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ABSTRACT: The purpose of this study was to improve the predictive power of linear Discriminant and 

Logistic regression models using principal components as input for predicting applicant status (i.e Creditworthy 

or Non- creditworthy) for new applicant (customer). The dataset contains 200 applicants and holds 15 variables 

altogether with 14 independent variables (input variables) and a dependent variable (output variable). Results 

showed that the use of principal component as inputs improved linear Discriminant and Logistics regression 

models prediction by reducing their complexity and eliminating data co-linearity. Based on the scree test and 

eigenvalues over six factors were retained. The factors accounted for 72.4 percent of the variance. The 

combination of items with loadings greater than 0.30 were considered as separate between important and less 

important factors. 
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I. INTRODUCTION 
Predictive analysis encompasses a variety of statistical techniques from modeling, machine learning, 

data mining and game theory that analyzes current and historical facts to make predictions about future events. 

Predictive analytics is used in actuarial science, financial services, insurance, telecommunications, retail, travel, 

health care, pharmaceuticals and other fields. One of the most well-known applications is credit scoring, which 

is used throughout financial services. Scoring models process a customers’ credit history, loan application , 

customers’ data, etc, in order to rank-order individuals by their likelihood of making future credit payments on 

time. Lenders use credits to determine who qualifies for a loan, at what interest rate, and what credit limits. 

Lenders also use credit scores to determine which customers are likely to bring in the most revenue. One of the 

most significant banking problems is that of credit scoring. The credit scoring is a method used by the financial 

institution in order to minimize the number of defaulting customers. 

 

1.1 Aim and Objectives of the study 
The aim of this study is to classify applicant as credit worthy or non-credit worthy. This aim can be 

achieved through the following objectives: 

[1] To test the homogeneity of variance among the variables using Bartlett’s Test. 

[2] To identify a number of factors that represent the relationship among sets of inter-related variables using 

principal component and factor analysis.   

[3] To verify the variables that contributes significantly to the percentage of variance in the components. 

[4] To build Discriminant model capable of predicting an applicant status using Principal Component (PC) as 

inputs.  
[5] To build Binary Logistics Regression model capable of predicting an applicant status using Principal 

Component (PC) as inputs.  
[6] To compare and contrast the predictive powers of the discriminant model and logistic regression for credit 

scoring. 

 

II. MATERIAL AND METHODS 
The data for this write-up was collected from a sample of 200 applicant on credit scoring, extracted 

from the application form of First Bank of Nigeria plc. The methods used for credit worthy are Principal 

Component Analysis and Linear Discriminant Analysis. 
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2.1 Linear Discriminant Analysis  

LDA was first proposed by Fisher (1936) as a classification technique. It has been reported so far as the 

most commonly used technique in handling classification problems (Lee et al., 1999). In the simplest type of 

LDA, two-group LDA, a linear discriminant function (LDF) that passes through the centroids (geometric 

centres) of the two groups can be used to discriminate between the two groups. The LDF is represented by 

Equation (1):  

                                                     (1) 

Where a is a constant, and b1 to bp are the regression coefficients for p variables. LDA has been widely applied 

in a considerable wide range of application areas, such as business investment, bankruptcy prediction, and 

market segment (Lee et al., 1997; Kim et al., 2000). 

 

2.1 Logistic Regression Model 

Logistic regression or Logit deals with the binary case, where the response variable consists of just two 

categorical values. Logistic regression model is mainly used to identify the relationship between two or more 

explanatory variables Xi and the dependent variable Y. Logistic regression model has been used for prediction 

and determining the most influential explanatory variables on the dependent variable (Cox and Snell, 1994). The 

Logistic regression model for the dependence of pi (response probability) on the values of k explanatory 

variables x1, x2,……..xk is given below (Collett,2003).  
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Which is linear and similar to the expression of multiple linear regressions. 

Where 











 i

i

P

P

1
 is the ratio of the probability of a failure and called odds, β0, βi are parameters to be estimated 

and iP is the response probability. 

In logistic model the predicted values will lies between 0 and 1 regardless of the values of the explanatory 

variables. 

 

2.2 Principal Component Analysis 

Principal component analysis used because to find a small set of linear combinations of the covariates 

which are uncorrelated with each other. This will avoid the multicollinearity problem. Besides, it can ensure that 

the linear combinations chosen have maximal variance. Application of principal component analysis (PCA) in 

regression has long been introduced by Kendall (1957) in his book on Multivariate Analysis. Jeffers (1967) is 

suggested for regression model to achieve an easier and more stable computation, a whole new set of 

uncorrelated ordered variables that is the principal components (PCs) be introduced (Lam et al., 2010). 

Hussain et. Al. (2011): The steps involved in the analysis of PCA include the method of getting the data, 

standardizing the data, calculating the covariance matrix, calculating the eigenvectors and eigenvalues of the 

covariance matrix and visualizing the results. Algebraically, principal components are particular linear 

combinations of the p random variables. 

 

Geometrically, these linear combinations represent the selection of a new coordinate system obtained 

by rotating the original system with their development does not require a multivariate normal assumption. On 

the other hand, principal components derived for multivariate normal populations have useful interpretations in 

terms of the constant density ellipsoids. 

Step 1: Get the data 

Consider the linear combinations: 

 
 

 
    . 

 

    . 
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(3) 

     

 
Step 2: Standardize the data 

Sometimes it makes sense to compute principal components for raw data. This is appropriate when all 

the variables are in the same units. Standardizing the data is often preferable when the variables are in different 

units or when the variance of the different columns is substantial. This can be done by subtracting the mean of 

each column and dividing by its standard deviation namely: 

 
In matrix notation, it is given by: 

-1  

Where 

 is the diagonal standard deviation matrix. From this, we obtain mean of Z equals to zero, E(Z) = 0. 

 

2.3 Keiser Meyer Olkin’s and Bartlett’s test of Sampling Adequacy and measuring the Homogeneity of 

variance across variables for Credit scoring. 

H01: The sampled data is adequate for the study 

H1: The sampled data is not adequate for the study. 

H02:  

H1:  

Test Statistics: KMO 

Decision Rule: Reject  in favor of  at 0.05 level of significance if p-value  0.05 otherwise do not reject 

 

2.4. Wilks’ Lambda Test for significance of canonical correlation  Hypothesis canonical correlation: 

                           oH : There is no linear relationship between the two sets of variables 

                                  1H : There is linear relationship between the two set of variables 

Test statistic: 

     
W

W H
 


, where W  is residual variance 

                                              H  is the variance  due to linear relationship 

                                                W H  is the total variance. 

Decision rule: Reject  oH  if P<0.05 otherwise accept oH  at the 5% level of significance 

 

2.5 Chi-square Test 

       Hypothesis for Chi-square Test: 

                   oH : The two variables are independent  

                     1H : The two variables are not independent 

  Test statistic: 

          

2

2
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 , where ijO  is the observed value and ije  is the expected value. 

Decision Rule: 

Reject  oH  if P<0.05 otherwise accept oH  at the 5% level of significance 

 

2.6. Omnibus Chi-square Test 

The omnibus Chi-square test is a log-likelihood ratio test for investigating the model coefficients in logistic 

regression. The test procedures are as follows: 

Hypothesis for Omnibus Chi-square Test: 

oH : The model coefficients are not statistically significant 
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1H : The model coefficients are statistically significant 

Test statistic:  
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Decision Rule: 

Reject  oH  if p<0.05 otherwise accept oH  at the 5% level of significance i.e. significance of the logistic 

model. 

 

2.7. Box M Test for the Equality of Covariance Matrices 

Hypothesis for Box’s M Test: 

oH : The two covariance matrices are equal 

1H : The two covariance matrices are not equal 

Test Statistic: 

L

s

S
M

S
 , where  LS  is the larger variance and sS  is the smaller variance. 

Decision Rule:  

Reject  oH  if P<0.05 otherwise accept oH  at the 5% level of significance. 
 

2.8. Wald Test 

The Wald test is used to test the statistical significance of each coefficient ( )  in the logistic model. A Wald 

test calculates a Z  statistic which is:  




.

( )
W

SE




  

This value is squared which yields a chi-square distribution and is used as a Wald test statistic. 

Decision rule: Reject oH  (the null hypothesis that the coefficient is equal to zero) when p-value of that 

coefficient is less than    level of significance. 
 

III. DATA COLLECTION AND ANALYSIS. 
The dataset contains 200 cases, 163 applicants are considered as “Creditworthy” and the rest 37 are treated as 

“Non-creditworthy”. 
 

A real world credit dataset is used in this research. The dataset is extracted from the application forms of First  

 

Bank of Nigeria, plc. The dataset is referred to as “Credit Dataset”.  After preparing the dataset, it is used in the 

subsequent sections for conducting the analysis with Principal Component and Discriminant Analyses 
 

Table 1: Credit Dataset Description 

 
No. Variable Type Scale Description 

1 Attribute1 Input Variable Scale Age of the Applicant 

2 Attribut2 Input Variable Nominal Sex of the Applicant 

3 Attribute3 Input Variable Nominal Ownership of residence 

4 Attribute4 Input Variable Nominal Marital status 

5 Attribute5 Input Variable Nominal Qualification 

6 Attribute6 Input Variable Nominal Employment status 

7 Attribute7 Input Variable Nominal  Employment classification 

8 Attribute8 Input Variable Scale Length of service 

9 Attribute9 Input Variable Scale Salary 

10 Attribute10 Input Variable Nominal Application Request 

11 Attribute11 Input Variable Scale Amount Request 
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12 Attribute12 Input Variable Scale Credit Amount 

13 Attribute13 Input Variable Scale Proposed tenor in month 

14 Attribute14 Input Variable Nominal Other borrowing 

15 Attribute15 Output Variable Nominal Status of the Credit Applicant 

The dataset contains 200 cases, 163 applicants are considered as “Creditworthy” and the rest 37 applicants are 

treated as “Non-creditworthy”. The dataset holds 15 variables altogether. Among the variables, 9 variables are 

“Categorical” and the rest 6 variables are “Numerical”. Moreover, there are 14 independent variables (input 

variables) and 1 dependent variable (output variable) in the dataset. 

 

Table 2: KMO Statistics for Sampling Adequate and Bartlett’s test for Homogeneity 

 

Test DF Approx. Chi-Square P-value 

Keiser-Meyer-Olkin Measure of Sampling 

Adequate 

- - .566 

Bartlett’s Test of Sphericity 91 1464.453 0.000 

 

Test Statistics: Bartlett’s test ( )  

Decision: From table 2, the p-value=0.6 is greater than level of significance (0.05) for KMO measure of 

sampling adequacy, we therefore fail to reject the null hypothesis. We will reject the null hypothesis for 

Bartlett’s test of Sphericity since p-value = 0.00 < 0.05.  

 

Conclusion: We therefore proceed to conduct factor analysis on the data set since the KMO test revealed that 

the sample is adequate and the Bartletlett’s test revealed that the correlation matrix is not an identity matrix. In 

what follows we present the factor analysis.  

 

Table 3 shows the Eigen values in column two, which are the proportions of total variance in all the variables, 

which are accounted for by the components.  From the output, the first principal component has variance 3.474 

(equal to the largest Eigen value) and account for 24.818% of total variance explained followed by second 

principal component variance 1.851 account for 13.219% of total variance explained and so on. The second 

component is formed from the variance remaining after those associated with the first component has been 

extracted, thus this account for the second largest amount of variance. It is worthwhile to note that the principal 

component coefficient which gives the variance explained for each component gives the values less than 30% of 

the variance explained. Therefore more than one component is needed to describe the variability of the data. In 

other to obtain a meaningful interpretation of the principal component analysis, we need to reduce to fewer than 

fourteen (14) components. In this study, i.e. extraction Eigen Values for the retained components, we observed 

that six (6) components are retained together with their percentage of variance explained by each component. 

The cumulative variance gives as well, shows that the first nine components account for about 72.439%   of the 

total variance in the data.   

 

Table 3: Total Variance Explained 

 
Component  Initial Eigen Value Rotated Sums of Squared Loadings 

Total  % of variance Cumulative % Total  % of variance Cumulative % 

1 3.474 24.818 24.818 3.474 24.818 24.818 

2 1.851 13.219 38.036 1.851 13.219 38.036 

3 1.384 9.889 47.925 1.384 9.889 47.925 

4 1.348 9.631 57.556 1.348 9.631 57.556 

5 1.078 7.698 65.254 1.078 7.698 65.254 

6 1.006 7.185 72.439 1.006 7.185 72.439 

7 .898 6.416 78.854    

8 .807 5.761 84.615    

9 .775 5.539 90.154    

10 .717 5.121 95.275    

11 .438 3.128 98.403    

12 .126 .901 99.305    

13 .073 .521 99.825    

14 .024 .175 100.000    
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Table 4: The Coefficient of Principal Component Score of Variables 

 
Variable PC1 PC2 PC3 PC4 PC5 PC6 

Age 0.248 0.608 0.023 0.137 0.036 -0.032 

Sex 0.003 -0.043 0.264 -0.395 0.469 0.255 

Residences  -0.079 -0.019 0.370 -0.040 0.629 -0.107 

Marital status 0.080 -0.066 -0.167 0.346 0.399 -0.446 

Qualification  -0.148 0.107 0.518 0.075 -0.176 0.405 

Employment status -0.075 -0.064 -0.493 0.107 0.178 0.486 

Employment classification 0.375 -0.125 -0.183 -0.187 0.216 -0.100 

Length of service 0.239 0.606 0.029 0.174 0.044 -0.013 

Salary  0.477 -0.180 0.046 -0.143 -0.085 0.077 

Applicant request -0.077 0.076 0.201 -0.432 -0.242 -0.498 

Amount request 0.470 -0.153 0.166 0.109 -0.107 0.080 

Credit amount 0.476 -0.242 0.185 0.091 -0.078 0.071 

Propose tenor -0.081 -0.156 0.332 0.573 0.066 -0.012 

Other borrowing 0.112 0.284 -0.067 -0.258 0.160 0.216 

TABLE 4: the first six principal component's scores are computed from the original data using the coefficients 

listed under PC1, PC2 and PC6 respectively: 

PC1= 0.248Age+0.003Sex-0.079Residence+0.080Marital status-0.148Qualification-0.075Emp. Status + 

0.375Emp.classification +0.239Leg.Service+0.477Salary-0.077App.req+0.477Amt.Req. + 0.476Credit Amount 

– 0.081Propose tenor + 0.112 other borrowing.  

. 

. 

PC6= -0.032Age+0.255Sex-0.107Residence-0.446Marital status+0.405Qualification+0.486Emp. Status -

0.100Emp.classification -0.013Leg.Service+0.077Salary-0.498App.req+0.080Amt.Req. + 0.071Credit Amount 

– 0.012Propose tenor + 0.216 other borrowing.  

The interpretation of the principal components is subjective and requires knowledge of the data: 

    Employment classification (0.375), Salary (0.477), Amount Request (0.476), and credit  

Amount (0.476) have large positive loadings on component 1, so label this component Employment 

classification and Credit History 

    Employment status (0.493), Sex (0.395) and Marital Status (0.446) have large negative  

loadings on components 3, 4 and 6, so label this component Applicant background.  

     Age (0.608), Sex (0.468), Residences (0.629), Marital Status (0.399) and Education qualification  
(0.405) have large positive loadings on Components 2,5 and 6, so label this component Academic and Applicant 

background. 

 

3.1 Discriminant Model for the data Analysis 

 

Table 5: Test Results of Box’s M 

 

Box's M 

 

46.498 

Approx. 2.076 

df1 21 

df2 15565.956 

Sig. 0.003 

 

The p-value of the Box’s M of 0.003 in table 5 has confirmed the equality of the covariance matrices for the two 

groups. 
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3.2 Fisher’s Linear Discriminant Function for the Data  

Table 6: Fisher’s Classification Function Coefficients 

 
Applicant Status Creditworthy Non-Creditworthy 

Principal component 1(PC1)     0.053 -0.235 

Principal component 2 (PC2)    -0.268   1.182 

Principal component 3 (PC3)     0.089 -0.394 

Principal component 4(PC4)     0.088 -0.388 

Principal component 5 (PC5)     0.009 -0.038 

Principal component 6 (PC6)    -0.061  0.268 

Constant    -0.750  -1.788 

 

Fisher's linear discriminant functions 

The Fishers linear discriminant model for each group is computed as follows 

Group 1 (Creditworthy) 

 12

1

1 XXSXY  

 

Y1= (-0.750)+0.053PC1+(-0.268)PC2+0.089PC3+0.088PC4+0.009PC5+(-0.061)3.411PC6 

Group 2 (Non-Creditworthy) 

 12

1

2 XXSXY    

Y2= (-1.788)+(-0.235)PC1+1.182PC2+(-0.394)PC3+(-0.388)PC4+(-0.038)PC5+0.268PC6 

 

3.3 Unstandardized Discriminant Function for the Data  

 

Table 7: Unstandardized Classification Function Coefficients 

 

 Function 1 

Principal component 1(PC1) -0.159 

Principal component 2 (PC2)   0.799 

Principal component 3 (PC3) -0.266 

Principal component 4(PC4) -0.262 

Principal component 5 (PC5) -0.026 

Principal component 6 (PC6)   0.181 

Constant  0.000 

 

Unstandardized coefficients 

Table 8: Functions at Group Centroids 
Applicant status Function 1 

Creditworthy -0.336 

Non-Creditworthy 1.480 

 

Unstandardized canonical discriminant functions evaluated at group means 

The Cut-off point ( M̂ ) is computed as follows: 

    502.0336.0480.1ˆˆˆ 
2
1

212
1 llM

 

Y= (-0.000)+(-0.159)PC1+0.799PC2+(-0.266)PC3+(-0.262)PC4+(-0.026)PC5+0.181PC6
 

The classification rule is as follows: 

Classify as Group 1 (Creditworthy) if 502.0Y  

Classify as Group 2 (Non-Creditworthy) if 502.0Y  
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Table 9: Prior Probabilities for Groups 

 

Applicant status Prior probabilities Cases Used in Analysis 

Creditworthy 

Non- Creditworthy 

0.50 

0.50 

163 

37 

The table 9 above indicates the prior probability of misclassifying creditworthy to non-creditworthy is 0.5and 

prior probability of misclassifying Non-creditworthy to creditworthy is also 0.5 

 

Table 10: SPSS Output: Classification Results: 

Predictive Ability of the Discriminant Model 

  

Applicant status 

Predicted Group Membership 

Total   Creditworthy Non-creditworthy 

Original Count Creditworthy 130 33 163 

Non-creditworthy 7 30 37 

% Creditworthy 79.8 20.2 100.0 

Non-creditworthy 18.9 81.1 100.0 

Cross-validateda Count Creditworthy 127 36 163 

Non-creditworthy 7 30 37 

% Creditworthy 77.9 22.1 100.0 

Non-creditworthy 18.9 81.1 100.0 

a.80.0% of original grouped cases correctly classified. 

b.78.5% of cross-validated grouped cases correctly classified. 

 

In the table above shown that the Discriminant model is able to classify 130 good applicants as “Good 

Group” out of 163 good applicants. Thus, it holds 79.8% classification accuracy for the good group. On the 

other hand, the same discriminant model is able to classify 30 bad applicants as “Bad Group” out of 37 bad 

applicants. Thus, it holds 81.1% classification accuracy for the bad group. Thus, the model is able to generate 

80.0%classification accuracy in combined groups. This has justified an acceptable goodness of fit by the linear 

discriminant model. 

 

3.4 The Logistic Regression Model 

The logistic model is constructed for First Bank of Nigeria, plc using the following output results: 

 

3.4.1   Binary Logistic Model the Analysis of Data  

3.5 Measurement of Model Performance in Logistic Regression 

Logistic Regression is the most important tool in the social science research for the categorical data 

(binary outcome) analysis and it is also becoming very popular in the business applications, for example, credit 

scoring (Agresti 2002). The algorithm assumes that a customer’s default probability is a function of the 

variables (income, marital status and others) related with the default behaviour (Blattberg, Kim et al. 2008). 

Logistic regression is now widely used in credit scoring and more often than discriminant analysis because of 

the improvement of the statistical software’s for logistic regression (Greenacre and Blasius 2006). Moreover, 

logistic regression is based on an estimation algorithm that requires fewer assumptions (assumption of 

normality, assumption of linearity, assumption of homogeneity of variance) than discriminant analysis (Jentzsch 

2007). This study is not testing for that assumption. 

 

After the predictive model development, the most important task is to check the usefulness (utility) of 

the model. It can be accomplished in two ways. First one is the significance test. The significance test for the 

model chi-square is the statistical evidence of the presence of a relationship between the dependent variable and 

the combination of the independent variables. In this analysis, the probability of the model chi-square 79.954 

(equivalent to significant value of 0.000), less than the level of significance of .05, which shows that the 

existence of a relationship between the independent variables and the dependent variable is supported. So, 

usefulness of the model is confirmed. The table 11 is referred for the test. 
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Table 11: SPSS Output: Model Test: 

Omnibus Tests of Model Coefficients 

  
Chi-square Df Sig. 

Step 1 Step 79.954 6 .000 

Block 79.954 6 .000 

Model 79.954 6 .000 

 

 

 

 

Table 12: SPSS Output At Step 0: Logistic Classification Table: 

 

Observed 

Predicted 

 Applicant status 
Percentage 

Correct  Creditworthy Non-creditworthy 

Step 0 Applicant 

status 

Creditworthy 163 0 100.0 

Non-creditworthy 37 0 .0 

Overall Percentage   81.5 

a. Constant is included in the model. 

b. The cut value is .500 

 

Checking Usefulness of the Derived Model  

Here, the following table is showing the SPSS generated classification rate that is equivalent to 91.0%. 

Here, it is noteworthy to mention that, after step 1 (when the independent variables are included in the model), 

the classification percentage rate is changed to 91.0% from 8150%. 

 

 

Table 13: SPSS Output At Step 1: Logistic Classification Table: 

 

Observed 

Predicted 

 Applicant status 
Percentage 

Correct  Creditworthy Non-creditworthy 

Step 1 Applicant 

status 

Creditworthy 160 3 98.2 

Non-creditworthy 15 22 59.5 

Overall Percentage   91.0 

The cut value is .05  

Checking Usefulness of the Derived Model 

 

Table 14: Model Summary 

 -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

Step 1 111.603
a
 0.330 0.535 

The table 14  indicates the goodness of fit test for the model. 

 

3.6 Importance of Independent Variables:  
Some independent variables are significantly related with the dependent variable and others are not 

associated strongly. The significance test is the statistical evidence of the presence of a relationship between the 

dependent variable and each of the independent variables. The significance test is the Wald Statistic. Here, the 

null hypothesis is that the b coefficient for the particular independent variable is equal to zero. 
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Table 15: SPSS Output: Significant Variables: Important Variables Identified By the Logistic Regression 

Model 

 

                                               Variables in the Equation 

  B S.E. Wald Df Sig. Exp(B) 

Step 1a Principal component (PC1) -0.383 0.219 3.045 1 .081 .682 

Principal component (PC2) 1.594 0.289 30.382 1 .000 4.922 

Principal component (PC3) -0.521 0.230 5.119 1 .024 .594 

Principal component (PC4) -0.290 0.220 1.738 1 .187 .749 

Principal component (PC5) -0.123 0.231 0.284 1 .594 .884 

Principal component (PC6) 0.356 0.259 1.892 1 .169 1.428 

Constant -2.712 0.393 47.631 1 .000 .066 

The independent variables with the probabilities of the Wald statistic less than or equal to the level of 

significance of .05 hold statistically significant relationships with the dependent variable. The statistically 

significant independent variables are Principal component (PC2) and Principal component 3 (PC3). Here, the 

insignificant variables have probabilities of Wald statistic greater than the level of significance of 0.05. The 

fitted model for logistic regression is obtained as follow: 

66554432211

66554432211
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Alternatively 
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To compute estimates or forecasts, consider the logistic model as given below: 

6542

6542

356.0)123.0()290.0(3)521.0(594.11)383.0()712.2(

356.0)123.0()290.0(3)521.0(594.11)383.0()712.2(
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PCPCPCPCPCPC

e

e
p






  

That will be used to predict the Applicant status using a cut value or threshold probability of 0.5.  

 

 

6542 356.0)123.0()290.0(3)521.0(594.11)383.0()712.2( PCPCPCPCPCPC
e
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IV. FINDINGS AND CONCLUSION 
Discriminant model and binary logistic regression were used to classify applicant status(customer) 

using their characteristics such as age, sex, length of service, salary, credit amount and so on as predictors 

variables. Two different approaches were used, considering original data and principal component as inputs. The 

result showed the used of principal component as input provides a more accurate result than original data 

because it reduced the number of inputs and therefore decreased the model complexity. Among the objectives is 

to build Discriminant and logistic regression models that are capable to classify applicant status based on their 

PCs (principal components) and also to compare and contrast the predictive power of the discriminant model 

and logistic regression for applicant status. Logistic Regression and Discriminant analysis and classification 

were multivariate techniques employed for the analysis of the work. Box’s M test and Wilk’s Lambda were used 

to confirm the equality of the Covariance matrices and to confirm the Significance of the Canonical correlation 

respectively. 

  Appropriate predictor variables selection is one of the conditions for 

successful credit scoring models development. This study reviews several considerations regarding the selection 

of the predictor variables.The model results are comparable to those obtained using commonly used techniques 

like Logistic Regression and Discriminant Analysis as described in the following table: 

 

 

Table 16: Predictive Models Comparison 
                                                      Dataset 

Models Good 

Accepted 

Good 

Rejected 

Bad Accepted Bad Rejected Success Rate 

Discriminant Analysis 130 33 30 7 80.0% 

Logistic Regression 160 3 22 15 91.0% 

There are two noteworthy and interesting points about this table. First of all, it shows the predictive 

ability of each model. Here, the column 2 and 5 (“Good Accepted” and “Bad Rejected”) are the applicants that 

are classified correctly. Moreover, the column 3 and 4 (“Good Rejected” and “Bad Accepted”) are the 

applicants that are classified incorrectly. Furthermore, it shows that logistic Regression gives slightly better 

results than discriminant analysis.  Secondly, the table 16 gives an idea about the cost of misclassification which 

assumed that a “Bad Accepted” generates much higher costs than a “Good Rejected”, because there is a chance 

to lose the whole amount of credit while accepting a “Bad” and only losing the interest payments while rejecting 

a “Good”. In this analysis, it is apparent that Discriminant Analysis (equals to 30) acquired much amount of cost 

“Bad Accepted” than Logistic Regression (equals to 22). So, logistic regression achieves less cost of 

misclassification.  
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