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ABSTRACT : This article examined path-following methods for solving linear programming problems. Then 

it collected key relevant results in Ukwu [1], formulated analogous continuous dynamical systems, and 

established a sequence of propositions which were invoked to prove that the system’s trajectories converge to 

the optimal solution of a linear programming problem in standard form, under appropriate conditions. These 

results were made possible by the exploitation of norm properties, their derivatives and the theory of ordinary 

differential equations, paving the way for the pursuits of satisficing solutions of some linear optimization 

problems that may not require exact optimal solutions but particular solutions at specified tolerance levels, 

within feasible guidelines or constraints. 
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I. INTRODUCTION AND MOTIVATION 
 The application of linear programming to business, management, engineering and structured decision 

processes has been quite remarkable. Since the development of the simplex method in 1947 by G.B. Dantzing, 

there has been a flurry of research activities in the designing of solution methods for linear programming, 
mostly aimed at realizing more effective and efficient algorithmic computer implementations and computing 

complexity reductions. In the Fall of 1984, Karmarkar [2] of AT & Bell Laboratories proposed a new 

polynomial-time algorithm for solving linear optimization problems. The new algorithm not only possesses 

better complexity than the Simplex method in the worst-case scenario, but also shows the potential to rival the 

Simplex algorithm for large-scale, real-world applications. This development quickly captured the attention of 

Operations Research community. Radically different from the Simplex method, Karmarkar’s original algorithm 

considers a linear programming problem over a simplex structure and moves through the interior of the polytope 

of feasible domain by transforming the space at each step to place the current solution at the center of the 

polytope in the transformed space. Then the solution is moved in the direction of projected steepest descent far 

enough to avoid the boundary of the feasible region in order to remain interior. Next, the inverse transformation 

of the improved solution is taken to map it back to the original space to obtain a new interior solution. The 

process is repeated until an optimum is obtained with a desired level of accuracy. 
Karmarkar’s standard form for linear programming can be described as follows: 
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where A is an  m n  matrix of full row rank,  1,1,...,1
T

e   is the column vector of n ones, c is an n-

dimensional column vector and T denotes transpose. 
The basic assumptions of Karmarkar’s algorithm include: 

                                  0Ae                                                                                                (2) 

                                  the optimal objective value of (1) is zero.                                        (3) 

Notice that if we define
0 e

x
n

 , then assumption (2) implies that x 0
 is a feasible solution of (1) and each 

component of x 0
 has the positive value

1

n
.Any feasible solution x of (1) is called an interior feasible solution if 

each component of x is positive. This implies that x is not on the boundary of the feasible region; needless to say 
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that the constraint 1
T

e x   in (1) implies that 

1

.Therefore1  
j

n

j

x



  1,1, ...,1 ,
T

e   leading to the conclusion that 

a consistent problem in Karmarkar’s standard form has a finite optimum. In Fang and Puthenpura [3], it is 

shown that any linear programming problem in standard form can be expressed in Karmarkar’s standard form. 

Karmarkar’s algorithm and its specifics are well-exposed in [3]. Karmarkar’s algorithm is an interior-point 

iterative scheme for solving linear programming problems. 

Interior-point methods approach the optimal solution of the linear program from the interior of the 

feasible region by generating a sequence of parameterized interior solutions. The specifics of these methods 

have already been discussed in [1]. The primary focus of this article will be on path-following methods. The 

basic idea of path-following is to incorporate a barrier function into the linear objective. By parameterizing the 

barrier function, corresponding minimizers form a path that leads to an optimal solution of the linear program. 
The main motivation for this work comes from the work of Shen and Fang [4], in which the 

“generalized barrier functions” for linear programming were defined to create an ideal interior trajectory for 

path-following. The key components such as the moving direction and the criterion of closeness required for a 

path-following algorithm were introduced for designing a generic path-following algorithm with convergence 

and polynomiality proofs under certain conditions. 

This work is aimed at exploiting the convergence results in [4] to a parameterized continuous 

dynamical system. This would lead to the construction of appropriate energy and Lyapunov functions which 

would be utilized to show that the trajectories of the dynamical system converge to the optimal solution of the 

linear program under appropriate assumptions.  

      One is not aware of any interior-point dynamic solver reported in the literature. Most dynamic solvers 

have been used for the neural network approach. Such investigations can be referred to in Bertsekas [5], Cohen 
and Grossberg [6], Hopfield and Tanks [7], Wang [8, 9, 10, 11],and Zah [12]. In section 4, we formulate our 

supporting propositions and main results. Section 5 presents our conclusions and direction of a follow-up 

research. 

 

II. INTERIOR-POINT METHODS 
 Interior-point methods such as Affine Scaling Methods, Potential Reduction Methods and Path-

Following Methods are well exposed in [1]. Our main result hinges on Path-following methods. 

 

2.1   Path-following Methods 
Consider a linear program:  

                                               

min

. . (4)
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Let    0
: , 0 and : , 0

n n
W x Ax b x W x Ax b x       R R  be the interior feasible domain. 

Let the following assumptions hold: 

                                              A has full row rank,                                                                                     (5) 

                              
0

W W   , where 0W is the closure of
0

W , and  is the empty set        (6) 

                              W is compact.                                                                                                (7) 

 

2.2    Definition  

A function :W  R  is called a generalized barrier function for linear programming (GBLP), if 

 1 :P W  R  is proper, strictly convex and differentiable, where R  is the extended real line. 

 

Remark 

The properness property of   is equivalent to the requirement that  x   be strictly bounded below by   for 

all x W  and be strictly bounded above by   for some x W . 

(P2) if the sequence   0

k
x W  converges to x with the 

thi  component, 0
i

x  then   lim
k

k i
x


    

(P3) the effective domain of  contains
0

W . Equivalently,   
0

. is finiteW x W s t x  . 

Let 0   and define an augmented primal problem  
u

P  associated with a GBLP function follows: 
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                                                    
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Then we have the following results from [4]: 

[1]  
u

P  has a unique optimal solution, denoted by  x  , in 
0

W , 

[2]   T
c z   is a monotone decreasing function in  , 

[3] The set   : 0x     characterizes an interior, continuous curve in
0

W . 

[4] Given a decreasing positive sequence 
k

  such that  lim 0, if * lim
k k k k

x x 
 

   then x*  is the 

optimum of (P). 

[5] Suppose that x  is a given interior feasible solution to (P) and x  solves the problem: 

 

   

 
1

2
1 2

min

. . 0 (9)
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X x
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where X  is any positive definite symmetric matrix and 0 1  . Then, x  defines a moving direction at x  

below: 

       
1

2
.

T T
x X I XA AX A AX X c x 



      
 

      

Under appropriate condition on X , c and  , it is proved in [4], that any convergent feasible sequence of 

solutions to  
u

P  must converge to the optimal solution to (P) as 0 .


  

The next section collects a sequence of lemmas in [1] needed in the proof of the asymptotic behavior of the 

system’s trajectories. 

 

III. CONTINUOUS DYNAMICAL SYSTEMS RESULTS 
 In this section, we formulate an analogous continuous dynamical system and prove that the system’s 

trajectories converge to the optimal solution of (P) under some appropriate conditions. 

 Let A be an m x n matrix of full row rank. Let 
n


R  denote the set : 0

n
x x R . For x W , let z x r   for 

some
n

r R . Then .Ax b Az Ar b    Taking  
1

,
T T

r A AA b


   we see that 0Az  . Therefore, the system 

0Az  is consistent if and only if the system Ax b  is consistent. In the sequel we let 
n

r R   be such that 

Ar b  and z x r  . 

 Let   be a constant such that 0 1  . Let X  be any positive definite symmetric matrix of order n and let p 

and q be norm conjugates of each other such that 1 ,p q    and 1 1 1p q  . 

Let 
j

a  denote the 
th

j  row of A for  1, 2,...,j m . For fixed A, define the map   1
:

n
A


 R R  by 

1

1

.
m

p

jp

j

p

Az a z




 
 
 
  

Remark 

p
Az  is called the p-norm of the function Az . Unless explicitly stated we use the 2-norm in this article. 

Define
2

02

2

max
z

Az
A

z



  
 
  

. For all x W and for any given 
nrR  such that z x r   consider the 

function: 
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   
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c z r p Az r z r z r X z
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where 

   
if 0 if 0

max , 0 and max , 0
0 if 0 0 if 0

w w w w
w w w w

w w

 
  

    
 

 
 
 

, 

 

for ; 0, 0, 0, 0.w r p     R  

Note the following: 

[1] Property (P1) of definition 2.2 implies that,  z r     for all z in the null-space of A and 

 z r     for at least one z in the null-space of A. 

[2] Properties (P1) and (P2) of definition 2.2 imply that  
2

z r    , for. 

[3] Property (P2) of definition 2.2 implies that if  : 1, 2,....
k

z k   is any positive convergent sequence in the 

null-space of A such that   ˆlim
k

k
z r z r


   , with  ˆ 0

j
z r  , for some  1, 2, ...,j n , 

then   lim
k

k z j
z r


    . The latter ensures that the minimization of  E z  is never achieved at 

the boundary of the set : 0z z r  , using a gradient projection method in the minimization program. 

[4] 
p

p Az  is penalty for the violation of  z N A . 

[5]  
1

j

n

j

r z r




  penalizes violations of z r  0. 

[6]  
2

1 2

2
X z 


  is the Lagrangian term associated with the constraint

1 2 2

2
0X z 


  . 

The stage is now set for our dynamical system formulation and the proof of our main result with the aid of the 

results in [1]. 

Let 0 1   and 

       
2

1 2

1 2 2
: 0 , : 0 , and : 0 ,

n n n
S z Az N A S z X z T z z r


           R R R  

where  r is given and defined as on the previous page. Let 
0

andt t  be any pair of time variables such 

that
0

0t t  , and let z0 be an n-dimensional column vector. 

For a differentiable function
1

:
n

D R R , let  
z
D z  denote the gradient of  D z  with respect to z. Observe 

that   n

z
D z  R  for each

nzR . 

 Consider the following dynamical system: 

                       

    

 

0

0 0

0 2

, , , ,
; 0 (11)

( ) (12)

int . (13)

z p p r
z t E z t t t

z t z

z S T

 
   









 

Then  
0

0

0

n

j

j

z r




  , using the definition,  max , 0w w

   and the fact that

0
0z r  , by virtue of z0 

being in int(T).  

System (11) can be treated as a control system of the form: 

          
 1 (3

(14)
T

z c A       

where 
             1 1 2 2

,
Az p

z p Az z z r               and 

       
2

3 3 1 2

2z
z X z   


     . 
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   1 2
,  , and 

 3
  can be regarded as controls. These controls will be implemented such that the trajectories of 

(11), (12) and (13) will be forced into the feasible region  
1 2

intS S t   and maintained there while moving in 

a direction that decreases  T
c z r . The following sequence of lemmas will be found useful in the sequel. 

Let 
n

I  be the identity matrix of order n and let  
1

T T

n
P I A AA A



   be the projection matrix onto the null-

space of A. 

 

The following results were established in [1] 

 

3.1    Lemma 

The dynamics of system (11) when restricted to  
1 2

intS S t   are described by: 

                                                               
  (15)

0 (16)

z
z P E z

Az

  




 

3.2    Lemma   

If
1 2

0 z S S   , then  
2

1 2

2
0

z
P X z 


    

3.3    Lemma  

For any 1p   

and
1
,z S                              

        1 1 1

1 1 2 21
sgn , sgn , , sgn (17)

T

p p p

z m mp p

p

TA
Az a z a z a z a z a z a z

Az

  


    

 

3.4   Lemma (Noble [13], p429) 

For any square matrix M, 

  
1

2

2
maximum eigenvalue of 

T
M M M  

 

3.5    Definition 

The core of the target S1  for the dynamical system: 

                                                      (18)zz E z   

is the set  0

n
z R  of all initial points that can be driven to the target S1  in finite time and maintained there, 

thereafter by an appropriate implementation of some feasible control procedure. 

Denote this set by  
1

core S . The following lemma demonstrates that under certain conditions  
1

core S  is 

nonempty. 

 

 

3.6    Lemma 
 

If: 

                                          
1

(19)
T T T

pzz A AA E z k AzA


   

for some 1p   and 
1

z S  , with some 0k  , then the trajectories of: 

                         
 

  0

(20)

(21)0

z
z E z

z z

 




 

hit 1
S  in finite time and remain there thereafter. 

Our task is to construct appropriate energy and Lyapunov functions and impose appropriate conditions under 

which the trajectories of: 
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 

 
0

(22)

(23)0

zz E z

z z

 




 

converge to z r

 , where z r


   is an optimal solution of (5) for each 0  . Then we can appeal to Theorem 

2.2 of [4] to assert the convergence to the optimal solution of (P), noting that a positive decreasing sequence of 

parameters 
k

  with limit 0 may be used in place of  . 

This above approach holds a lot of promise for an extension of our result to neural networks where dynamical 

systems, energy and Lyapunov functions are used extensively. 

 

IV. MAIN RESULT 
The following tool is needed for the proof of the main result: 

Let 
1

d  be a nonnegative constant such that: 

                  
1 1

1
2

(24)
T T T T T T

q

w A AA d w A AA
 

  

n
w R  and 1q  . See Stoer and Bulirsch [14], p. 185. 

Let   
1

2

2 1 2
max , ,...,

n
d u u u , where ui  is an eigenvalue of  2

for 1, 2, ...,X i n


 . See [13], p. 429. 

 

Remark 

The positive definiteness of X  guarantees the existence and the positivity of
2

d . Also the existence of d1  is 

assured by the equivalence property of p-norms. Therefore 
1

d   and 
2

d  are well-defined. Furthermore, 

1 1 2

2 22

2

2
and ,X d X d

 
   using ([13], p. 429) and the fact that   is an eigenvalue of M  if and only if  j

 

is an eigenvalue of 
j

M  for any positive integer j. 

 

4.1   Theorem 

Let 1 p    and let the following condition hold: 

    
1

1 1 22 2
2

2 (25)
T T

z
p k d c z r d d A AA  



       

where ,k   and   are sufficiently small, p is sufficiently large and  
2

intz S T  . If  
1 2

int
c

z S S T   , 

then condition (19) of lemma (3.4) holds and the equilibrium of the system (3.2) is asymptotically stable. 

Furthermore, if   in (3.2) is replaced by a positive decreasing sequence of parameters  , 1, 2,...
k

k   with 

limit being zero, then the solution of (3.2) in x-space converges to the optimal solution of the linear 

programming problem (P). 

 

Proof 

The strategy for the proof will be as follows: 

[1] We show that the condition (19) of lemma (3.4) holds, which will assure the feasibility of the trajectories of 

(3.2) at some time t and thereafter. 

[2] We show that the function E zp p r, , , , ( )   is a nonincreasing time function along the trajectories of (3.4) and 

that the time derivative vanishes only at an equilibrium solution of (3.4). 

[3] We show that the equilibria of (3.4) satisfy the Karush-Kuhn-Tucker Optimality Condition. This would 

guarantee the uniqueness of the equilibrium. 

[4] Finally we construct a Lyapunov function which is negative definite along the trajectories of the system 

(3.4) and then invoke the Lyapunov theory to conclude that the trajectories converge to the unique 

equilibrium of (3.4). Consequently, the results of Chapter two and, in particular, Theorem 2.2 of [15] can be 
used to conclude that the trajectories converge to the optimal solution of problem P. 

Suppose the trajectories of (3.2) are restricted to S1 . By lemma (3.1), the dynamics of (3.2) are given by: 

                           (26)
z

z P E z    

If  
1

int
c

z S T   , then Lemma (3.4) implies that the trajectories of (3.2) reach S1  in finite time and could be 

forced to remain there thereafter, if (19) holds, now: 
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                  
2

1 2

2
(27)

z z zp
z c p Az z r X z   


           

Next, we expand    
1

T T T

z
z A AA A E z



  as follows: 

          

   

     

     

1

1 1

1 1
2

1 2 3 4
2 (28)

T T T

z

T T T T T T

z p

T T T T T T

z

z A AA A E z

z A AA Ac z A AA Ap Az

z A AA A z r z A AA AX z T T T T  



 

 




  

       

 

From Lemma (3.3), we get: 

 

         

 
     

 
     

       

1

1 1 1

2 1 1 2 21

1 1 1

1 1 2 21

1 1 1

1 2 1 1 2 21

sgn , sgn , , sgn

sgn , sgn , , sgn

, , ... sgn , sgn , , sgn (29)

T T T T

t
p p p

m mp

p

T

t
p p p

m mp

p

t
p p p

m m mp

p

pz A AA AA
T a z a z a z a z a z a z

Az

p Az
a z a z a z a z a z a z

Az

p
a z a z a z a z a z a z a z a z a z

az



  



  



  









  

  

  







 

Hence: 

     

       

     

   

1

2 1 1

1 1

1

1 1 1

1

1 1

1 1 2
2 2

sgn using sgn

(30)

(31)

m m

p p

i i i ip p

i ip p

p

p pp

p

T T T T T T T T T

p
q

T T T T T T

p p

p p
T a z a z a z a z

Az Az

p
Az p Az

Az

T z A AA Ac c A AA Az c A AA Az

d c A AA Az d c A AA Az

  


 

 



  

 

  

 

  

 

 

 

    

(by Hölders inequality and [12], p. 482) 

where p is the conjugate exponent of q; that is
1 1

1 , , 1p q
p q

     . 

   

   

 

1 1
1 2

4

1 1
2 1 1

1 1 2 2
2 2

1

1 2
2

2 2

2 2

2

T T T T T T

p
q

T T T T T T

p p

T T

p

T z A AA AX z z X A AA Az

d z X A AA Az d z X X A AA Az

d d A AA Az

 

 



 
 

 
  



 

 



 

    

since 
2
, 0 1z S     and in view of the definition of 

2
d  following (24)  by a similar reasoning, 

      
1

3 1 2
2

T T

z p
T d z r A AA Az 



    

 

Let:                                   
1 2 3 4

(32)S T T T T     

Then:                                 (33)
p

S k Az  

 z S1 with some k, if: 

                         
1 2 3 4

(34)
p

T T T T k Az      
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since    
1

1 2 3 4

T T T

z
z A AA A E z T T T T



      . Consequently (19) is satisfied if (34) is satisfied. 

Moreover (34) is satisfied if: 

      
1

1 22 2
2

2 0 (35)
T T

z
p k d c z r d A AA  



        

So that: 

                            
1

1 22 22
2

2 (36)
T T

z
p k d c z r d A AA  



       

(36) is satisfied  
1 2

int
c

z S S T     if ,k  and   are sufficiently small, p is sufficiently large and for any 

sequence z k
x

1
, such that   0 as

k

j
z r k    in view of (P2) of Definition 2.2. Now, (36)  (35)  

(34) (19). Hence, the null-space feasibility condition,  z t S 1  can be restored only in the interior of T, if 

(36) holds.  
To complete the proof, we need the following sequence of results which shows that starting from an interior 

feasible point, the trajectories of (3.4) transformed to the x-space will converge to the optimal solution of the 

corresponding linear program (P). 

 

4.2     Proposition 

The function E zp p r, , , , ( )   defined in (10) is a nonincreasing function of time on the trajectories of (3.4). 

Proof 

             

 

2

2

2

using 

0 (37)

T T T T T

z z z z z

z

d
E z E z z E z P E z E z P P E z P P P

dt

P E z

          

   


 

as desired. 

 

4.2     Proposition 

The time derivative of  E z  vanishes only at any equilibrium of (26). 

Proof 

An equilibrium of (26) satisfies the relation   0
z

P E z  . 

                               0 (38)
d

E z
dt

  

if  
2

2
0

z
P E z   , by (37). Therefore: 

                              0 (39)
z

P E z   

showing that any solution to (38) satisfies (39) and consequently is an equilibrium point (26). 

 

4.3     Proposition 

 An equilibrium of (26) satisfies the Karush-Kuhn-Tucker Optimality Condition. 

 
Proof  

By the definition of equilibria: 

                             0 (40)
z

P E z   

(40) implies that  
z
E z is in null-space of P. 0AP   and so: 

                                        0 (41)
T T T

P A PA   

(40) and (41) show that  
z
E z  is in the range space of AT

, thus there exists 
ma wR  such that: 

      (42)
T

z
E z A w   

We deduce from (42) that: 

           `   2
2 (43)

T

z
c z r X z A w  


      

Let   2
2

z
s z r X z  


      . Then: 
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  2

0 (44)

0

2

0.

T

z

A w s c

Az

z r X z s

z r

  


  



    

 


 

The condition (44) coincides with the Karush-Kuhn-Tucker Optimality Condition (46) of   z E z  in [4] if and 

only if: 

                     
2

0 (45)X z


  

in which case the positive definiteness of 
~
X  assures that: 

       0 (46)z   

Note also that the convexity of the set  
1 2

intS S T   assures the uniqueness of solution to the Karush-Kuhn-

Tuker Optimality Condition and consequently the uniqueness of the equilibrium of (26). From (37) we deduce 

that   0 for
d
dt

E z z z  , where z  is the unique equilibrium of (26). This establishes that the equilibrium of 

the system (26) is asymptotically stable. Now let 0   to deduce that z r x   * , the optimal solution of 

(P). (See [4], theorem 2.2). 

The condition 0z   in (46) is a complementary-slackness-like condition: If z j  0  for 

some  j n 1 2, ,..., , then 0  ; and 0   

For potential Neural Network applications we also use the Lyapunov theory to show that the trajectories of (26) 

converge to the unique equilibrium of (26). To this end, we need to construct an appropriate Lyapunov function. 

 

4.5     Definition 

A function :
n

V D  R R  is called a Lyapunov function if V is continuously differentiable and positive 

definite on D. if V is negative definite along the trajectories of the dynamical 

system      where  (0) 0,  
d

x t f x t f
dt

  ,  and x D , then the equilibrium x  0  is asymptotically 

stable. (See [13], pp. 203-205)  

It is not clear that z  0 is the unique equilibrium of (26); therefore we must perform a linear translation of the 
equilibrium to the origin. 

Let z  be the equilibrium solution of (4.2). Let y z z   . Then: 

        (47)
z z z

z P E z z P E z P E z z
  

           

since   0
z

P E z


  . 

Clearly 0z   is equilibrium of the transformed system and is unique. Let: 

                    
2

2
(48)

z
V z P E z z


    

Then  0 0V   and   0 if 0V z z  . Also  V z  is continuous in z. therefore  V z  is a Lyapunov function. 

Note that: 

         
2

2
2 2 (49)

T

z z

d
V z t P E z z z P E z z

dt
 

        

which vanishes if and only if z  0.  Therefore  V z  the derivative of is negative definite along the solution 

(on the trajectories) of (47). We now appeal to Lyapunov theory to assert that the origin is an asymptotically 

stable solution of (47). Consequently the equilibrium z  of the system (26) is asymptotically stable. Now 

let 0 . Then z r x   *,  the optimal solution of (P). This comes from theorem 2.2 of [4].  

 

 

 

 

 



On Path-Following Dynamical Systems Trajectories… 

                                                             www.ijmsi.org                                               29 | P a g e  

VI. CONCLUSION 
 This work was motivated partly by interior-point concepts and largely by the path-finding methods in 

[4] for solving linear programming problems. Many real-life problems which could be formulated as linear 

programming problems are dynamic in nature; for example, the inventory level of some item at a given time and 
changes in demand levels of some consumer goods due to price fluctuations and seasonal variation. Also on-line 

optimization may be required in many application areas, such as satellite guidance, robotics and oil outputs from 

oil wells and refinery operations. Some of these problems may not require exact optimal solutions but particular 

solution at specified tolerance levels, within feasible guidelines or constraints. In particular solutions at positive 

levels may be desired for all decision variables, implying that interior solutions are desired. These and many 

other problems of the continuous variety could be more realistically modelled by continuous dynamical systems. 

Unfortunately, research in this direction has been based mainly on neural network approach, none of which is 

interior-point oriented. In section 3, we formulated an interior-point based dynamical system for solving linear 

programming problems in standard form. The key ideas for this formulation came from the examination of [4]. 

Then, we stated that under certain conditions, the solutions of our dynamical system would converge to the 

solution of a corresponding linear programming problem in standard form. We proceeded cite some relevant 

results in [1] and establish a sequence of propositions which would be needed to prove that our solutions would 
have the right convergence property-the convergence of the trajectories of the dynamical system to the optimal 

solution of the linear program under appropriate assumptions. This approach holds a lot of promise for an 

extension of our result to neural networks where dynamical systems, energy and Lyapunov functions are used 

extensively. 
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