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ABSTRACT: This paper obtained various relationships among determining matrices, partial derivatives of 

indices of control systems matrices of all orders, as well as their relationships with systems coefficients for 

single – delay autonomous neutral linear differential systems through a sequence of lemmas, theorems and 

corollaries and the exploitation of key facts about permutations. 

The proofs were achieved using appropriate combinations of summation notations, multinomial 

distribution, change of variables techniques and deft deployment of skills in the differentiation of matrix 

functions of several variables.  
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I. INTRODUCTION 
The importance of the relationships among determining matrices, indices of control systems matrices 

and systems coefficient stems from the fact that these relationships pave the way for the determination of 

Euclidean controllability and compactness of cores of Euclidean targets. This paper brings fresh perspectives to 

bear on such relationships. 

     The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) below on 

the interval 1[0, ],t using determining matrices depends on  

(i)        Obtaining workable expressions for the determining equations of the  n n  matrices   for 

1: 0, 0, 1,j t jh k     

(ii) Showing that = ( h),for j:  

where  

(iii)      showing that  is a linear combination of 0 1 1( ), ( ), , ( ); 0, , ( 1) .nQ s Q s Q s s h n h     

Our objective is to prosecute task (ii) and (iii). Tasks (i) has been prosecuted in Ukwu [1]. 

II. IDENTIFICATION OF WORK-BASED DOUBLE-DELAY AUTONOMOUS CONTROL 

SYSTEM 

We consider the single-delay autonomous neutral control system: 

         

     
1 0 1 ; 0 (1)

, , 0 , 0 (2)

x t A x t h A x t A x t h B u t t

x t t t h h

      

   

 
  

where 1 0 1, ,A A A are n n  constant matrices with real entries, B  is an n m  constant matrix with real 

entries. The initial function    is in   , 0 , nC h R , the space of continuous functions from [ , 0]h   into the 

real n-dimension Euclidean space, 
n

R  with norm defined by
 

 
, 0

sup
t h

t 
 

 , (the sup norm). The 
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control u is in the space   10, , nL t R , the space of essentially bounded measurable functions taking  0 1, t  

into 
n

R  with norm  


ess u t
t t

sup ( )
[ , ]0 1

.  

Any control   10, , nu L t R  will be referred to as an admissible control. For full discussion on the spaces 

1 and (or )p p

pC L L
, {1,2,..., }p  , see Chidume [2 and 3] and Royden [4]. 

1.2    Preliminaries on the partial derivatives 
( , )

, 0,1,

k

k

X t
k









  

Let  t t, ,  0 1
. For fixed t, let  , t  satisfy the matrix differential equation: 

        

                                 

       1 0 1, , , , (3)X t X h t A X t A X h t A
 

   
 

      

for 0 , , 0,1,...t t k h k      where    ;
0;

, nI t
t

X t







  

See Chukwu [5 and 6], Hale [7] and Tadmore [8] for properties of   t,   . Of particular importance is the 

fact that  ,t   is analytic on the intervals     t j h t j h j t j h1 1 11 01 1 0      , , , ,..., . 

Any such       t j h t j h1 11 ,  is called a regular point of     t, . Let 
   ,
k

t denote 

 1,
k

k
t




 
  , the 

thk  partial derivative of  1,t  with respect to , where   is in 

  t j h t j h j r1 11 01   , ; , ,..., , for some integer r such that  t r h1 1 0   .  

Write
     1

1 1, ,
k kt t


 




   . 

Define: 

        

             1 1 1 1 1 1 1

1

, , , , , (4)

for  0,1,...; 0, 1,...; 0,

k k k
t jh t t t j h t t j h t

k j t jh

 
       

   

  

where 
    1 1,
k

X t j h t


  and 
    1 1 1, ,
k

X t t j h t


  denote respectively the left and right hand limits 

of 
   1,
k

X t  at   t j h1 .  Hence: 

 
  ( )

1 1 1

1

( 1)
1 1

( ) (5), lim ,k
k

X

t jh

t j h t jh

X t jh t t






 

    

   

 
  

1

( )

1 1

1

( 1)
1 1

,lim( ) , (6)
k

k X

t jh

t jh t j h

tX t jh t
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2.2    Definition, existence and uniqueness of Determining matrices for system (1) 

Let ( )kQ s be then n n  matrix function defined 

by:        1 1 0 1 1 1 (7)k k k kQ s A Q s h A Q s AQ s h         

for  1,2, ; 0,k s  with initial conditions:  

 0 0 (8)nQ I  

                  0; 0  or 0 (9)kQ s k s    

These initial conditions guarantee the unique solvability of (7). Cf.Gabasov  and  Kirillova [9]. 

 

III. MAIN RESULTS 
The investigation in this section will be carried out through the following sequence of results. 

 

3.1     Theorem relating
( )

1 1(( ), ) to ( )k

kX t jh t Q jh   

1

( )

1 1

For all nonnegative integers  : 0, and for {0,1, ,}:

( , ) ( 1) ( ) (10)
k k

k

j t jh k

X t jh t Q jh

  

   


 

Proof 
( )

1 1 1 1 1 0If 0, then ( , ) ( , ) ( ) ( 1) ( ),with 0.k j k

kk X t jh t X t jh t A Q jh Q jh k         

1
( ) ( 1)

1 1 1 1 1

0 0

1
(1)

1 1 1 1 1

0 0

1 1 0 1 1

By lemma 2.7 of [1], (( ), ) (( ( ( )) ), ) ,

1 (( ), ) (( ( ( )) ), )

(( ( ) ), ) (( ( ( 1)) ),

j
k k r

i

r i

j
r

i

r i

X t jh t X t j r i h t A A

k X t jh t X t j r i h t A A

X t j r h t A X t j r h t





 



 

 
       

 

 
          

 

         

 

 

1 1

0

1 1 0 1 1 1 0 1

0 0

)

(( ( ) ), ) (( ( 1) ), )

j
r

r

j j
r r

r r

A A

X t j r h t A A X t j r h t A A





 

 

  

               



 

 

1

1 1 0 1 1 1 1 1

0 0

1 1

1
1

1 0 1 1 1 1

0 0

1 0 1

(( ( ) ), ) (( ( 1) ), )

(since (( ( 1) , ) 0, for )

(by vii of lemma 2.4 of [1] )

j j
r r

r r

j j
j r r j r r

r r

j r j

X t j r h t A A X t j r h t A A

X t j r h t r j

A A A A A A

A A A



 

 


  

   

 



 

               

     

        

  

 

 
1

1

0 1 1 1 1

1 0

1 1
( 1) 1 1

1 0 1 0 1 1 1 1

0 0

1
( 1)

1 0 1 0 1 1 1 1 0 1 0

0

 (by change of variables)

( ) (

j j
r r j r r

r r

j j
j r j r r j r r

r r

j
j r j r r j r r

r

A A A A A

A A A A A A A A

A A A A A A A A A A A A


  

  

 

 
     

    

 


   

      



      

         

        

 

 


1

( 1)

1 1 1 1

0

) ( )

                   (by change of variables ( 1)  and then by iv, lemma 2.4 of [1]) 

j
j r

r

A A Q jh

r j r


 





 

  





 

Therefore, the theorem is true for {0, 1}.k  
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The rest of the proof is by induction on 

.k

1

1
( 1) ( )

1 1 1 1 1

0 0

Assume that the theorem is valid for for some integer ,  and for all such that

t 0.

Then,

 2 ,  

(( ), ) (( ( ( )) ), ) ,

(by lemma 2.7 of [1]).

( 1) (

j
p p r

i

r i

p

p

p j

jh

k p

X t jh t X t j r i h t A A

Q





 

 

 

 
       

 

  

 

1

1

0 0

(by the induction hypothesis)[ ( )] )
j

r

i

r i

j r i h A A

 

 
  

 
 

 

1
1

1 0 1 1

0 0 0

1

1 1 1 1

0

( 1) ([ ( )] ) ( 1) ([ ] ) ([ 1] )

( 1) ([ ] ) ([ 1] ) (by lemma 2.7 of [1])

j j
p r p r

p i p p

r i r

j
p r

p p

r

Q j r i h A A Q j r h A Q j r h A A

Q j r h Q j r h A A



 

  



   



 
              

 

       

  



 

1

0 1 1

0

1

1 1 1 1

0

( 1) ([ ] ) ([ 1] )

( 1) ([ ] ) ([ 1] ) (by lemma 2.7 of [1])

Now we proceed to obtain the above sum by writing out the equivalent

exp ressions 

j
p r

p p

r

j
p r

p p

r

Q j r h A Q j r h A A

Q j r h Q j r h A A









   



        

       





0 1 1 1 1

2

0 1 1 1 1 1 1

2

0 1 1

for each  and then summing the equivalents:

0 ( ) ([ 1] ) ( ) ([ 1] )

1 ( ([ 1] ) ([ 2] ) ) ([ 1] ) ([ 2] ) )

2 ( ([ 2] ) ([ 3] ) )

p p p p

p p p p

p p p

r

r Q jh A Q j h A Q jh Q j h A

r Q j h A Q j h A A Q j h A Q j h A

r Q j h A Q j h A A Q

  

    



      

        

      2 2

1 1 1 1

3 3 3

0 1 1 1 1 1 1

([ 2] ) ([ 3] )

3 ( ([ 3] ) ([ 4] ) ) ([ 3] ) ([ 4] )

p

p p p p

j h A Q j h A

r Q j h A Q j h A A Q j h A Q j h A

   

    

  

        

 

1

0 1 1

1

1 1 1 1

0 1 1

1 1 1

The process continues up to , yielding

1 ( ([ ( 1)] ) ([ ] ) )

([ ( 1)] ) ([ ] )

( ([ ] ) ([ ( 1)] ) )

([ )] ) ([ ( 1)] )

j

p p

j j

p p

j

p p

j

p p

r j

r j Q j j h A Q j j h A A

Q j j h A Q j j h A

r j Q j j h A Q j j h A A

Q j j h A Q j j h A







   



   



      

    

     

    



1

1

j

 

 

Adding up the terms on the right-hand side for 0,1,2, ,r j  , it follows that only the first term 

corresponding to 0r  and the last term corresponding to r j  survive the summation; all other terms  cancel 

out. Therefore: 

 

3.2 Corollary to theorem 3.1 

       

( ) ( ) ( )

( )

1

1

Let

for where Then:

for

( , ) ( , ), . Let ( , ) ( , ) ( , )

 (0, ), ( , ) ( , ).

   , 1 , (11)

  : 0, 0,1,...

T n k k k

k
k

k

kk

k

c c X t c c c c

c c

c t jh c Q jh B

j t jh k

        

    




 



   


  



   

  

R
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Proof 

The proof is immediate by noting that 

       ( ) ( )

1

1 (by the preceeding theorem).

Hence

 for

( , ) ( , ) .    , 1 ,

            : 0, 0,1,...

kkk T k

kc c X t B c t jh c Q jh B

j t jh k

          

  
 

The following sequence of lemmas is needed in the proof of theorem 3.6 

 

3.3First Corollary to Eq. 9: Expressing the partials of 

2

0

k

i i

i

A


 
 
 
 in permutation form 

1

1 1( ),0( ),1( )

1

11 0 1

1

( , )

Let , , be any nonnegative integers, , fixed such that , and . Then

(a)    

!( )!( )! if ,

(b)   

k r

k r r r k j j r

k rk r

i ir r k j j r
i

v v

j r

r

v v P

j k r j k j r k r

A

r r k j j r A A j k


  





    



  








 

  
     

    












1

1 1( ),0( ),1( )

1

10 1

( , )

( )! !( )! if .
j r

j r r j k r k r

j r

i ij k r k r
i

v v

v v P

A

r j k r k r A A j k


 



    



  




 
    

    








 

Proof  

(a) And (b) follow from (9) with  2i   replaced   by 1i    and noting that the superscript triples 

, ,  ;r r k j j r   , ,r j k r k r    are all nonnegative and therefore feasible. Moreover they are 

consistent with (9) as they sum to  k +r  and  j +r  in (a) and (b) respectively. This completes the proof. 

    From above we have the following relations: 

1

1

1

1

11 0 1

1

11 0 1

1( ),0( ),1( )

1 1( ),0(

( , )

( , )

1
(12)

!( )!( )!

1

( )! !( )!

k r

j r

k r

k rk r

i i v vr r k j j r
i

j rj r

i i v vr j k r k r
i

r r k j j r

j r r j k

v v P

v v P

A A A
r r k j j r

A A A
r j k r k r


  


  









  




  


   

   





  
        

  
        

 










),1( )

(13)

r k r



 

Now sum over to get:{1, , 1} in (12) r j   

1

1 1( ),0( ),1( )

1 1

1 11 0 1

1

1 ( , )

1

!( )!( )!

(14)
k r

k r r r k j j r

k rk rj

i ir r k j j r
r i

j

r

v v
v v P

A
r r k j j r

A A


  



    



  
 



 

  
        



 

 




 

Now sum over in (13) to get{1, , 1},  :r k   

1

1

1 1

1 11 0 1

1

1 1( ),0( ),1( )( , )

1

( )! !( )!

(15)
j r

j r

j rj rk

i ir j k r k r
r i

k

v v

r r j k r k rv v P

A
r j k r k r

A A


  







  
 



    

  
        



 

 




 

Therefore, we have proved the following lemma. 
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3.4  Lemma expressing components of ( )kQ jh as a sum of partial derivatives of 

2

0

k

i i

i

A


 
 
 
  

1

1

1 1

1 11 0 1

1

1 1( ),0( ),1( )( , )

Let , , be any nonnegative integers, and fixed such that and , 0.Then:

1
(a)

!( )!( )!

;
k r

k r

k rk rj

i ir r k j j r
r i

j

r r r k j j r

v v
v v P

j k r j k j r k r j k

A
r r k j j r

A A k


  







  
 



    

   

  
        

 

 

 


 (16)j

 

1

1

1 1

1 11 0 1

1

1 1( ),0( ),1( )( , )

1
(b)

( )! !( )!

; (17)
j r

j r

j rj rk

i ir j k r k r
r i

k

r r j k r k r

v v
v v P

A
r j k r k r

A A j k


  







  
 



    

  
        

 

 

 




 

 

1

1 1( ),0( )

1

1 0( ),1( )

0

11 0

1

00 1

1,11 1

( , )

( , )

1
(c)   (18)

! !

1
(d)  , if  (19)

( )! !

1
(e)

( )! !

j k

j k j k

k

k k j j

j kj k

i ij k
i

kk

i ik j j
i

j

i ij k j
i

v v
v v P

v v
v v P

A A A
j k

A A A k j
k j j

A
j k k


 


 


 



 











 





  
    

  
      



  

 

 











1

1 1( ),1( )( , )

, if  (20)
j

k

j

j k k

v v
v v P

A A j k

 


  

  





 

 

Proof 

Analogous to the proof of corollary 3.6.9 of [10], the superscripts are all feasible and consistent with (9); 

consequently the lemma is proved. Note that min{ , } 2j k  for explicit computational feasibility of  (a) and (b). 

Further, the following result is needed to achieve our objective: 

3.5
 
Lemma relating   

1 2

1

{ , } 1

1 2 1 2to ; , { 1,0,1},

k k

i i i i

i i i i

A A i i i i 
 

   
     

  
  in triple 

summations

1

2 2

1 0 1

1 1

1

1

1 1

), 0( ),1(2 2

0 1

   
0

2

2 2

0 0 ( , )
( )

1

(a)         

,

0

k k

i i i i

r j k r k j r

k

kv v

i i

r j k r k j r

A A

k j

k
A

j r v v P

kA

 


  



   





 

   






  

  





   
   
   
   

 
  



 

 

 



 



1

2 2

1 0 1

1 1

1

1), 0( ),1(2 2

1 1

 
00 1

2

2 2
, 1

0 0 ( , )
0( )

(b)           

k k

i i i i

r j k r k j r

k

kv v

r j k r k j r

A A
i i

k j

k
A A k

j r v v P
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0

2 2

1 0 1

1 1

1

0

{ 1, 1} 1

0
), 0( ),1(2 2

1

0

2

 

2

2
, 1

0 ( , )
0( )

(c)           
i i i i

r j k r k j r

k

kv v

i i

j
r j k r k j r

k k

A A

k

k j

A A k

r v v P

 


  



   





  


   






   

 


   
      
   

 
  

 

 


 






 

Proof 

1

1

First, note from theorem 3.2 of [11] and theorem 3.6.8 of [10], that 

k

i i

i

A


 
 
 
 equals the right-hand side 

without the evaluations at 0iu  , if ' 2'i   is replaced by ' 1'i   and j is replaced by j . 

1

1 1

1

0

1

The proof is immediate, observing that ' 0 ' annihilates all the terms containing 

, thereby yielding the equivalent expression for ;

(b) ' 0 ' zeroes out all the terms containin

(a) 

i i

i

k

A A



 







 
 
 





1 1

0 0 0

{ 1,1}

1

0

g , thereby yielding the equivalent 

expression for ;

(c) ' 0 ' eliminates all the terms containing , thereby yielding the equivalent 

expression for .
i

i i

i

i i

k

k

A

A

A

A





 



 

 



 
 
 



 
 
 
 





 

 

In the sequel, set  

1

1

i i

i

F A


  

By the generalized Cayley-Hamilton theorem, 

1 1

0 1

( ) ,

k
n

n l

k i i

k i

F A  




 

 
  

 
   

1 0 1where the ( ) are polynomials of degree with respect to the ; ( , , ).k is n l k s        
  

   
The stage is now set to prove the equality of ranks of some concatenated determining matrices for finite and 

infinite horizons, using lemmas 3.4, 3.5 and the generalized Cayley-Hamilton theorem. 

3.6   Theorem on Rank Equality of some concatenated determining matrices  

Let: 

 1 0 1 1 1
ˆ ( ) ( ) , ( ) , , ( ) : [0, ), 0, , ,( 1) , (21)n nQ t Q s B Q s B Q s B s t s h n h    

 
where ( )kQ s is a determining matrix for the free part of  (1) and is defined by (7) 

Then: 

   1 1
ˆ ˆrank ( ) rank ( ) (22)nQ t Q t

   
   

 

In the sequel, set  

1

1

i i

i

F A


  

Generalized Cayley-Hamilton theorem, Lew (1966, pp. 650-3): 
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1 1

0 1

( ) ,

k
n

n l

k i i

k i

F A  




 

 
  

 
   

1 0 1where the ( ) are polynomials of degree with respect to the ; ( , , ).k is n l k s        

By lemma 3.4: 

1 1

1 11( ),0( )

0

1 { 1,1}1 0 0 1

1 1

1 11 0 1

( , ) ( , )

1 1
(23)

! ! ( )! !

1

( )! !( )!

j k j

jj k j k

jj kj k j

i i i ij k j k k
i i

j rj rk

i ir j k r k r
r i

v v v v

v v P v v P

A A
j k j k k

A
r j k r k r

A A A A

 
   


  



 




  



  
 

 

   
          

  
         

 

 

 


 

 
1

11( ),1( ) 1( ),0( ),1( )

1

1 ( , )

( ); (24)

j r

j rj k k r j k r k r

k

v v

r

k

v v P

A A

Q jh j k



     



 



 

  




 

11

1 11( ),0( )

0 1

1 01 0 0 1

1 1

1 11 0 1

( , ) ( , )

Also:

1 1
(25)

! ! ( )! !

1

!( )!( )!

kj k

j k j k k

j k kj k k

i i i ij k k j j
i i

k rk rj

i ir r k j j r
r i

v vv v
v v P v v

A A
j k k j j

A
r r k j j r

A A A A

 
   


  



 




 



  
 

 

    
          

  
         

 

 

 


 

 
1

10( ),1( ) 1( ),0( ),1( )

1

1 ( , )

( ); (26)

k r

k j j k r r r k j j r

j

v

r

k

v
P v v P

A A

Q jh k j



     



 



 

  


  

Hence for every non-negative integer ,p we have: 

1

0

11 0

[ ]
{ 1,1}0 1

1 1

[ ]
1 11 0 1

1
( ) (27)

!( )!

1

( [ ])![ ]!

1

( [ ])! !( )!

n p jn p j

n p i ij n p
i

j
j

i ij n p n p
i

j rj rn p

i ir j n p r n p r
r i

v

Q jh A
j n p

A
j n p n p

A
r j n p r n p r

A


 


 


  

  

 


  
 

 

    
 

  
      

 
  

      

  
           







 

1

1

1

1

1 11( ),0( ) 1( [ ]),1( )

1 1( [ ]),0( ),1( )

( , ) ( , )

( , )

, if , (28)

jj n p

j r

v v

n p

r

j n p jj n p j n p n p

j r r j n p r n p r

v

v v

v v P v v P

v v P

A A A

A A j n p
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0 11 1
( )

!( )! ( )! !
1 01 0 0 1

1 11
( !( )!( )!1 11 0 1

(29)

n p j n p
n p j j

Q jh A An p j n p n p j ji i i ij n p n p j j
i i

n p r
j n p r

Ai ir n p j j rr r n p j j r rr i

Av
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Now, using the generalized Cayley-Hamilton theorem in the same spirit as in theorem 3.6, we can prove that 
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By  lemma3.5, 
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It follows immediately that the sum of the powers of ,  and 

,  and [ ], 0

in every permutation involving

ˆ ˆ  is at most 1.Consequently rank ( )] [ ( ) and for 

every integer 0, lead

rankn p n

A A A

A A A tn Q t Q t

p

 





1 1[ ˆ ˆing to the conclusion that rank ( )] [ ( )],as desired.rankn p nQ t Q t 

 

IV    CONCLUSION

 
This paper exploited the results in [1] to establish appropriate and relevant relationships among determining 

matrices, indices of control systems matrices and systems coefficients with respect to single-delay autonomous linear neutral 

control systems. In the sequel the paper used these relationships in conjunction with the generalized Caley-Hamilton theorem 

to prove that the associated controllability matrices for finite and infinite horizons have the same rank. The utility of these 

results can be appreciated in the proof of necessary and sufficient conditions for the Euclidean controllability of system (1) 

on the intervals 
1 1

0[0, ], this;tt   
 
will be discussed in a subsequent paper.  
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