  deformation equation  

         tURtHCtUXtUL mmommm 11  


       (3.8) 

Where, 
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And, 










1,1

1,0

m

m
X m          

 (3.10) 

If we multiply with 
1L each side of the equation (3.8), we obtained the following mth-order deformation 

equation  

        1

1

01 



  mmmmm URLtHCtUXtU


      

 (3.11) 

It should be emphasized that   1mfortU m is governed by the linear equation (3.8) with the boundary 

conditions, which is easily solved by symbolic composition software such as Maple or Mathematics.   

3.2 Construct of the NHAMs Algorithms  

We consider the general higher-order boundary-value problem of the form: 

      bxayyyxfxy nn   ,,.......,,, 11
      

 (3.12) 

Subject to the two-point boundary conditions  

       r

r ayayay   ,........,, 1

1

0       
 (3.13)

 

       r

r aybyby   ,........,, 1

1

0  
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Where 20  nr is an integer, f is a polynomial in 

       .tan,....,,,.......,,,,,,......,, 21010

11 tsconsrealarebaandxyxyxyx rnr

n



   

The zeroth-order deformation equations are given as  

            qYNHqcxyqxrLq ,,1 00       

 (3.14) 

And 
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00  qDHHqYNHqcxyqxYLq N

  

 (3.15) 

Where,  
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 (3.16) 

It should be emphasized that  xyo of the solution  xy and other derivatives corresponding to 1m are 

determined as follows. 

Following [10], we have 

 
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Integrating equation (3.17) successively, we obtain  
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Unlike in the case of the HAM, the auxiliary function and convergence-control parameter are not necessary as 

there is no need for the solution of the higher-order deformation to confirm to some rules of solution expression.  

METHOD     

 Following the HAM procedure, we formulate the higher-order deformation equation by differentiating 

the zero-order deformation equation m-times with respect to q and then dividing by m!  to get 

          11   mmmmm yRHxyXxyL
      

 (3.22)
 

Operating the operator ,1L the inverse of 
d

d
to both sides of (3.22), then the mth –order deformation have 

the following form:
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Thus, the recursive formula for the Integrated Chebysher Homotopy Analysis Method (IC-HAM) is formulated 

as: 
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Method : 

Following the same procedure as discussed in method 1 (IC-HAM), the mth-order deformation of method 2 (IC-

THAM) has the form: 
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Also, the recursive formula for the IC-THAM is given as: 
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Application  of methods on some Examples 

In this section, we apply the techniques described in section 3.To some illustrative example of fourth, sixth and 

eighth-order parameter boundary-value problems. 

 

Example:  

Consider the following linear problem [4]  

        10,1
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The exact solution for this problem is  
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According to (3.24) the zeroth-order deformation is given by  
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Now, our initial approximation has the form of equation (3.21), we chose the auxiliary linear operation  
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Hence, the mth-order deformation can be given by  

          11   mmmmm yRHxyxxyL
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Where  
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Now, the solution of the m-th order deformation equation for 
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Consequently, the first few terms of the IC-HAM series solution for N=4 and C=1 are as follows; 
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axxxxxxaxxx 


























 2

10987654

226800

1

45360

1

40320

31

315

1

360

7

15

1

24

1
axxxxxxx

 









 3

1110987654

207900

1

37800

1

60480

61

40320

191

420

13

360

47

20

3

24

1
axxxxxxxx

 

4

121110987654

155925

1

51975

2

8100

13

2268

19

13440

811

315

92

120

53

15

4

24

1
axxxxxxxxx 









and so on. 

The first order approximation solution by IC-HAM is  

     xyxyxy 10 

 

And the residual of the solution is  

        







 1

2

1
1 2cxxcyxycxyR iiiv

 

Using the boundary conditions, we obtained 421 .....,, ccc  and minimizing the residual error by using Least 

Square Method, we obtained the following values of 1,, 4310 cforaandaaa
 

;610059547394.0;20332521244.0;5816075870.0;5541761136.0 3210  aaaa
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.0430001715598.04 a
 

Thus, the approximation solution becomes: 

   5432 990083148926.030000031231.01666666688.04999999964.01 xxxxxy

 
1219876 10100271312.131470000253855.01140001511510.080900000423351.0 xxxxx 

 
9107118 705550000020962.010862613806.210204069758.2 xxxxx  

 

For c = 10, the following values 4310 ,, aandaaa are obtained

 

8730001715410.0

;890059533938.0;70332520898.0;5816065302.0;5541759788.0

4

3210





a

aaaa

 

In this case, the approximate solution is 

  5432 00083144687.0906080000033190.01666666666.04999999868.01 xxxxxxy 
 

9710117

128876

1063843375.8792480000015549.010203494560.2

10100151273.137360000219478.01790001530912.050000421732.0

xXxxX

xXxxx









  

Method 2: 

 Following the same procedures as discussed in method I (IC-HAM) and using equation (3.2.14), we obtained 

41 ,.....CC  in terms of 41,410 ,...,,..., aaa and minimizing of the residual error, we obtained the following 

values of :1...,,... 4140 Cforaa   

.05523339021

;140082510275.0;80217623106.0;3030003445697.0;48560000841099.0

;450086067621.0;260043503003.0;677563749.1;1480912750.0

4

3214

3210









a

aaaa

Also, by substituting these values into first order approximation    10 yy  , the approximation solution 

becomes: 

 

981071181210

876

5432

1036488315.410118820631.110463512138.4394256762.5

58820000126470.0000000000.11130001751188.0670000209013.0

10083241955.00000015534.0166666680.04999999979.01

xXxXxXxX

xxxx

xxxxxy

 





 

Similarly, for C=10, the following values of 41410 .;.........;........; aaa  are obtained; 

.40588130821.0;4980004018919.0

;9980008494323.0;30430470000779304.0;280023899286.0

;080036951924.0;80848103151.0;4615749665.0;70373144248.0

43

214

3210









a

aaaa

 

Thus, we have the following approximate solution: 
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 

91011127

8776

5432

60570000847063.003180000154309.0843880000010973.01053274246.1

0830001836807.0000000000.11064551.780001157971.0

70082984043.00000042137.01666666647.04999999997.01

xxxxX

xxxXx

xxxxxy











 

Table 1: 

Absolute errors of the first-order approximate solution when C=1 and the error for third order approximation 

solution of HAM [13] 

x Analytical solution [4] 

EHPM 

[4] 

EADM 

[4] 

EEADM 

[13] 

EHAM 
E IC -HAM E IC -

THAM 

0.0 1.000000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 1.105166750 7.4e-05 7.4e-05 1.1488e-06 4.8e-06 0.0000 0.0000 

0.2 1.221336002 2.5e-04 2.5e-04 3.2027e-07 8.6e-05 2.000e-09 0.0000 

0.3 1.349520293 4.6e-04 4.6e-04 1.1328e-05 3.2e-04 3.00e-09 2.00e-09 

0.4 1.490752326 6.5e-04 6.5e-04 3.4636e-05 6.5e-04 2.00e-09 2.00e-09 

0.5 1.646095306 7.6e-04 7.6e-04 6.6411e-05 9.6e-04 1.00e-09 0.0000 

0.6 1.816653582 7.5e-04 7.5e-04 9.6330e-05 1.1e-03 3.00e-09 3.00e-09 

0.7 2.003583702 6.1e-04 6.1e-04 1.1038e-04 1.00e-03 4.00e-09 1.00e-09 

0.8 2.208105982 3.8e-04 3.8e-04 9.6471e-05 7.0e-04 1.00e-09 1.00e-09 

0.9 2.431516726 1.3e-04 1.3e-04 5.2931e-05 2.5e-04 0.0000 1.00e-09 

1.0 2.675201194 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 

Table 2: 

Absolute errors of the first-order approximate solution when C=10 and errors for third order approximation of 

HAM [13] 

X Analytical solution [4] 

EHPM 

[4] 

EADM 

[4] 

EEADM 

[13] 

EHAM 

EIC-HAM EIC-

THAM 

0.0 1.000000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 1.105166750 1.7e-04 1.7e-04 4.50410e-06 2.9e-06 0.0000 0.0000 

0.2 1.221336002 5.7e-04 5.7e-04 3.02581e-05 9.2e-05 1.00e-09 0.0000 

0.3 1.349520293 1.0e-03 1.0e-03 8.72832e-05 3.1e-04 2.00e-09 0.0000 

0.4 1.490752326 1.4e-03 1.4e-03 1.67419e-04 6.2e-04 2.00e-09 0.0000 

0.5 1.646095306 1.6e-03 1.6e-03 2.44493e-04 9.2e-04 1.00e-09 1.00e-09 

0.6 1.816653582 1.6e-03 1.6e-03 2.83793e-04 1.1e-03 0.0000 0.0000 

0.7 2.003583702 1.2e-03 1.2e-03 2.58064e-04 1.0e-03 1.00e-09 2.00e-09 

0.8 2.208105982 7.6e-03 7.6e-03 1.66169e-04 7.2e-04 1.00e-09 1.00e-09 

0.9 2.431516726 2.5e-03 2.5e-03 4.94701e-05 2.7e-04 1.00e-09 1.00e-09 

1.0 2.675201194 0.0000 0.0000 0.0000 0.0000 0.0000 1.30e-09 
 

Example 2: Consider the following problem [1] 

           10;1  xCxxCyxycxy iiivvi

 

 with the boundary conditions 

      00;10;10  iii yyy  

           1sinh11;1cosh
2

1
1;1sinh

6

7
1  iii yyy  

The exact solution is given as:   

   xxxy sinh
6

1
1 3   
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This problem is solved by the method applied in Example 1 and for each test point, the absolute error between 

the analytical solution and the results obtained by the HAM [13], OHAM [1], and the IC-HAM and IC-THAM 

when N=10 are compared in Table3 for C=1000.  With only one iteration, a better approximation is obtained. 

Table 3:  Absolute errors of the first –order approximate solution when C=1000 and errors of the third-order 

OHAM [1] and fifth-order HAM [1] are tabulated below for comparison. 

x Analytical solution  Error of          

IC-HAM 

Error of    

IC-THAM 

[1] 

EHAM 

[1] 

EOHAM 

0.1 1.100333417 1.0e-09 1.0e-09 9.1e-06 1.1e-05 

0.2 1.202669336 1.0e-09 2.0e-09 1.6e-04 3.3e-06 

0.3 1.309020293 0.0000 1.0e-09 4.4e-04 1.4e-05 

0.4 1.421418993 1.0e-09 4.0e-09 6.8e-04 5.2e-06 

0.5 1.541928638 2.0e-09 4.0e-09 7.3e-04 4.2e-05 

0.6 1.672653587 1.0e-09 3.0e-09 5.8e-04 5.7e-05 

0.7 1.815750369 2.0e-09 2.0e-09 3.2e-04 4.9e-05 

0.8 1.973439315 2.0e-09 2.0e-09 9.8e-05 4.5e-05 

0.9 2.148016726 1.0e-09 2.0e-09 4.7e-06 2.4e-05 

    

Example 3: 

Consider the following eighth-order parametric differential equation type [13] 

 
 

 
  1

24
1 4

4

4

8

8

 x
c

xCy
dx

xyd
c

dx

xyd
 

Subject to the boundary conditions 

 
     

1
24

0
0

0
;1

0
;10

3

2

2


yd

dx

yd

dx

dy
y  

   
 

 
 

 
 

 1cosh1
1

;1sinh
2

11
;1cosh

6

11
;1sinh

24

25
1

3

3

2

2


dx

yd

dx

yd

dx

dy
y  

The exact solution for is given as:  

   xxxy sinh
24

1
1 4   

The numerical results obtained by IC-HAM and IC-THAM are compared with the analytical solution and the 

results obtained by HAM [13] are presented in Table 4. These results are evaluated at m=1and it is seen from the 

numerical results in the table that IC-HAM and IC-THAM are more accurate than the second order application 

of the HAM solution in [13] 

Table 4: 

Absolute errors of the first-order approximate solution obtained by IC-HAM, IC-THAM (N=10) and the second-

order approximation of HAM [13] for example 3 when C=1000 

X  Analytical solution  EHAM [13] EIC-HAM EIC-THAM 

0 1.000000000 0.0000 0.0000 0.0000 

0.1 1.100170917 8.7e-09 0.0000 0.0000 

0.2 1.201402670 9.8e-08 0.0000 0.0000 

0.3 1.304857793 3.3e-07 0.0000 0.0000 

0.4 1.411818993 6.7e-07 0.0000 0.0000 

0.5 1.523699472 9.4e-07 0.0000 0.0000 

0.6 1.642053582 9.9e-07 0.0000 0.0000 
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0.7 1.768587869 7.8e-07 1.0e-9 1.0e-09 

0.8 1.905172649 3.9e-07 0.0000 1.0e-09 

0.9 2.053854226 7.8e-07 1.0e-09 2.0e-09 

1.0 2.216867860 0.0000 0.0000 0.0000 

 0       Denotes less than 10
10

 

III. CONCLUSION 
 The main concern of this work is to develop efficient algorithms for the numerical solution of higher-

order parametric differential equation. The goal and the question raised in the beginning of the paper are 

achieved by blending integrated Chebyshev Polynomials and tau Methods with Homotopy Analysis Method to 

solve this class of problems in question. The proposed algorithm produced rapidly convergent series and the 

results obtained by the new methods agreed well with the analytical solutions with less computational work. 

These confirm the belief that the efficiency of the proposed methods give much wider applicability for general 

classes of parametric differential equations. 
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