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ABSTRACT: An elementary proposition states that an absolutely convergent series is convergent, i.e. that if 

/s0-s1/+/s1-s2/+…+/sn-sn-1/< ∞ 

This is the analogue for series of the theorem on functions that if a function f(x) is of bounded variation 

in an interval, the limits exist at every point. Consider the function f(x) = ∑an  xn ,lthen the series being supposed 

convergent in ( 0 < x < 1 ) . 

Summability theory has historically been concerned with the notion of assigning a limit to a linear space-valued 

sequences, especially if the sequence is divergent. In this paper we have been proved  a  theorem on Banach 

summability of a factored  conjugate  series. 
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I. INTRODUCTION 

 Let  na   be a given infinite series with the sequence of partial sums  ns . Let  np  be a sequence 

of positive numbers such that 
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defines the sequence of the  npN , -mean of the sequence  ns  generated by the sequence of coefficients 

 np . 

 The series  na  is said to be summable 1,, kpN
kn , if 
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In the case when 1np , for all 
knpNkandn ,,1  summability is same as  1,C  summability . For 

knpNk ,,1  summability is same an npN, -summability. 

Now ,  Let  


1n

n xB  be the  conjugate Fourier series of a 2 -periodic function  tf  and L-integrable on 

  , . Then 
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 Dealing  with B -summability of a conjugate Fourier Series, We have  the following results: 

Known Results:  

Theorem-2.1: 

 Let )(tf  be a 2 -periodic, L-integrable function on   , . Then the conjugate Fourier Series 

 )(xBn  of )(tf  is B -integrable if 

 (i)   ,0)( BVt   

and  

(ii) 
 

 dt
t

t
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Theorem-2.2:  If  
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then the factored Fourier series   xBnn  is B -summable for  n  to be a non-negative convex sequence 

such that 
n

n
. 

 we wish to generalize  the above two results  to absolute Riesz-Banach summability. We prove 

 

Theorem-2.3: 

 Let  np  be a positive non-decreasing sequence of numbers  such that     
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and 

 (iii)    nasPOnp nn , . 

 Then the conjugate Fourier Series   xBn  is absolutely Riesz-Banach summable i.e. 

   BpN n, summable. 
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Theorem-2.4: 

 Let  np  be a sequence of positive numbers such that 
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, as n . Let 

 (i) 
 

 dt
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0

, 

and  

          (ii)  nasPnp nn ),(0 .   Then the factored conjugate Fourier series  xBnn  is 

absolutely Riesz-Banach summable i.e.   BpN n , -summable for  n  to be a non-negative convex 

sequence such that  
n

n
. 

 We need the following Lemmas for the proof  of the   above  theorems. 

 

Lemma-2.3.1 

 Let  np  be a positive non-decreasing sequence of numbers. 

Let 









t

1
 , then {tn} is a monotonically decreasing sequence. 

 

Lemma-2.3.2 

 Let  np  be a sequence of positive non-decreasing, then 









 kn

Pk
 is monotonically increasing  in k . 

Proof. We have  
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   npm,0  is non-decreasing. 

 This proves the lemma. 

Lemma-2.3.3 

 If  n  is a positive convex sequence such that  
n

n
, then  n  is a monotonically 

decreasing sequence. 

Proof of the theorem -  2.3  

 If  nTk  is the k-th element of the Riesz-Banach transformation  of the conjugate Fourier Series 

  xBn , then 
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For the series  )(xBn , we have 
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Hence  )(xBn  is absolutely Riesz-Banach summable. 

 This completes the proof of the theorem. 

 

Proof of the Theorem  - 2.4  

 Let )(nTk  be the k-th element of the Riesz – Banach transformation of the factored conjugate Fourier 

series  )(xBnn . Then 
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By Abel’s partial summation formula 
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)1(0 , on n  is decreasing and  
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 Hence   , uniformly for Nn . 

 Then      BpNisnB nnn , -summable. 

 This proves the theorem. 
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