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ABSTRCT: In this paper we have compared the orders of two meromorphic matrix valued functions A(z) and 

B(z) whose elements  satisfy a similar condition  as in Nevanlinna-Polya theorem on a complex domain D. 
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Preliminaries: We define a meromorphic matrix valued function as in [2]. 

By a matrix valued meromorphic function A(z) we mean a matrix  all of whose entries are meromorphic on the 

whole (finite) complex plane. 

A complex number z is called a pole of A(z) if it is a pole of one of the entries of A(z), and z is called a zero of 

A(z) if it is a pole of    1
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
 . 

For a meromorphic m  m matrix valued function A(z), 
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where A has no poles on the circle rz  . 
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where n(t, A) denotes the number of poles of A in the disk  tz:z  , counting multiplicities. 

Let T(r, A) = m(r, A) + N(r, A)  

The order of A is defined by 
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 We wish to prove the following result 
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 be two meromorphic matrix valued functions. If fk and gk 

(k=1, 2) satisfy 
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on a complex domain D, the n 
BA

 , where 
A

  and 
B

  are the orders of A and B respectively. 
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 We use the following lemmas to prove our result. 

Lemma 1[3]  [ The Nevanlinna –Polya theorem] 

 Let n be an arbitrary fixed positive integer and for each k (k = 1, 2, … n) let fk and gk be analytic 

functions of a complex variable z on a non empty domain D. 

 If fk and gk (k = 1,2,…n) satisfy   
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on D and if f1,f2,…fn are linearly independent on D, then there exists an n  n unitary matrix C, where each of 

the entries of C is a complex constant such that 
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holds on D. 

Lemma 2  Let fk and gk be as defined in our theorem (k = 1,2). Then there exists a 2  2 unitary matrix C where 

each of the entries of C is a complex constant such that      B = CA      

 (2) 

where A and B are as defined in the theorem. 

 Proof of Lemma  2 

We consider the following two cases. 

Case A: If f1, f2 are linearly independent on D, then the proof follows from the Nevanlinna – Polya theorem. 

Case B: If f1 and f2 are linearly dependent on D, then there exists two complex constants c1, c2, not both zero 

such that 

   c1 f1(z) + c2 f2 (z) = 0     (3) 

 

We discuss two subcases 

Case B1 : If  c2  0, then by (3) we get )z(f
c

c
)z(f

1

2

1

2


    (4) 

holds on D.  

If we set b = ,
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 then by (4) we have  f2(z) = b f1(z) on  D.   (5) 

Hence (1) takes the form 
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We may assure that f1   0 on D. Otherwise the proof is trivial.   

Hence by (6), we get 
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 Taking the Laplacians 
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Since 
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 (z)P  4 P(z)   , [14]  where P is an analytic function of z, by (8), we get 
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Hence,  g1(z) = c f1(z) and g2(z) = d f1(z)           (9) 

where c, d are complex constants. 

Substituting (9) in (7), we get 
222
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Let us define 
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Then, it is easy to prove that 
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Set C = V U
-1                       

         (15) 

 

Since all 2  2 unitarly matrices form a group under the standard multiplication of matrices, by (15), C is a 2  2 

unitary matrix. 
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Now, by (13), we have 
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Thus, we have on D, 
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Hence, the result. 

Case B2. Let c2 = 0 and c1  0. 

Then by (3), we get f1 = 0. 

Hence, by (1), 
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holds on D. 

By (17) and by a similar argument as in case B1, we get the result. 

Proof of the theorem 

By Lemma 2, we have  B = CA where A and B are as defined in the theorem. 

Therefore,               T(r, B) = T(r, CA) 

using the basics of Nevanlinna theory[2], we can show that, 

                                T(r, B)  T(r, A) as T(r,C)=o{T(r,f} 

On further simpler simplifications, we get    
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By inter changing fk and gk (k=1, 2) in Lemma 2, 

we get A =CB , which implies 

 T(r, A)  T(r, B) and hence 
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By (18) and (19), we have 
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Hence the result. 
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