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ABSTRACT : In this paper, we attempt to answer the question “Is it possible to reduce the order of the
Homotopy Analysis Method (HAM ) approximation to obtain the required approximation analytical solution to
a given accuracy “? YES. Based on the Homotopy Analysis Method, we developed two iterative methods,
namely; Integrated Chebyshev Homotopy Analysis Methods (HC-HAM) and Integrated Chebyshev-Tau
Homotopy Analysis Method (HC-THAM) for solving higher-order parametric boundary-value problems.
Homotopy Aalysis Method is blended with Integrated Chebyshev Polynomials and Tau Methods and this is
done by using Integrated Chebyshev Polynomials to represent the initial approximation and the derivative
corresponding to m=1 and also by introducing a perturbation terms in the deformation equation. The
performance of the proposed methods is validated through examples from literature. Apart from ease of
implementation, better accuracy is obtained. Comparison with existing methods such as Standard Homotopy
Analysis Method, Adomian Decomposition Method, Extended Adomian Decomposition Method, Optimal
Homotopy Asymptotic Method and Homotopy Perturbation Method are made to show the superiority and simple
applicability of the proposed iterative methods.

KEYWORDS: Homotopy analysis method, integrated Chebyshev polynomial, Tau method, Parametric
Differential equations, Perturbation term

l. INTRODUCTION

Higher-order parametric differential equations [14] appear frequently in physical problems and there
are numbers of real time phenomena which are modeled by such equations [13]. Since exact solutions to these
differential equations are very rare, so researchers always look for the best approximation solution [1]. The
recent literature for the solutions of differential equations includes: the Adomian Decomposition Method
(ADM) [3], the Differential Transform Method (DTM) [5], the Variation Iteration Method (VIM) [9],the
Homotopy Perturbation Method (HPM) [7,8], the Extended Adomian Decomposition Method (EADM) [4],
Homotopy Analysis Method [2,13]. etc. The classical Perturbation Methods are restricted to small or large
parameters and hence their use is confined to a limited class of problems. The HPM as well as HAM, which are
the elegant combination of Homotopy from topology and perturbation techniques, overcomes the restrictions of
small or large parameters in the problems [1]. Liao [11,12] developed Homotopy Analysis Method as this
method has been applied on a wide class of initial and boundary value problems [2]. Also, Marinca and
Herisanu [15,16 ] introduced the Optimal Homotopy Asymptotic Method (OHAM), which uses the more
generalized auxiliary function (HCP). They reported different forms of auxiliary that can be expressed in a

compact form as H(P)=f(r)g(P, C,) is the power series in P, and the unknown constants C,, which control the

convergence of the approximating series solution, are optimally determined [1]. G. Ebadietal [4] used Extended
Adomian Decomposition Method for the solutions of fourth-order parametric boundary value problems, J. A .
et al [1] applied Optimal Homotopy Asymptotic Method for solving parameterized sixth-order boundary-value
problem and S.T. Mohyus Din [13] solved higher-order parametric differential equations by Homotopy Analysis
Method. In this paper, we solved higher-order parametric differential equations by IC-HAM and IC-THAM.
The results are then compared with those of exact solution and the solution obtained by HAM, HPM, OHAM,
ADM and EADM. The structure of this paper is organized as follows; brief discussion on Chebyshev
Polynomials is presented in sections 2. Section 3 is devoted to the construction of the proposed methods. In
sections 4, the new methods are applied to some numerical examples and finally, section 5 is devoted to
conclude the paper.

1.  CONSTRUCTION OF CHEBYSHEV POLYNOMIALS
The Chebyshev Polynomial of degree n over {-1,1} is defined by the relation

T,(x)= cos(n cos™ ) 2.1)
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And,
Tn+l (X) = 2XTn (X)_Tn—l (X)' n=1 (2.2)

Equation (2.2) is the recurrence relation of the Chebyshev Polynomials in the interval [-1, 1]. Few terms are:
T,(x)=1 , T,(x)=x, T,(x)=2x" -1, T,(x)=4x*-3x

etc

These could be converted into any interval of consideration. For example, in [a, b],we have

2x—a-b
T,(X)= Coste—"=—— 2.3
(%) co{n 0S { - H (23)

And the recurrence relation is given as

7,02 22 (0T, (0 1 2

Numerical Solution Techniques

It is necessary in the first instance to give a brief review of the Homotopy Analysis Method since our
techniques build on this method and serve to improve the accuracy of the HAM. The new methods refined the
HAM by using a more accurate initial approximation solution and other derivatives corresponding to m=1 by
integrating truncation Chebyshev polynomial and solving the higher-order deformation equations using tau
methods, known for better higher accuracy.

Basic idea of HAM
Consider the following differential equation
N[U(t)]=0 (3.1)

Where N is a nonlinear operator, t denotes independent variable, U(t) is an unknown function respectively. By
means of generalizing the traditional Homotopy Method, Liao [11,12] constructs the so-called zero-order
deformation equation

(L-aq)L[pt.a) —U,)] =ac,HEN [g(t.q)] (32)

Where qg[O,l] is the embedding parameter, C, # O is a non-zero auxiliary parameter, H(t) # 0 is an auxiliary

function, L is an auxiliary linear operator,U , (t) is an initial guess of U(t), ¢(t, q) is an unknown function
respectively. Obviously, when =0 and g=1, it holds for

#(t0) =U,(t), 4(t1) =U(t) (33)

Thus, as g increase from 0 to 1, the solution ¢(t, q) varies from initial guess U o(t) to the

solutionU (t), exp anding U ,(t)in Taylor series with respect to g, we have

#(t,q) =U,(t) +> U, (t)a" (34)
m=1
Where
_ 1 a"¢(t.q)
Um(t)_ﬁ aq—m‘q_o (3.5)
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If the auxiliary linear operator, the initial guess, the auxiliary function and convergence-control parameter, are
properly chosen, the series (3.4), converges at g=1, then we have

U(t) =Uo(t) +2 U,(1) (3.6)
m=1

According to the definition (3.5), the governing equation can be deduced from the zero-order deformation

equation (3.2)

Define the vector

U, ={U,(t), Uy(t), oo , U, () 3.7)

Differentiating equation (3.2) m times with respect to the embedding parameter g and then setting g=0 and
finally dividing them by m!, we have the so-called mth-order deformation equation

LUA0)-X U 0] =CHER, U, () (38)
Where,

1 o"'N[g(t.q)]
RalUns)= (m—1) aqmlt : (3.9)
And,

{O, m<1
X =

1 m>1
(3.10)

If we multiply with L each side of the equation (3.8), we obtained the following mth-order deformation
equation

U,.(t) = X, U, ,0)+C,HOL (R, U,..))
(3.12)

It should be emphasized that U | (t) for m > 1is governed by the linear equation (3.8) with the boundary
conditions, which is easily solved by symbolic composition software such as Maple or Mathematics.

3.2 Construct of the NHAMSs Algorithms

We consider the general higher-order boundary-value problem of the form:

y™(x)= f (x,y, Yl y(”’l)), a<x<b
(3.12)

Subject to the two-point boundary conditions

y@)=a, , y@)=a .., y(a)=0q,
(3.13)

yb)=5, . y'b0)=p s Y (@)=,
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Where O <r < n—2isan integer, f is a polynomial in
% Y(X) Y (X)oer y"P(x),and a,b, ey, a1y e, a,, By, By B, are real constants,

The zeroth-order deformation equations are given as

(-a) Llr(xa) —y,(x)] =acH(e) [N(Y (e, a))]
(3.14)

And

(t-a) LIr(xa) -y,()] =dcoH(e) [N(Y(5,a)-H*()PH ()] a(0)
(3.15)

Where,

DH, (6)= - (1,7, () + T, Ty 4 (6) + TuTy o (6)+ o 4 T Ty 4 (6)

de
_ (X_E)nil N
H(e) = W, L™ = L(.)de
any ay azy an—ly
NIY(g,q)l=—F —fleg,y,—=, —2 .o
[¥(e.q) oe" (8 Y e 0&? nglj
(3.16)

It should be emphasized that Y, (X) of the solution y(x) and other derivatives corresponding to M = lare
determined as follows.

Following [10], we have

d’ y° Z a, T,(x
(3.17)

Integrating equation (3.17) successively, we obtain

n-1 N N+1
%n(—)l()() - Z a; I T (X)dX 6= ZQ| ¢ [n _1] (3.18)
i=0 i=1
n-2 N+ N+
% ZQ_[¢”1dx +CX+C—ZQ g2
(3.19)
dyo( ) n— )(n_3 N-+n-1

ZQ [ ¢ +c( ) P gy G = ZQi g% (3.20)
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n-1 n-2 N+n

Yo (X) :ZQi _[ gldx +c, (:_1)| +C, (:_ 2)|+ ........ +C,  X+C, = ZQi ! (3.21)

Unlike in the case of the HAM, the auxiliary function and convergence-control parameter are not necessary as
there is no need for the solution of the higher-order deformation to confirm to some rules of solution expression.

METHOD
Following the HAM procedure, we formulate the higher-order deformation equation by differentiating

the zero-order deformation equation m-times with respect to g and then dividing by m! to get

L[y ()= X Vs (¥)]= HE)Ry (Vs (e))
(3.22)

_ d
Operating the operator L !, the inverse of — to both sides of (3.22), then the mth —order deformation have
&

the following form:

Yo (¥) =X, Yo 0)+ L (H ()R, (V04(2))
(3.23)

Where

~ an ar‘l—l
R, Gale) =28 - f(g, Y ,agn{]

as:

Method :
Following the same procedure as discussed in method 1 (IC-HAM), the mth-order deformation of method 2 (I1C-

THAM) has the form:

Yo (%) = XpYns () + L (H (£) Ry (Fna(e)))
(3.25)

Where,
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Also, the recursive formula for the IC-THAM is given as:

N+n

Yo (X) =ZQi ¢i(0)

Application of methods on some Examples

In this section, we apply the techniques described in section 3.To some illustrative example of fourth, sixth and
eighth-order parameter boundary-value problems.

Example:
Consider the following linear problem [4]

y¥(x)=(L+c) y"(x)- cy(x)+% ox? —1,0<x<1

Subject to
y0)=1,  y0)=1
y1)=15+smh (1), y*(1)=1.5+cosh(1)
The exact solution for this problem is
y(x) :1+%x2 + smh(x)

According to (3.24) the zeroth-order deformation is given by

(1-a) LY (x,q)- yo(x))= qH(e)KM‘(“C)% ”y(g;q)‘@“z ‘@ﬂ

de*
Now, our initial approximation has the form of equation (3.21), we chose the auxiliary linear operation

L(y(‘??q))=%‘;q) and H(g):@

Hence, the mth-order deformation can be given by
L[ym (X) ~XnYma (X)] =H (E)Rm (ym—l (g))

Where
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de’ de

R (o) = TR a0) SRl gy ) Lo
And

_ d* . d’y. (& 1
Ry (Vma(e)) = % - (1+c)% +cy, ., (59)-0-x,) (5052 —1}; m>2

Now, the solution of the m-th order deformation equation for

X 1 3 —
m Losoomes ¥, ()= X 0) + [ £6x-) R (5o oo
Consequently, the first few terms of the IC-HAM series solution for N=4 and C=1 are as follows;

1 .. 1 5. 1_ ., 1., 1 5) ( s 1 ej
X)=C, +CX+=C x> + = X3+ —ax +| —Zx'+ —x® |la,+| —x'——x° |a
yo( ) 4 Tl 52 6 on %0 ( 5 60 q 5 2

1 , 3 . 2 ¢ 4 . 1, 4 . 4, 2 , 8 ,
Hl-=x =X =X —x fag | =X =X+ =X —— X" +—X° Ja,
24 20 15 105 24 15 a 105 105

7 1 s 1 s 1, 1 1, 1, 1
Y (X)=] =——=x" = =x® [c, +| =—x® ——=x* |, +—x°c, +—x"c, + —x* ——x° +
5040 60 720 12 120 24 24 720

s) ( s, s, 1 6 1 2 1 1 9j
— X' ——X"+ X" g, +| ——= X"+ —=x"+—Xx" - x"— X° + X’ |a,
24 360 40320 24 60 360 1260 40320 181440
1. 1 s 7 6 1 7 3 5 1 5 1 10)

X 2

+ X° + X" — X X+
24 15 360 315 40320 45360 226800

+ X X° — +
24 20 360 420 40320 60480 37800 207900

+ + X® + X X - X+ X
24 15 120 315 13440 2268 8100 51975 155925

and so on.

1, 4 . 5 , 9 , 81 , 19 , 13 ., 2 ., 1 nj
4

The first order approximation solution by IC-HAM is
y(x) = Yo (%)+y:(x)

And the residual of the solution is

R=y"(x)-(@+c) y"(x)+ cy(x)- (%cxz —1}

Using the boundary conditions, we obtained C;, C,, ..... C, and minimizing the residual error by using Least
Square Method, we obtained the following values of @, , &, , @, and a, for c=1

a, =0.5541761136 ; a, =0.5816075870 ; a, =0.0332521244 2; a, =0.00595473%4 61;
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a, =0.0001715598 043 .

Thus, the approximation solution becomes:

y(x)=1+0.4999999964 x*+0.1666666688 x*-+0.0000031231 3x*+0.0083148926 99x° +
0.0000423351 8090 x° + 0.0001511510 114 x’ + 0.0000253855 3147 x® +1.100271312 x10 *°x*?
+ 2.204069758 x10 8 x —2.862613806 x10 " x'° —0.0000020962 70555 x°

For ¢ = 10, the following values @, , &, , &, and a, are obtained

a, =0.5541759788;a, =0.5816065302;a,=0.0332520898/ ; a, = 0.005953393839 ;
a,=0.0001715410873

In this case, the approximate solution is

y(x) =1+ x+0.4999999868 x*+0.1666666666 x°* -+0.0000033190 90608 x* + 0.0083144687 0x°

+0.00004217325x° +0.0001530912179x" +0.00002194783736x" +1.100151273 X 10° x** +
2.203494560X 107" x** —0.000001554979248x™° +8.63843375X10 ™" x°

Method 2:

Following the same procedures as discussed in method | (IC-HAM) and using equation (3.2.14), we obtained
C,,...C, interms of ay,a,,...8, 7, ..., 7, and minimizing of the residual error, we obtained the following

values of &,,...8,,7,...7, for C =1:

a, =0.1480912750; a, =-1.677563749;a, = 0.004350300326; a, = —0.008606762145;
a, =0.000084109%856; 7, = —0.0003445697303;7, = -0.02176231068; 7, = —0.008251027514;
7, =1-0552333902.

Also, by substituting these values into first order approximation (y0 + yl), the approximation solution
becomes:

y(x)=1+0.4999999979%x* + 0.166666680x> + 0.0000015534x* + 0.00832419551x° +
0.0000209013%67x° +0.0001751188113x" +1.000000000x + 0.00001264706882x*
+5.394256762X "x** —4.463512138X10° x** +1.118820631X 10" x*° + 4.36488315X10° x°

Similarly, for C=10, the following values of &, ;@ ........ Q. Tyreeenen .T, are obtained;

a, =0.03731442487;a, =0.4615749665;a, = -0.08481031518;a, = 0.003695192408;
a, =-0.002389928a28; 7, = 0.00007793043043047; 7, = 0.0008494323098 ;
7, =-0.000401891H498; 7, = -0.05881308214 .

Thus, we have the following approximate solution:
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y(x)=1+0.4999999997x* + 0.1666666647x° +0.0000042137x* +0.00829840437x°
+0.00011579718x° +7.64551X10~" x" +1.000000000x + 0.0001836807083x*
—1.53274246X107" x** +0.000001097384388x™" +0.00001543090318x"° —0.00008470636057x’

Table 1:
Absolute errors of the first-order approximate solution when C=1 and the error for third order approximation
solution of HAM [13]

X Analytical solution [4] [4] [4] [13] E . -HAM E .-
EHPM EADM | EEADM EHAM Ic ¢
THAM
0.0 | 1.000000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 | 1.105166750 7.4e-05 7.4e-05 1.1488e-06 4.8e-06 0.0000 0.0000
0.2 | 1.221336002 2.5e-04 2.5e-04 3.2027e-07 8.6e-05 2.000e-09 0.0000
0.3 | 1.349520293 4.6e-04 4.6e-04 1.1328e-05 3.2e-04 3.00e-09 2.00e-09
0.4 | 1.490752326 6.5e-04 6.5e-04 3.4636e-05 6.5e-04 2.00e-09 2.00e-09
0.5 | 1.646095306 7.6e-04 7.6e-04 6.6411e-05 9.6e-04 1.00e-09 0.0000
0.6 | 1.816653582 7.5e-04 7.5e-04 9.6330e-05 1.1e-03 3.00e-09 3.00e-09
0.7 | 2.003583702 6.1e-04 6.1e-04 1.1038e-04 1.00e-03 4.00e-09 1.00e-09
0.8 | 2.208105982 3.8e-04 3.8e-04 9.6471e-05 7.0e-04 1.00e-09 1.00e-09
0.9 | 2.431516726 1.3e-04 1.3e-04 5.2931e-05 2.5e-04 0.0000 1.00e-09
1.0 | 2.675201194 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Table 2:
Absolute errors of the first-order approximate solution when C=10 and errors for third order approximation of
HAM [13]
X | Analytical solution | [4] [4] [4] [13] EIC-HAM | EIC-
EHPM EADM EEADM EHAM THAM
0.0 | 1.000000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 | 1.105166750 1.7e-04 1.7e-04 | 4.50410e-06 2.9e-06 0.0000 0.0000
0.2 | 1.221336002 5.7e-04 5.7e-04 | 3.02581e-05 9.2e-05 1.00e-09 0.0000
0.3 | 1.349520293 1.0e-03 1.0e-03 | 8.72832e-05 3.1e-04 2.00e-09 0.0000
0.4 | 1.490752326 1.4e-03 1.4e-03 | 1.67419e-04 6.2e-04 2.00e-09 0.0000
0.5 | 1.646095306 1.6e-03 1.6e-03 | 2.44493e-04 9.2e-04 1.00e-09 1.00e-09
0.6 | 1.816653582 1.6e-03 1.6e-03 | 2.83793e-04 1.1e-03 0.0000 0.0000
0.7 | 2.003583702 1.2e-03 1.2e-03 | 2.58064e-04 1.0e-03 1.00e-09 2.00e-09
0.8 | 2.208105982 7.6e-03 7.6e-03 | 1.66169e-04 7.2e-04 1.00e-09 1.00e-09
0.9 | 2.431516726 2.5e-03 2.5e-03 | 4.94701e-05 2.7e-04 1.00e-09 1.00e-09
1.0 | 2.675201194 0.0000 0.0000 0.0000 0.0000 0.0000 1.30e-09

Example 2: Consider the following problem [1]
y"(x)=@+c)y™(x)-Cy™(x)+Cx; 0 < x <1

with the boundary conditions

y(0)=1; y'(0)=1; y"(0)=0

y(@)= g+ sinh(1); y'() = %+ cosh(l); y"(1)=1+sinh(1)
The exact solution is given as:

y(x)= 1+% x® +sinh(x)
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This problem is solved by the method applied in Example 1 and for each test point, the absolute error between
the analytical solution and the results obtained by the HAM [13], OHAM [1], and the IC-HAM and IC-THAM
when N=10 are compared in Table3 for C=1000. With only one iteration, a better approximation is obtained.

Table 3: Absolute errors of the first —order approximate solution when C=1000 and errors of the third-order

OHAM [1] and fifth-order HAM [1] are tabulated below for comparison.

X Analytical solution Error of Error of [1] [1]
IC-HAM IC-THAM EHAM EOHAM
0.1 | 1.100333417 1.0e-09 1.0e-09 9.1e-06 1.1e-05
0.2 | 1.202669336 1.0e-09 2.0e-09 1.6e-04 3.3e-06
0.3 | 1.309020293 0.0000 1.0e-09 4.4e-04 1.4e-05
0.4 | 1.421418993 1.0e-09 4.0e-09 6.8e-04 5.2e-06
0.5 | 1.541928638 2.0e-09 4.0e-09 7.3e-04 4.2e-05
0.6 | 1.672653587 1.0e-09 3.0e-09 5.8e-04 5.7e-05
0.7 | 1.815750369 2.0e-09 2.0e-09 3.2e-04 4.9e-05
0.8 | 1.973439315 2.0e-09 2.0e-09 9.8e-05 4.5e-05
0.9 | 2.148016726 1.0e-09 2.0e-09 4.7e-06 2.4e-05
Example 3:

Consider the following eighth-order parametric differential equation type [13]

d®y(x)

dx®

d*y(x)

(t+c) =%~ -Cy(x)

dx*

Subject to the boundary conditions

y(0)=

dx dx? 24
2 3
y(1)= z—i + sinh(1); d;/—f(l) = % +cosh(l); ddi/z(l)=— +sinh(1); ddz(l) =1+ cosh(1)

c
+—X
24

The exact solution for is given as:

y(x)=1+ i x* + sinh(x)

4

-1

L O a0 o a0,

The numerical results obtained by IC-HAM and IC-THAM are compared with the analytical solution and the
results obtained by HAM [13] are presented in Table 4. These results are evaluated at m=1and it is seen from the
numerical results in the table that IC-HAM and IC-THAM are more accurate than the second order application
of the HAM solution in [13]

Table 4:

Absolute errors of the first-order approximate solution obtained by IC-HAM, IC-THAM (N=10) and the second-
order approximation of HAM [13] for example 3 when C=1000

X Analytical solution EHAM [13] EIC-HAM EIC-THAM
0 1.000000000 0.0000 0.0000 0.0000
0.1 1.100170917 8.7e-09 0.0000 0.0000
0.2 1.201402670 9.8e-08 0.0000 0.0000
0.3 1.304857793 3.3e-07 0.0000 0.0000
0.4 1.411818993 6.7e-07 0.0000 0.0000
0.5 1.523699472 9.4e-07 0.0000 0.0000
0.6 1.642053582 9.9e-07 0.0000 0.0000
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0.7 1.768587869 7.8e-07 1.0e-9 1.0e-09
0.8 1.905172649 3.9e-07 0.0000 1.0e-09
0.9 2.053854226 7.8e-07 1.0e-09 2.0e-09
1.0 2.216867860 0.0000 0.0000 0.0000

0 Denotes less than 10 ~°

I11.  CONCLUSION
The main concern of this work is to develop efficient algorithms for the numerical solution of higher-

order parametric differential equation. The goal and the question raised in the beginning of the paper are
achieved by blending integrated Chebyshev Polynomials and tau Methods with Homotopy Analysis Method to
solve this class of problems in question. The proposed algorithm produced rapidly convergent series and the
results obtained by the new methods agreed well with the analytical solutions with less computational work.
These confirm the belief that the efficiency of the proposed methods give much wider applicability for general
classes of parametric differential equations.
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