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ABSTRACT: All efforts made by various researchers, particularly in the wake of resolving difficulties arising 

while addressing the termination issues in computer science, seem to be oriented toward generalizing the notion 

of multiset orderings on a class of finite multisets by taking the generic set finite and partially ordered. These 

orderings are maps from a partially ordered base set to partial orders on the class of finite multisets. We 

present in this paper a comparative study of such multiset orderings described in the literature during the last 

two decades or so and the efficiency of implementations. 
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1    INTRODUCTION 
Multiset orderings have been studied for many years. In recent years, it has been exploited in 

demonstrating termination of programs and that of term rewriting systems including production systems where 

programs are written in terms of rewrite rules (see (Knuth (1973),Dershowitz and Manna(1979), Dershowitz 

(1982), Jouannaud and Lescanne (1982) and Martin(1982)). In the sequel, a great variety of multiset path 

orderings have been extensively exploited in termination, AC termination and dependency pairs of term 

rewriting systems (see Dershowitz (1982), Bachmair and Plaisted (1985), Martin(87/88) Thistlewaite et al 

(1988), Kapur et al (1990), Baclawski (1981), Leclerc (1995), Kapur  and  Sivakumar (1997),  Baader and 

Nipkow (1998), Kusakari (2000) and Jouannaud (2003)). 

 
Consequent to the seminal idea advanced in Floyd (1967) that well-founded sets could be exploited for 

proving that programs terminate, the task of program verification has culminated into finding a termination 

function that maps the values of the program variables into some well-founded set such that the value of the 

termination function gets continually reduced throughout the process of computation. Dershowitz and 

Manna(1979)  is the first place to profoundly demonstrate how the multiset ordering permits the use of relatively 

simple and intuitive termination functions in otherwise difficult termination proofs. Infact, the multiset ordering  

proposed by Dershowitz and Manna (1979) has formed a basis for constructing a variety of multiset orderings . 

  
In our presentation, it is observed that all efforts made by various researchers, particularly in the wake 

of resolving difficulties arising while addressing the termination issues in computer science, seem to be oriented 

toward generalizing the notion of multiset orderings on a class of finite multisets over a  finite partially ordered 

generic set. These orderings are maps from a partially ordered base set to partial orders on the class of finite 

multisets. The section 2 of this paper contains some preliminaries required to make it self-contained.  In section 

3, a comprehensive study of the various formulations of multiset orderings  is carried out. A  comparative study 

of such multiset orderings is presented in section 4. We deduce the implementation efficiency of these 

definitions from the comparative study in section 5.  
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2  PRELIMINARIES 

Definition 2.1   Multiset and Multiset Operations 
A multiset (mset, for short) is an unordered collection of objects (called its elements) in which unlike standard 
(Cantorian) sets, elements are allowed to repeat. In other words, an mset on a set 𝒮 is an unordered sequence 
of elements of  .   
 Formally, an mset 𝑀 over a set 𝒮 is a cardinal-valued function. That is, 𝑀 on 𝒮 is a map from 𝒮 to the set  of 

natural numbers including zero. For elements  𝑥 ∈ 𝒮, 𝑀 𝑥   𝑜𝑟  𝑀𝑥  is called the multiplicity of 𝑥 in 𝑀 . It 
follows by definition that 𝑀 𝑥 > 0   ∀𝑥 ∈ 𝑀 and 𝑀 𝑥 = 0 for all 𝑥 ∉ 𝑀.  An empty mset will be denoted by 
   or simply by  . 

For any msets 𝑀, 𝑁 ∈ 𝔐 𝒮 , the additive union denoted  of 𝑀 and 𝑁 is the mset 𝑀⨄𝑁 such that 

 𝑀⨄𝑁 𝑥 = 𝑀 𝑥 + 𝑁 𝑥 . The difference of 𝑀 and 𝑁 is the mset 𝑀 − 𝑁 such that  
 𝑀 − 𝑁 𝑥 = 𝑚𝑎𝑥 𝑀 𝑥 − 𝑁 𝑥 , 0 . The mset 𝑀 is a submultiset (submset for short ) of an mset 𝑁  denoted 
𝑀 ⊆ 𝑁 if 𝑀 𝑥 ≤ 𝑁 𝑥  for all 𝑥 ∈ 𝒮.  
We   denote the class of all finite msets containing objects from the ground (generic) set 𝒮 by 𝔐(𝒮) where a 
finite mset over a set 𝒮 is a set formed with finitely many elements from 𝒮 such  that each element has a finite 
multiplicity. Hence, the class of all finite msets over 𝒮 can be represented by 
𝔐 𝒮 =  𝑀 𝑀: 𝒮 ⟶ ℕ 𝑎𝑛𝑑 𝑀 𝑥 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏𝑢𝑡 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑥 ∈ 𝒮   
 

Definition 2.2  Nested Msets 
These are msets whose elements may be members of some generic set 𝒮 or may be msets of elements of 𝒮 or 

both elements of  𝒮 and msets of elements of  𝒮, and so on. For example   1,1 ,   0 , 1,2 , 0  is a nested mset 

over the generic set  𝒮 = ℞+, the set of positive integers.  

We denote the set of nested mset𝑠 over 𝒮 by 𝔐∗(𝒮) and define 𝔐0 𝒮 = 𝒮 and   𝔐𝑖+1(𝒮) as containing the 

msets whose elements are taken from each of 𝔐0 𝒮 , 𝔐1 𝒮 , … , 𝔐𝑖(𝒮).  A depth   of a nested mset 𝑀 is a 

nonnegative   integer  𝑖 for which the elements of 𝑀 are taken from  each of  𝔐0 𝒮 , 𝔐1 𝒮 , … , 𝔐𝑖−1(𝒮). We 

denote  the set of nested msets of depth 𝑖 by 𝔐𝑖(𝒮). 

Definition 2.3  List Msets 
Let   be a total ordering on 𝒮. Then  the ordered list, 𝐿𝑖𝑠(𝑀) for any mset 𝑀 ∈ 𝔐(𝒮)  is  defined by  

𝐿𝑖𝑠 𝑀 = (𝑥1 , … , 𝑥𝑛) with 𝑗 > 𝑖 ⟹ 𝑥𝑗 ≤ 𝑥𝑖    where     is the usual ordering on the set of real numbers 

  
Definition 2.4  Well-foundedness 

 A well-founded relation consists of a set 𝒮 and a transitive and irreflexive ordering   defined on the elements 

of 𝒮 such that there can be no  sequence  of elements  𝑥1 , 𝑥2 , 𝑥3 , …   such that 𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ ⋯ i.e., there 
does not exist an infinite descending sequence of elements of 𝒮. In other words, for a relation being well-
founded, every nonempty subset of its domain must have minimal elements under the relation.  
 

               3. MULTISET ORDERINGS ON 𝕸(𝓢)  WHEN 𝓢 IS PARTIALLY ORDERED. 
3.1 Some definitions 

Mset ordering is an ordering defined on the class 𝔐(𝒮) of finite msets built from a ground set 𝒮. We use  or 

  and  or  on 𝒮 to represent strict partial ordering and strict total ordering if it is irreflexive and transitive 

respectively. 
 Let ≻≻ or ≺≺  and  or  be the associated ordering on 𝔐(𝒮) induced by   or   and  or   respectively. 

We describe below various construction of orderings on 𝔐(𝒮) taking 𝒮 equipped with a partial ordering  or 

 . The symbol ≻≻ or ≺≺ shall be accompanied with a subscript for identification of the various formulations 

during the last two decades or so. We denote the incomparable elements 𝑀, 𝑁 ∈ 𝔐(𝒮) by 𝑀#𝑁. 
Essentially, an mset ordering ≻≻ on 𝔐(𝒮) is a partial ordering induced by the partial  ordering  defined on 𝒮. 

We regard the set of all partial orders on 𝒮 denoted by 𝑂(𝒮) as a set partially ordered by the set inclusion 
relation ⊂, where  ≻1⊂≻2   if and  only if 𝑥 ≻1 𝑦 → 𝑥 ≻2 𝑦  and  ≻3=≻1∩≻2→ 𝑥 ≻3 𝑦  if and only if  𝑥 ≻1 𝑦 

and 𝑥 ≻2 𝑦.  Similarly, the set of partial orders on 𝔐(𝒮) denoted by  𝑂 𝔐 𝒮   can be regarded partially 

ordered by   . The order ≻≻∈ 𝑂 𝔐 𝒮   is said to inherit the order ≻∈ 𝑂(𝒮)  if  𝑥 ≻≻  𝑦  whenever 𝑥 ≻ 𝑦. 

The inheritance property ensures that the order on 𝔐 𝒮  is related in a  way to the order on 𝒮. 
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An mset ordering on 𝔐(𝒮) induced by a partial order on 𝒮  is defined as a function 𝑓: 𝑂(𝒮) ⟶ 𝑂(𝔐 𝒮 ).  This 
function 𝑓  is said to be monotonic   if for any ≻1, ≻2∈ 𝑂(𝒮),  ≻1⊂≻2 implies  𝑓(≻1) ⊂ 𝑓(≻2). The function  𝑓 
is  said to be an extension function if it is monotonic and an  hereditary  extension  function if it is monotonic 
and   each order  ≻∈ 𝑂(𝒮)  is inherited by  𝑓(≻) ∈ 𝑂(𝔐 𝒮 ). 
  An extension function 𝑔  is said to be maximal(minimal)  if  for any other extension function ,  

 𝑔 ≻ ⊆  ≻ ( ≻ ⊆ 𝑔 ≻ ) → 𝑔 =   ∀≻∈ 𝑂(𝒮).    

3.2 Dershowitz-Manna (1979) Ordering 

In order to facilitate proving termination of programs and that of term rewriting systems, Dershowitz and 
Manna (1979) introduce an ordering on msets, usually called the standard ordering defined as follows: 
Let  be a partial ordering on 𝒮. For 𝑀, 𝑁 ∈ 𝔐(𝒮), if 𝑀 ≠ 𝑁 then 𝑁 ≺≺𝐷𝑀 𝑀 if and only if for some finite 

msets  𝑋, 𝑌 ∈  𝔐(𝒮), 

(i)    ≠ 𝑋 ⊆ 𝑀 , 

(ii)   𝑁 = (𝑀 − 𝑋)⨄𝑌  and 

(iii)   ∀𝑦 ∈ 𝑌  ∃𝑥 ∈ 𝑋 𝑥 ≻ 𝑦. 

Equivalently, 𝑁 ≺≺𝐷𝑀 𝑀 if for some msets 𝑋,𝑌, 𝛧 ∈ 𝔐 𝒮  where 𝑋 is nonempty, 𝑀 = 𝑋⨄𝑍 , 𝑁 = 𝑌⨄𝑍  
and   ∀𝑦 ∈ 𝑌  ∃𝑥 ∈ 𝑋 𝑥 ≻ 𝑦.   

Note that 𝑌 may be empty and hence 𝑋 ≠ 𝑌. Also, 𝑋 ≠ 𝑌 ≠ 𝑍 to avoid triviality. For, if 𝑋 = 𝑌,  then (iii) 
implies that 𝑋 is infinite, a contradiction to 𝑋 ∈  𝔐(𝒮). Moreover, 𝑀 ≠ 𝑁 which in turn means 𝑋 ≠ 𝑀. For, if  
𝑋 = 𝑀, then 𝑁 = 𝑌 and (iii) fails as   3,3,4,0 ≻≻  3,2,1,2,0,4   holds  lexicographically, but (iii) does not hold. 

This definition is difficult to use in order to prove that two multisets are not related by an inclusion. The 
definition only shows how to reduce a multiset. However, the efficient implementation of this definition is 
proposed in Dershowitz and Manna (1979). 

The mset ordering  𝔐 𝒮 , ≺≺𝐷𝑀  over  𝒮, ≺  is well founded, total and irreflexive if and only if  𝒮, ≺  is well 
founded, total and irreflexive. Also, ≺≺𝐷𝑀   is monotonic and maximal (see Jouannaud and Lescanne (1982)). 

While proving the transitivity property of the ordering ≺≺𝐷𝑀 , Dershowitz and Manna (1979) define a one step 
reduction order as follows: Let  be a partial ordering on 𝒮, and 𝔐(𝒮) be the set of all finite msets built from 

𝒮. For 𝑀, 𝑁 ∈ 𝔐(𝒮), the one step mset reduction order ≻≻1  is defined: 

𝑀 ≻≻1 𝑁  if and only if there exist 𝑀0, 𝐾 ∈ 𝔐(𝒮) and 𝑥 ∈ 𝒮 such that 𝑀 = 𝑀0⨄ 𝑥  and 𝑁 = 𝑀0⨄𝐾 and for 
all 𝑦 ∈ 𝐾, 𝑦 ≠ 𝑥, we have 𝑦 ≺ 𝑥. 
 The ordering  ≻≻1  is well-founded if and only if the order  is well-founded on 𝒮 (see Nipkow(1998) for 

details).  

Proposition 3.1 
The ordering ≫1  on 𝔐(𝒮) is (i) total if  is total on 𝒮 and (ii) Monotonic. 

Proof:  

(i) Let  𝒮, >  be  a totally ordered set.  Let 𝑀, 𝑁 ∈ 𝔐(𝒮) such that 𝑀 ≠ 𝑁. 

 By definition, we have 𝑀 𝑧 ≠ 𝑁 𝑧  for some 𝑧 ∈ 𝒮. 

In this case, either 𝑀 𝑧 < 𝑁 𝑧  or 𝑀 𝑧 > 𝑁 𝑧 . 

Now   𝑀 𝑧 < 𝑁 𝑧 → 𝑁 𝑧 − 𝑀 𝑧 > 0 → 𝑁 − 𝑀 ≠ ∅ 

→ ∃𝑃 𝑃 ∈ 𝔐 𝒮 ∧ 𝑃 ≠ ∅ ∧ 𝑁 = 𝑀⨄𝑃 .  

Let 𝑀0 ∈ 𝔐(𝒮)  and 𝑥 ∈ 𝒮 such that 𝑀 = 𝑀0⨄ 𝑥 . Then 

 𝑁 = 𝑀⨄𝑃 =  𝑀0⨄ 𝑥  ⨄𝑃 = 𝑀0⨄  𝑥 ⨄𝑃 = 𝑀𝑂⨄𝐾 where 𝐾 =  𝑥 ⨄𝑃. 
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  Let  𝑦 ∈ 𝐾 such that 𝑦 ≠ 𝑥. Since  𝒮, >  is total, either 𝑦 > 𝑥 or 𝑦 < 𝑥. 

 If  𝑦 > 𝑥, we have 𝑁 ≫1 𝑀 and if 𝑦 < 𝑥, we have  𝑀 ≫1 𝑁. 

Thus, for 𝑀 ≠ 𝑁, we have either 𝑁 ≫1 𝑀 or 𝑀 ≫1 𝑁. 

(ii) Let ≺1⊆≺2. We show that  ≺≺1⊆
1 ≺≺2

1 . 

 Let 𝑀, 𝑁 ∈ 𝔐(𝒮) such that 𝑁 ≺≺1 𝑀1 . 

By definition, there exist 𝑀0, 𝐾 ∈ 𝔐(𝒮) and 𝑥 ∈ 𝒮 such that 𝑀 = 𝑀0⨄ 𝑥  and 𝑁 = 𝑀0⨄𝐾 and for all 𝑦 ∈ 𝐾 
we have 𝑦 ≺1 𝑥. But for 𝑦 ≺1 𝑥, we have 𝑦 ≺2 𝑥(by hypothesis). 

Thus, there exist 𝑀0, 𝐾 ∈ 𝔐(𝒮) and 𝑥 ∈ 𝒮 such that 𝑀 = 𝑀0⨄ 𝑥  and 𝑁 = 𝑀0⨄𝐾 and for all 𝑦 ∈ 𝐾 we have 

𝑦 ≺2 𝑥. In this case, we have 𝑁 ≺≺2 𝑀1  and the result follows. 

Dershowitz-Manna (1979) also provides a generalization of  mset orderings defined on 𝔐 𝒮  by defining, 
nested mset orderings ≻≻∗ on the class  𝔐∗ 𝒮  of nested msets  as follows: 

𝑀 ≻≻∗ 𝑁  if and only if  (i)’ 𝑀, 𝑁 ∈ 𝒮  and  𝑀 ≻ 𝑁  or  (ii)’  𝑀 ∉ 𝒮  and  𝑁 ∈ 𝒮  or 

𝑀, 𝑁 ∉ 𝒮 and for some 𝑋, 𝑌 ∈ 𝔐∗ 𝒮  where   ≠ 𝑋 ⊆ 𝑀, 𝑁 = (𝑀 − 𝑋)⨄𝑌 and  

 ∀𝑦 ∈ 𝑌  ∃𝑥 ∈ 𝑋 𝑥 ≻≻∗ 𝑦. 

This is  a recursive version of the  standard multiset ordering ≺≺𝐷𝑀 . 

It is startling to observe that the sequence 𝔐∗𝑖(𝒮) typically forms a cumulative type of structure (see Drake 

and Singh (1996)). Hence, every 𝔐∗𝑘(𝒮); 𝑘 = 1,2, … is bounded in rank and belongs to von Neumann universe 
(see Singh and Singh (2009)), a necessary condition forbidding the occurrence of any infinite descending chain 
and granting well-foundedness in turn.   The following theorem strengthens the aforesaid generalization: 

The nested mset ordering  𝔐∗ 𝒮 , ≻≻∗    over  𝒮, ≻  is well-founded, irreflexive and total   if and only if 
 𝒮, ≻  is well-founded, irreflexive and total. 

Also,  𝑀 ≻≻∗ 𝑁 if and only if 𝑁 ∈ 𝔐∗𝑖(𝒮) ∧ 𝑀 ∈ 𝔐∗𝑗 (𝒮) ∧ 𝑖 < 𝑗.  In  other words, if the depth of the nested 
Multiset 𝑁 is less than the depth of the nested Multiset 𝑀 then 𝑀 ≻≻∗ 𝑁 and conversely i.e the elements of 

𝔐∗𝑖(𝒮) are less than those of 𝔐∗𝑗 (𝒮) provided  𝑖 < 𝑗. 

Proposition 3.2  
The class of nested multisets of distinct depths under the nested multiset ordering ≻≻∗ is total and independent 

of the order on the underlying set 𝒮. 

Proof:  

Let 𝑀 ∈ 𝔐∗𝑖(𝒮)  and 𝑁 ∈ 𝔐∗𝑗 (𝒮), where 𝑖 ≠ 𝑗.  
Since for all distinct , 𝑗 ; either 𝑖 < 𝑗 or 𝑗 < 𝑖 and hence, either 𝑁 ≻≻∗ 𝑀 or 𝑀 ≻≻∗ 𝑁. 

3.3  Huet-Oppen (1980) Ordering 

Let  (𝒮, ≺)  be a strictly ordered set. The Huet-Oppen mset ordering  ≺≺𝐻𝑂  on  𝔐(𝒮)  is defined as follows: 

  𝑀 ≺≺𝐻𝑂 𝑁 if and only if  𝑀 ≠ 𝑁 and [𝑀 𝑦 > 𝑁 𝑦 →  ∃𝑥 ∈  𝒮 𝑦 ≺ 𝑥  and 

 𝑀(𝑥) < 𝑁(𝑥)].  In words, if an object 𝑦 occurs more frequently in 𝑀, there exists another object 𝑥 greater 
than 𝑦 that occurs more frequently in 𝑁. 

In Martin (1989), it is  observed  that if  is total, then ≺≺𝐻𝑂  is total and becomes lexicographic  ordering on 

ℝ𝑛  with respect to . That is, if 

 𝒮 = {𝑠1,𝑠2,…,𝑠𝑛 } with 𝑠1 ≻ 𝑠2 ≻…≻ 𝑠𝑛 ,  then 𝑁 ≺≺𝐻𝑂 𝑀 if and only if 𝑀 ≠ 𝑁, and 

 ∀𝑖 ; 1≤ 𝑖 ≤ 𝑛, 𝑀(𝑠𝑖 )< 𝑁(𝑠𝑖 )→ ∃𝑗 < 𝑖:  𝑀(𝑠𝑗 ) > 𝑁 𝑠𝑗  .   
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Note that the implementation of this definition can be derived. However, it is not efficient (see Jouannaud and 
Lescanne (1982), for details). 

 
Proposition 3.3 
 The ordering ≺≺𝐻𝑂  on 𝔐(𝒮) is monotonic and well-founded if and only if (𝒮, ≺)  is well-founded. 

Proof: 
Let (𝒮, ≺1)  and (𝒮, ≺2)  be partially ordered sets where  ≺1⊂≺2 . Then we show that ≺≺1𝐻𝑂

⊆≺≺2𝐻𝑂
. Now 

let 𝑀, 𝑁 ∈ 𝔐(𝒮)  such that 𝑀 ≺≺1𝐻𝑂
𝑁.  

By definition, 𝑀 ≠ 𝑁 and [𝑀 𝑦 > 𝑁 𝑦 →  ∃𝑥 ∈  𝒮 𝑦 ⋖ 𝑥  and 

 𝑀(𝑥) < 𝑁(𝑥)]. In particular, 𝑀 ≠ 𝑁 and [𝑀 𝑦 > 𝑁 𝑦 →  ∃𝑥 ∈  𝒮 𝑦 ≺ 𝑥  and 

 𝑀(𝑥) < 𝑁(𝑥)]  since by hypothesis ≺1⊂≺2 .  

Hence, 𝑀 ≺≺2𝐻𝑂
𝑁 and ≺≺1𝐻𝑂

⊆≺≺2𝐻𝑂
.  

The ordering ≺≺𝐻𝑂  on 𝔐(𝒮) is maximal. It is also well-founded if and only if (𝒮, ≺)  is well-founded 
 (see Jouannaud and Lescanne (1982)). 

3.4  Jouannaud-Lescanne(1982) Ordering 

 Jouannaud and Lescanne(1982)  define two partition based orderings  ≺≺ℜ   and  ≺≺𝒮  on 𝔐 𝒮  as follows: 

𝑀 ≺≺ℜ 𝑁 if and only if  𝑀 ≺ℜ
𝑙𝑒𝑥 𝑁   where 

(i). 𝑀 =  𝑀𝑖 
𝑥 ∈ 𝑀𝑖 → 𝑀𝑖 𝑥 = 𝑀 𝑥 ∧ 𝑥 ∈ 𝑀𝑖 , 𝑦 ∈ 𝑀𝑖

→ 𝑥#𝑦 ∧ ∀𝑖 ∈  2. . 𝑝  𝑥 ∈ 𝑀𝑖 → ∃𝑦 ∈ 𝑀𝑖−1 𝑥 ≺ 𝑦
   

(ii). 𝑁 =  𝑁𝑖 
𝑥 ∈ 𝑁𝑖 → 𝑁𝑖 𝑥 = 𝑁 𝑥 ∧ 𝑥 ∈ 𝑁𝑖 , 𝑦 ∈ 𝑁𝑖

→ 𝑥#𝑦 ∧ ∀𝑖 ∈  2. . 𝑝  𝑥 ∈ 𝑁𝑖 → ∃𝑦 ∈ 𝑁𝑖−1 𝑥 ≺ 𝑦
    

 (iii). 𝑀𝑖 ≺ℜ 𝑁𝑖  if and only if 𝑀𝑖 ≠ 𝑁𝑖   and  ∀𝑥 ∈ 𝑀𝑖 , 𝑀𝑖(𝑥) ≤ 𝑁𝑖(𝑥)  or                                    

 ∃𝑦 ∈ 𝑁𝑖   𝑥 ≺ 𝑦. 

𝑀 ≺≺𝒮 𝑁  if and only if  𝑀 ≺𝒮
𝑙𝑒𝑥 𝑁   where 

(i).𝑀 =  𝑆𝑖  𝑆𝑖(𝑥) ≤ 1 ∧ 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑆𝑖 → 𝑥#𝑦 ∧ ∀𝑖 ∈  2. . 𝑝  𝑥 ∈ 𝑆𝑖 → ∃𝑦 ∈ 𝑆𝑖−1 𝑥 ≼ 𝑦, 𝑖 = 1,2, … , 𝑝  

(ii).𝑁 =  𝑇𝑖 𝑇𝑖(𝑥) ≤ 1 ∧ 𝑥 ∈ 𝑇𝑖 , 𝑦 ∈ 𝑇𝑖 → 𝑥#𝑦 ∧ ∀𝑖 ∈  2. .𝑝  𝑥 ∈ 𝑇𝑖 → ∃𝑦 ∈ 𝑇𝑖−1 𝑥 ≼ 𝑦, 𝑖 = 1,2, … , 𝑞  

(iii). 𝑆𝑖 ≺𝒮 𝑇𝑖  if and only if  𝑆𝑖 ≠ 𝑇𝑖 ∧ ∀𝑥 ∈ 𝑆𝑖  ∃𝑦 ∈ 𝑇𝑖   𝑥 ≼ 𝑦.   

Intuitively, the partition 𝑀  is built by first computing the multiset 𝑀1 or 𝑆1  of all the maximal objects and then 

recursively computing the partition 𝑀 − 𝑀1  or  𝑀 − 𝑆1  respectively and similarly for 𝑁  in each case. 

The two partition based orderings  ≺≺ℜ and  ≺≺𝓈  as defined above are well-founded if the irreflexive 
transitive relation   on 𝒮 is  well-founded.  

However, the orderings ≺ℜ, ≺𝒮  and the partition based orderings≺≺ℜ, ≺≺𝒮  are not monotonic 
 (see Jouannaud and Lescanne(1982), pp.59-60  ). 

Jouannaud and Lescanne (1982), using the concept of 𝐿𝑖𝑠𝑡,  define an ordering ≺≺∗  as follows: 

 Given a  partial order   on 𝒮, an ordering ≺≺∗  on 𝔐 𝒮  is defined: 

 𝑀 ≺≺∗ 𝑁 if and only if  𝐿𝑖𝑠𝑡 𝑀 <𝑙𝑒𝑥 𝐿𝑖𝑠𝑡(𝑁) for all total orderings  containing . 
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The poset  𝔐 𝒮 , ≺≺∗   is not total.  Since if 𝒮 =  a, b, c|a ≺ b , then all the total orderings <𝑖  such that 
≺⊆<𝑖  are: 

𝑎 <1 𝑏 <1 𝑐, 𝑐 <2 𝑎 <2 𝑏, 𝑎 <3 𝑐 <3 𝑏 . For the msets 𝑀 =  𝑎, 𝑎, 𝑐, 𝑏  and 𝑁 =  𝑏, 𝑎, 𝑎, 𝑐 , we have for 
𝑎 <1 𝑏 <1 𝑐,  

 𝐿𝑖𝑠𝑡 𝑀 =  𝑐, 𝑐, 𝑏, 𝑎 , 𝐿𝑖𝑠𝑡 𝑁 =  𝑐, 𝑏, 𝑎, 𝑎  and  𝐿𝑖𝑠𝑡 𝑁 <1
𝑙𝑒𝑥 𝐿𝑖𝑠(𝑀). 

But, for 𝑐 <2 𝑎 <2 𝑏, 𝐿𝑖𝑠𝑡 𝑀 =  𝑏, 𝑎, 𝑐, 𝑐 , 𝐿𝑖𝑠𝑡 𝑁 =  𝑏, 𝑎, 𝑎, 𝑐  and  𝐿𝑖𝑠𝑡 𝑀 <2
𝑙𝑒𝑥 𝐿𝑖𝑠(𝑁). Therefore 𝑀 

and 𝑁 are not comparable. 

Note that under ≺≺∗ on 𝔐 𝒮 , it may  not be easy to  compare  msets in 𝔐 𝒮  where 𝒮 is a finite large size 
antichain. It is because of the fact that its linear extensions is of factorial order (see R𝑢 etschi (2006)).  

However, the poset  𝔐 𝒮 , ≺≺∗   is total and well-founded if and only if the ordering   is total and well-

founded on 𝒮 (see Jouannaud and Lescanne (1982)).  

Proposition 3.4  
The  ordering ≺≺∗  on 𝔐 𝒮  is monotonic. 

Proof: 
 Let ≺1 and ≺2 be two partial orders on 𝒮 such that ≺1⊂≺2. Then we show that ≺≺∗1⊆≺≺∗2. Now let 
𝑀 ≺≺∗1 𝑁.  

By definition, 𝐿𝑖𝑠𝑡 𝑀 <1
𝑙𝑒𝑥 𝐿𝑖𝑠𝑡(𝑁) for all total orderings  <1 such that ≺1⊂<1. 

Let <2 be a total ordering such that ≺2⊂<2. 

Since ≺1⊂≺2 and  ≺2⊂<2, we have ≺1⊂<2. In particular, 𝐿𝑖𝑠𝑡 𝑀 <2
𝑙𝑒𝑥 𝐿𝑖𝑠𝑡(𝑁). 

Hence, for all total orderings <2 such that  ≺2⊂<2, we have 𝐿𝑖𝑠𝑡 𝑀 <2
𝑙𝑒𝑥 𝐿𝑖𝑠𝑡(𝑁). 

Thus, 𝑀 ≺≺∗2 𝑁. In particular, ≺≺∗1⊆≺≺∗2. 

3.5 Melven Krom (1985) Ordering 

Melven Krom (1985)  defines some binary relations  on 𝔐(𝒮) taking strict transitive  ordered set (𝒮, ≺). To 
motivate these definitions, an intuitive description of  the one denoted by ≺∞  is given by 𝑀 ≺∞ 𝑁 incase 𝑀 
can be obtained from 𝑁 by a sequence of moves in which an occurrence of an object is removed and some 
finite number of occurrences of smaller objects are added. Formally, a binary relation ≺≺𝑛  on 𝔐(𝒮)  is 
defined for each 𝑛 ∈ ℕ as follows: 

 (1)  𝑀 ≺≺𝑛 𝑁  if and only if   

(i) there exists exactly one element 𝑦 ∈ 𝒮 such that 𝑀(𝑦) < 𝑁(𝑦), (ii) for this one  element,  
  𝑀 𝑦 + 1 = 𝑁(𝑦). 

(iii) if 𝑀(𝑥) > 𝑁(𝑥) then 𝑥 ≺ 𝑦 in 𝒮  and (iv)    𝑀 𝑥 − 𝑁 𝑥  ≤ 𝑛     

where the sum is over all  𝑥 ∈ 𝒮  such  that  𝑀(𝑥) > 𝑁(𝑥).Similarly the binary relation ≺≺∞  is defined: 

(2) 𝑀 ≺≺∞ 𝑁  if and only if  (iv) is omitted from the definition above 

 .          

Taking ≺𝑛  as the transitive closure of ≺≺𝑛  defined in (1) above, ≺𝑛  is defined: 

(3) 𝑀 ≺𝑛 𝑁  if and only if there is a finite  ≺≺𝑛  chain from 𝑀 to 𝑁 i.e., a sequence 𝑀0,…,𝑀𝑘   such that 

𝑀 = 𝑀0, 𝑁 = 𝑀𝑘   and  𝑀𝑖−1 ≺≺𝑛 𝑀𝑖  , 𝑖 = 1,2, … , 𝑘.   
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Also, denoting the transitive closure of ≺≺∞  by ≺∞ , the relation ≺∞  is defined: 

(4) 𝑀 ≺∞ 𝑁  if and only if there is a finite  ≺≺∞  chain from 𝑀 to 𝑁 i.e., a sequence 𝑀0,…,𝑀𝑘   such that 

𝑀 = 𝑀0, 𝑁 = 𝑀𝑘   and  𝑀𝑖−1 ≺≺∞ 𝑀𝑖    , 𝑖 = 1,2, … , 𝑘.      

 An extension of the given partial ordering  of 𝒮 to an ordering of  𝔐(𝒮) is the ordering ≺𝜀  defined: 

(5) 𝑀 ≺𝜀 𝑁  if and only if there existS 𝑥 ∈ 𝒮 such that 𝑁(𝑥) > 0 and for any 𝑦 ∈ 𝒮, if  𝑀(𝑦) > 0 then there is a 
𝑧 ∈ 𝒮 such that 𝑦 ≺ 𝑧 and 𝑁(𝑧) > 0  i.e  𝑀 ≺𝜀 𝑁  

 iff  𝑁 ≠ 𝜙 ∧ ∀𝑦 ∈ 𝑀 → ∃𝑧 ∈ 𝑁 ∧ 𝑦 ≺ 𝑧 .   

If  𝔐 𝒮 , ≺𝜀    ,  𝔐 𝒮 , ≺∞  𝑜𝑟  𝔐 𝒮 , ≺𝑛  is well-founded then (𝒮, ≺)  also is well-founded. 

However, in each case, the converse is also true with the use of the  axiom of choice . The relation ≺0 is always 
well-founded but does not inherit   (see Krom (1985)). 

Proposition  3.5 

The orderings  ≺≺∞ , ≺≺𝒏, ≺∞ ,  ≺𝒏  and   ≺𝜺 are monotonic extensions of the strict  

order   on 𝒮.   

 roof: 

  Let ≺1, ≺2∈ 𝑂 𝒮  such that ≺1⊆≺2. We show that ≺≺1
∞⊆≺≺2

∞ , ≺≺1
𝑛⊆≺≺2

𝑛 , ≺1
∞⊆≺2

∞ , ≺1
𝑛⊆≺2

𝑛  and 
≺1𝜺

⊆≺2𝜺
. 

 Let 𝑀, 𝑁 ∈  𝔐(𝒮) such that 𝑀 ≺≺1
∞ 𝑁. Then by definition, there exists exactly one element 𝑦 ∈ 𝒮 such that 

𝑀(𝑦) < 𝑁(𝑦). For this one  element 𝑦,  𝑀 𝑦 + 1 = 𝑁(𝑦). If 𝑀(𝑥) > 𝑁(𝑥) then 𝑥 ≺1 𝑦 in 𝒮. Thus, If 
𝑀(𝑥) > 𝑁(𝑥) then 𝑥 ≺2 𝑦 in 𝒮 (by hypothesis). Hence, 𝑀 ≺≺2

∞ 𝑁 and the result follows. 
Suppose  𝑀 ≺≺1

𝑛 𝑁. Then by definition, there exists exactly one element 𝑦 ∈ 𝒮 such that 𝑀(𝑦) < 𝑁(𝑦).  For 
this one  element 𝑦,   𝑀 𝑦 + 1 = 𝑁(𝑦). 

 If 𝑀(𝑥) > 𝑁(𝑥) then 𝑥 ≺1 𝑦 in 𝒮, and    𝑀 𝑥 − 𝑁 𝑥  ≤ 𝑛    where the sum is over all  𝑥 ∈ 𝒮  such  that  

𝑀(𝑥) > 𝑁(𝑥). From the hypothesis, If 𝑀(𝑥) > 𝑁(𝑥) then 𝑥 ≺2 𝑦 in 𝒮, and    𝑀 𝑥 − 𝑁 𝑥  ≤ 𝑛    where 

the sum is over all  𝑥 ∈ 𝒮  such  that  𝑀(𝑥) > 𝑁(𝑥). Thus 𝑀 ≺≺2
𝑛 𝑁 and the result follows.  

Let  𝑀 ≺1
∞ 𝑁. Then by definition, there is a finite ≺≺1

∞   chain from 𝑀 to 𝑁   i.e., a sequence 𝑀0,…,𝑀𝑘   such 

that 𝑀 = 𝑀0, 𝑁 = 𝑀𝑘    and  𝑀𝑖−1 ≺≺1
∞ 𝑀𝑖  , 𝑖 = 1,2, … , 𝑘.  From monotonicity of ≺≺∞ , we have 

 𝑀𝑖−1 ≺≺2
∞ 𝑀𝑖 , 𝑖 = 1,2,… , 𝑘. Thus, by definition, there is a finite ≺≺2

∞   chain from 𝑀 to 𝑁  i.e., a sequence 
𝑀0,…,𝑀𝑘   such that 𝑀 = 𝑀0 , 𝑁 = 𝑀𝑘   and  𝑀𝑖−1 ≺≺2

∞ 𝑀𝑖    𝑖 = 1,2, … ,𝑘. Hence 𝑀 ≺2
∞ 𝑁 and the  result 

follows. 

Let 𝑀, 𝑁 ∈  𝔐(𝒮) such that 𝑀 ≺1
𝑛 𝑁. Then by definition, there is a finite  ≺≺1

𝑛  chain from 𝑀 to 𝑁 i.e., a 
sequence 𝑀0,…,𝑀𝑘   such that 𝑀 = 𝑀0, 𝑁 = 𝑀𝑘   and  𝑀𝑖−1 ≺≺1

𝑛 𝑀𝑖     𝑖 = 1,2,… , 𝑘. From the monotonicity of 

≺≺𝑛 , it follows that  𝑀𝑖−1 ≺≺2
𝑛 𝑀𝑖    , 𝑖 = 1,2, … ,𝑘. Thus, there is a finite ≺≺2

𝑛  chain from 𝑀 to 𝑁 i.e., a 
sequence 𝑀0,…,𝑀𝑘   such that 𝑀 = 𝑀0, 𝑁 = 𝑀𝑘   and  𝑀𝑖−1 ≺≺2

𝑛 𝑀𝑖     , 𝑖 = 1,2, … , 𝑘. By definition, 𝑀 ≺2
𝑛 𝑁. 

Hence, the result follows.  
 
Let  𝑀 ≺1𝜺

𝑁. Then by definition, there exists 𝑥 ∈ 𝒮 such that 𝑁(𝑥) > 0 and for any 𝑦 ∈ 𝒮, if  𝑀(𝑦) > 0 then 

there is a 𝑧 ∈ 𝒮 such that 𝑦 ≺1 𝑧 and 𝑁(𝑧) > 0  i.e   𝑀 ≺1𝜺
𝑁  iff  𝑁 ≠ 𝜙 ∧ ∀𝑦 ∈ 𝑀 → ∃𝑧 ∈ 𝑁 ∧ 𝑦 ≺1 𝑧 . 

 From the hypothesis, there exists 𝑥 ∈ 𝒮 such that 𝑁(𝑥) > 0 and for any 𝑦 ∈ 𝒮, if  𝑀(𝑦) > 0 then there is a 
𝑧 ∈ 𝒮 such that 𝑦 ≺2 𝑧 and 𝑁(𝑧) > 0  .  Thus  𝑀 ≺2𝜺

𝑁 and the result follows.  
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3.6  Dershowitz (1987) Ordering 

 Dershowitz (1987)  recursively defined a quasi-ordering ≽≽𝐷𝑒𝑟   on 𝔐(𝒮)  over a quasi-ordered base set 
 𝒮, ≽    as follows: 

Let  𝑋, 𝑌 ∈  𝔐(𝒮). Then,  

𝑋 =  𝑥1 ,𝑥2 , … , 𝑥𝑚  ≽≽𝐷𝑒𝑟   𝑦1 , 𝑦2 , … ,𝑦𝑛  = 𝑌  if and only if   

𝑋 = 𝑌 or if 𝑥𝑖 = 𝑦𝑗  and 𝑋 −  𝑥𝑖 ≽≽𝐷𝑒𝑟  𝑌 −  𝑦𝑗   for some 𝑖 ∈  1, 𝑚  and 𝑗 ∈  1, 𝑛  or 𝑥𝑖 > 𝑦𝑗1
, 𝑦𝑗2

, … , 𝑦𝑗𝑘  and  

𝑋 −  𝑥𝑖 ≽≽𝐷𝑒𝑟  𝑌 −  𝑦𝑗1
, 𝑦𝑗2

, … , 𝑦𝑗𝑘   for 𝑖 ∈  1, 𝑚   

and  𝑗1 < 𝑗2 < ⋯ < 𝑗𝑘 ≤ 𝑛 ( 𝑘 ≥ 1). 

Note that the linearity of   𝒮, ≽  does not necessarily imply the linearity of   𝔐 𝒮 , ≽≽𝐷𝑒𝑟  . For example, the 

msets    2,2,4,4  and  3,3,5,1,2  are not comparable. However a quasi-ordering  on a set 𝒮 is well-founded if 

and only if the induced multiset ordering  ≽≽𝐷𝑒𝑟   on 𝔐(𝒮) is well-founded (see Dershowitz (1987) for details). 

Proposition 3.6 

The ordering ≽≽𝐷𝑒𝑟   on 𝔐(𝒮) is Monotonic. 

Proof: 
 Let  𝒮, ≼1  and  𝒮, ≼2  be two quasi-ordered sets such that ≼1⊂≼2  . We show that ≼≼1𝐷𝑒𝑟

⊆≼≼2𝐷𝑒𝑟
. 

 Let 𝑁 =  𝑥1 , 𝑥2 , … , 𝑥𝑚  , 𝑀 =  𝑦1 , 𝑦2 , … , 𝑦𝑛   and 𝑀 ≼≼1𝐷𝑒𝑟
𝑁. Then, by definition, we have  

𝑀 = 𝑁 or if 𝑥𝑖 = 𝑦𝑗  and 𝑀 −  𝑦𝑗  ≼≼1𝐷𝑒𝑟
𝑁 −  𝑥𝑖   for some 𝑖 ∈  1, 𝑚  and 𝑗 ∈  1, 𝑛  or 𝑦𝑗1

, 𝑦𝑗2
, … , 𝑦𝑗𝑘 ≺1 𝑥𝑖  

and  

 𝑀 −  𝑦𝑗1
, 𝑦𝑗2

, … , 𝑦𝑗𝑘  𝑁 −  𝑥𝑖 ≼≼1𝐷𝑒𝑟
 𝑁 −  𝑥𝑖  for 𝑖 ∈  1, 𝑚   

and  𝑗1 < 𝑗2 < ⋯ < 𝑗𝑘 ≤ 𝑛 ( 𝑘 ≥ 1). 

In particular, 𝑀 = 𝑁 or if 𝑥𝑖 = 𝑦𝑗  and 𝑀 −  𝑦𝑗  ≼≼2𝐷𝑒𝑟
𝑁 −  𝑥𝑖   for some 𝑖 ∈  1, 𝑚  and 𝑗 ∈  1, 𝑛  or 

𝑦𝑗1
, 𝑦𝑗2

, … , 𝑦𝑗𝑘 ≺2 𝑥𝑖  and  𝑀 −  𝑦𝑗1
, 𝑦𝑗2

, … , 𝑦𝑗𝑘
 ≼≼2𝐷𝑒𝑟

𝑁 −  𝑥𝑖   for 𝑖 ∈  1, 𝑚  and  

  𝑗1 < 𝑗2 < ⋯ < 𝑗𝑘 ≤ 𝑛 ( 𝑘 ≥ 1), since by hypothesis ≼1⊂≼2. Thus, 𝑀 ≼≼2𝐷𝑒𝑟
𝑁 and ≼≼1𝐷𝑒𝑟

⊆≼≼2𝐷𝑒𝑟
.  

 
3.7  Martin(1989)  Ordering 

 Martin(1989) defines a  multiset ordering ≻≻𝑀𝑎𝑟    and 𝑓𝐴 on  𝔐(𝒮)   as follows: 

Definition ≻≻𝑴𝒂𝒓   on  𝕸(𝓢) 
  Let  be any strict order defined on 𝒮  and an 𝑛 𝑏𝑦 𝑛  matrix 𝐴 over   indexed by the elements of 𝒮 whose 

𝑖, 𝑗  entry is denoted by 𝑎𝑖𝑗 . 

(1)  𝑀 ≻≻𝑀𝑎𝑟  𝑁 if and only if 𝑓𝑥 𝑀 ≥ 𝑓𝑥 𝑁   ∀𝑥 ∈ 𝒮, where  𝑓𝑥 𝑀 =  𝑀 𝑦 𝑦≽𝑥 . 

Note that the linearity of   𝒮, ≻   does not necessarily imply that of   𝔐 𝒮 , ≻≻𝑀𝑎𝑟  .  

For example,   let 𝒮 =  1,2,3,4,8,12 1 < 2 < 3 < 4 < 8 < 12 . 
Given 𝑀 =  4,3,3,8,12  and 𝑁 =  1,2,2,3,8,8 , we have  
𝑓1 𝑀 = 5, 𝑓1 𝑁 = 6  
𝑓2 𝑀 = 5, 𝑓2 𝑁 = 5  
𝑓3 𝑀 = 5, 𝑓3 𝑁 = 3  
𝑓4 𝑀 = 3, 𝑓4 𝑁 = 2  
𝑓8 𝑀 = 2, 𝑓8 𝑁 = 2  
𝑓12 𝑀 = 1, 𝑓12 𝑁 = 0   

Here, 𝑓3 𝑀 = 5 >  𝑓3 𝑁 = 3  and 𝑓1 𝑁 = 6 > 𝑓1 𝑀 = 5. 
Hence,   4,3,3,8,12  and  1,2,2,3,8,8  are not comparable. 
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Proposition 3.7 

 The ordering ≻≻𝑀𝑎𝑟   on 𝔐(𝒮) is  (i) reflexive and transitive,  
(ii) well-founded and (iii) Monotonic. 

Proof:  

(i) Let  ¬ 𝑀 ≻≻𝑀𝑎𝑟  𝑀 . Then, there exists 𝑥 ∈ 𝒮 such that 

 ¬ 𝑓𝑥 𝑀 ≥ 𝑓𝑥 𝑀  . Thus, 𝑓𝑥 𝑀 < 𝑓𝑥 𝑀 ,  a contradiction.  

 Thus, 𝑀 ≻≻𝑀𝑎𝑟 𝑀 (reflexivity). 

Let  𝑀 ≻≻𝑀𝑎𝑟 𝑁 ≻≻𝑀𝑎𝑟 𝑃. Then by definition, we have 
 𝑓𝑥 𝑀 ≥ 𝑓𝑥 𝑁 ≥ 𝑓𝑥 𝑃   for all 𝑥 ∈ 𝒮. Thus, 𝑓𝑥 𝑀 ≥ 𝑓𝑥 𝑃  for all 𝑥 ∈ 𝒮. 

Hence, 𝑀 ≻≻𝑀𝑎𝑟 𝑃 (transitivity).  

(ii) Let  the poset  𝔐 𝒮 , ≻≻𝑀𝑎𝑟   be  not well-founded.  

 Let 𝑀1 ≻≻𝑀𝑎𝑟 𝑀2 ≻≻𝑀𝑎𝑟 …  be an infinite descending sequence. Then, by definition, 𝑓𝑥 𝑀1 ≥ 𝑓𝑥 𝑀2 ≥ ⋯  
for all 𝑥 ∈ 𝒮  is infinite. In particular, 𝑓𝑥 𝑀1 > 𝑓𝑥 𝑀2 > ⋯  for all 𝑥 ∈ 𝒮. But 𝑓𝑥 𝑀1 > 𝑓𝑥 𝑀2 > ⋯     is an 
infinite descending sequence in .  Since  𝑓𝑥 𝑀𝑖 ∈ ℕ for all ∈ 𝒮 , 𝑖 = 1,2, … ,  a contradiction. Thus, the poset 

 𝔐 𝒮 , ≻≻𝑀𝑎𝑟   must be well-founded.  

(iii) Let  𝒮, ≺1  and  𝒮, ≺2  be such that ≺1⊆≺2.  
We show that ≺≺1𝑀𝑎𝑟

⊆≺≺2𝑀𝑎𝑟
.   

Let 𝑀, 𝑁 ∈  𝔐(𝒮) such that 𝑀 ≺≺1𝑀𝑎𝑟
𝑁. 

By definition, we have 𝑓𝑥 𝑀 ≥ 𝑓𝑥 𝑁   ∀𝑥 ∈ 𝒮, where  𝑓𝑥 𝑀 =  𝑀 𝑦 𝑥≼1𝑦 . 

In particular, we have 𝑓𝑥 𝑀 ≥ 𝑓𝑥 𝑁   ∀𝑥 ∈ 𝒮, where  𝑓𝑥 𝑀 =  𝑀 𝑦 𝑥≼2𝑦   

(by hypothesis). In this case, 𝑀 ≺≺2𝑀𝑎𝑟
𝑁. Thus,  ≺≺1𝑀𝑎𝑟

⊆≺≺2𝑀𝑎𝑟
. 

Definition 𝑓𝐴(≻) on  𝔐 𝒮  

  𝑀𝑓𝐴(≻)𝑁  if and only if   𝐴𝑀 ≻≻𝐻𝑂 [𝐴𝑁] where  𝐴𝑀  denotes the usual matrix product of 𝐴 and 𝑀 (equally 
a multiset) so that  [𝐴𝑀]𝑖 =  𝑎𝑖𝑗𝑀𝑗𝑗 . 

The ordering 𝑓𝐴(≻) is well-founded provided 𝐴 is invertible. The ordering 𝑓𝐴(≻) inherits  if and only if 

𝐴𝑥 ≻≻𝐻𝑂 𝐴𝑦  whenever 𝑥 ≻ 𝑦 where 𝐴𝑥  and 𝐴𝑦  are the columns  indexed by 𝑥 and 𝑦 (elements of 𝒮 ) 

respectively of 𝐴,  an invertible matrix .  𝑓𝐴 is a hereditary maximal extension function whenever   𝐴 is an 
invertible 𝑛 by 𝑛 matrix over  and for       each 𝑖 , 𝑎𝑖1 = 𝑎𝑖2 = ⋯ = 𝑎𝑖 ,𝑖−1 = 𝑎𝑖 ,𝑖+1 = ⋯𝑎𝑖𝑛 < 𝑎𝑖𝑖  

(see Martin (1989) for details). 

3.8  Zantema (1992) Ordering 

Zantema (1992) defines mset ordering ≺≺𝑍𝑎𝑛  on 𝔐 𝒮  as follows: 
 Let   be an order on 𝒮. Then, for   𝑀, 𝑁 ∈ 𝔐(𝒮), 

  𝑀 ≺≺𝑍𝑎𝑛 𝑁 if and only if   𝑀 ≠ 𝑁 ∧  ∀𝑎 ∈ 𝒮: 𝑁 𝑎 ≥ 𝑀 𝑎 ∨  ∃𝑎′ ∈ 𝒮: 𝑎 ≺ 𝑎′ ∧ 𝑁 𝑎′ > 𝑀 𝑎′   . 

Note that  𝔐 𝒮 ,≺≺𝑍𝑎𝑛   is total if and only if   𝒮, ≺  is total,  𝔐 𝒮 , ≺≺𝑍𝑎𝑛    is well-founded if and only if  
 𝒮, ≺  is well-founded and if  𝒮, ≺  corresponds to the ordinal 𝛼, then   𝔐 𝒮 , ≺≺𝑍𝑎𝑛   corresponds to the 
ordinal 𝜔𝛼 (see Zantema (1992) for details). 

Proposition 3.8 
  𝔐 𝒮 , ≺≺𝑍𝑎𝑛    is irreflexive and monotonic.   

Proof:  
  ≺≺𝑍𝑎𝑛  is irreflexive, since by definition, 𝑀 ≺≺𝑍𝑎𝑛 𝑀  implies 𝑀 ≠ 𝑀,  
a contradiction. Also, ≺≺𝑍𝑎𝑛  is monotonic since for  𝒮, ≺1  and  𝒮, ≺2   such that ≺1⊆≺2, we have 
𝑀 ≺≺1𝑍𝑎𝑛

𝑁 if and only if   

 𝑀 ≠ 𝑁 ∧  ∀𝑎 ∈ 𝒮:𝑁 𝑎 ≥ 𝑀 𝑎 ∨  ∃𝑎′ ∈ 𝒮: 𝑎 ≺1 𝑎′ ∧ 𝑁 𝑎′ > 𝑀 𝑎′   . 

In particular, 𝑀 ≺≺1𝑍𝑎𝑛
𝑁 if and only if    
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 𝑀 ≠ 𝑁 ∧  ∀𝑎 ∈ 𝒮:𝑁 𝑎 ≥ 𝑀 𝑎 ∨  ∃𝑎′ ∈ 𝒮: 𝑎 ≺2 𝑎′ ∧ 𝑁 𝑎′ > 𝑀 𝑎′   . 

 Thus,  𝑀 ≺≺2𝑍𝑎𝑛
𝑁.  In this case, we have  ≺≺1𝑍𝑎𝑛

⊆≺≺2𝑍𝑎𝑛
.  

3.9  Baader and Nipkow(1998) Ordering 

Baader and Nipkow(1998)  define mset ordering  ≺≺𝐵𝑁   on 𝔐(𝒮) as follows: 
Let (𝒮, ≺) be a strict  ordered set. Then, for any 𝑀, 𝑁 ∈ 𝔐(𝒮),  
 𝑀 ≺≺𝐵𝑁 𝑁 if and only if  𝑁 − 𝑀 ≠ ∅ and ∀𝑥 ∈ 𝑀 − 𝑁, ∃𝑦 ∈ 𝑁 − 𝑀 such that 𝑥 ≺ 𝑦.  

Proposition 3.9 
  The poset   𝔐(𝒮) ≺≺𝐵𝑁  is (i) irreflexive and monotonic, 
(ii)   𝔐(𝒮) ≺≺𝐵𝑁  is total if and only if (𝒮, ≺) is total. 

Proof:  
(i). Let 𝑀 ∈ 𝔐 𝒮  such that 𝑀 ≺≺𝐵𝑁 𝑀.  
By definition, 𝑀 − 𝑀 ≠ ∅ (a contradiction). 
Thus, ≺≺𝐵𝑁  is irreflexive. 
Let (𝒮, ≺1) and (𝒮, ≺2) be such that ≺1⊆≺2.We show that ≺≺1𝐵𝑁

⊆≺≺2𝐵𝑁
. 

 Let 𝑀, 𝑁 ∈ 𝔐 𝒮  be such that 𝑀 ≺≺1𝐵𝑁
𝑁. 

We have 𝑁 − 𝑀 ≠ ∅ and ∀𝑥 ∈ 𝑀 − 𝑁, ∃𝑦 ∈ 𝑁 − 𝑀 such that 𝑥 ≺1 𝑦. 
In particular, 𝑁 − 𝑀 ≠ ∅ and ∀𝑥 ∈ 𝑀 − 𝑁, ∃𝑦 ∈ 𝑁 − 𝑀 such that 𝑥 ≺2 𝑦. 
Thus, 𝑀 ≺≺2𝐵𝑁

𝑁 and ≺≺1𝐵𝑁
⊆≺≺2𝐵𝑁

.  

(ii)  Let   𝔐 𝒮 , ≺≺𝐵𝑁  be total. Then we show that (𝒮, ≺) is total. 
Let 𝑥, 𝑦 ∈ 𝒮 such that 𝑥 ≠ 𝑦. Then  𝑥 ≠  𝑦 . Thus either  𝑥 ≺≺𝐵𝑁  𝑦  or  𝑦 ≺≺𝐵𝑁  𝑥 .  Let   𝑦 −  𝑥 ≠ ∅. 
Then  ∀𝑧 ∈  𝑥 −  𝑦 =  𝑥 , there exists  𝑤 ∈  𝑦 −  𝑥 =  𝑦  such that 𝑧 ≺ 𝑤. That is,  𝑥 ≺ 𝑦.  
 Let   𝑥 −  𝑦 ≠ ∅. Then  ∀𝑝 ∈  𝑦 −  𝑥 =  𝑦 , there exists 𝑞 ∈  𝑥 −  𝑦 =  𝑥  such that 𝑝 ≺ 𝑞; that is,  
 𝑦 ≺ 𝑥.Thus, for all 𝑥, 𝑦 ∈ 𝒮 with  𝑥 ≠ 𝑦, we have either 𝑥 ≺ 𝑦 or 𝑦 ≺ 𝑥. Hence (𝒮, ≺) is total. 

Conversely, let (𝒮, ≺) be total and 𝑀, 𝑁 ∈ 𝔐(𝒮) such that 𝑀 ≠ 𝑁. Then we show either 𝑀 ≺≺𝐵𝑁 𝑁 or 
𝑁 ≺≺𝐵𝑁 𝑀.  Now, 𝑀 ≠ 𝑁 implies 𝑀 𝑥 ≠ 𝑁 𝑥  for some 𝑥 ∈ 𝒮. In this case, either 𝑀 𝑥 < 𝑁 𝑥  or 
𝑁 𝑥 < 𝑀 𝑥 .  That is, either 𝑁 − 𝑀 ≠ ∅ or 𝑀 − 𝑁 ≠ ∅.  
Let 𝑦 ∈ 𝑀 − 𝑁 and 𝑧 ∈ 𝑁 − 𝑀  such that 𝑦 ≠ 𝑧.  
Since (𝒮, ≺) is total,  either 𝑦 ≻ 𝑧 or 𝑦 ≺ 𝑧. 
Now, for 𝑦 ≻ 𝑧, we have 𝑁 ≺≺𝐵𝑁 𝑀 and  for 𝑦 ≺ 𝑧, we have 𝑀 ≺≺𝐵𝑁 𝑁. 
Thus, for any 𝑀, 𝑁 ∈ 𝔐(𝒮) such that 𝑀 ≠ 𝑁, we have either 
 𝑀 ≺≺𝐵𝑁 𝑁 or 𝑁 ≺≺𝐵𝑁 𝑀 and   𝔐 𝒮 , ≺≺𝐵𝑁  is total. 

The poset   𝔐(𝒮) ≺≺𝐵𝑁  is well-founded if and only if (𝒮, ≺) is well-founded 
 (see Ruiz-Reina et al. (2000 ) for details). 

3.10  Wehrman (2006) Ordering 

Wehrman (2006) defines mset ordering  ≼≼𝑊𝑒   on 𝔐 𝒮  as follows: 

Let (𝒮, ≼) be a reflexive transitive ordering. Then, for 𝑀, 𝑁 ∈ 𝔐 𝒮 , 𝑀 ≼≼𝑊𝑒 𝑁 if and only if 
 𝑀 =  𝑁 − 𝑋 + 𝑌 for some 𝑋,𝑌 ∈ 𝔐 𝒮  with ∅ ≠ 𝑋 ⊆ 𝑁 and for all 𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋 with 𝑦 ≼ 𝑥, 
and  𝑥 ≼ 𝑦 for   0,1, … ,  𝑋  of the elements 𝑦 ∈ 𝑌. 

Note that  𝔐 𝒮 ,≼≼𝑊𝑒    is  reflexive and transitive and well-founded if and only if (𝒮, ≼)  is well-founded.  
In particular,  𝔐 ℕ , ≤≤𝑊𝑒     over (ℕ, ≤) is well-founded (see Wehrman (2006) for details).  
However,  𝔐 𝒮 , ≼≼𝑊𝑒    is not necessarily total whenever (𝒮, ≼)  is total.  For example, 

¬  3,3,4,0 ≥≥𝑊𝑒  4,3,2,1,1   and ¬  4,3,2,1,1 ≥≥𝑊𝑒  3,3,4,0  .   

In the first case, for 𝑋 =  3,0  and 𝑌 =  2,1,1 ,   2,1,1 < 3 but 3 ≰ 2,1,1. In the second case, for  
  𝑋 =  2,1,1   and 𝑌 =  3,0   there exists no 𝑥 ∈ 𝑋 for which 𝑥 ≥ 3. 

Proposition 3.10  
The ordering  ≼≼𝑊𝑒  on 𝔐 𝒮  is monotonic. 
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Proof:  
Let  (𝒮, ≼1)and (𝒮, ≼2) be such that ≼1⊆≼2.  
We have for any 𝑀, 𝑁 ∈ 𝔐 𝒮 ,  𝑀 ≼≼1𝑊𝑒

𝑁 if and only if  𝑀 =  𝑁 − 𝑋 + 𝑌 for some 𝑋, 𝑌 ∈ 𝔐 𝒮  with 

∅ ≠ 𝑋 ⊆ 𝑁 and for all 𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋 with 𝑦 ≼1 𝑥, and  𝑥 ≼1 𝑦 for atmost  𝑋  of the elements 𝑦 ∈ 𝑌. 
 In particular, 𝑀 ≪𝑊𝑒 𝑁 if and only if  𝑀 =  𝑁 − 𝑋 + 𝑌 for some 𝑋, 𝑌 ∈ 𝔐 𝒮  with ∅ ≠ 𝑋 ⊆ 𝑁 and for all 
𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋 with 𝑦 ≼2 𝑥, and  𝑥 ≼2 𝑦 for atmost  𝑋  of the elements 𝑦 ∈ 𝑌 (by hypothesis). Thus, 
𝑀 ≼≼2𝑊𝑒

𝑁.  Hence,  ≼≼1𝑊𝑒
⊆≼≼2𝑊𝑒

. 

 

4 COMPARATIVE ANALYSIS OF ORDERINGS ON 𝕸 𝓢  WHEN 𝓢 IS PARTIALLY 

 ORDERED 

≻≻𝑫𝑴 ⊇≻≻1   (see Dershowitz and  Manna(1979)).                                                 (i) 
≺≺𝐷𝑀= ≺≺∗  (see Dershowitz and  Manna(1979))                                                (ii) 
≺≺𝐷𝑀=≺≺𝐻𝑂                                                                                                                (iii) 

≺≺ℜ #⊆ ≺≺𝒮                                                                                                                  (iv) 

≺≺𝐷𝑀⊆≺≺ℜ                                                                                                                  (v) 

  ≺≺𝐷𝑀⊆≺≺𝒮                                                                                                                  (vi) 

   ≺≺∗=≺≺𝐷𝑀                                                                                                                 (vii) 

(see Jouannaud and Lescanne (1982) for details). 

Proposition 4.1 
 Let   𝒮, <  be a totally ordered set, then  𝔐 𝒮 , ≪ℜ  and  𝔐 𝒮 , ≪𝒮   are totally ordered. 
 
Proof: 
Let  𝒮, ≺  be partially ordered. Then by (v) and (vi), we have ≺≺𝐷𝑀⊆≺≺ℜ and ≺≺𝐷𝑀⊆≺≺𝒮  . Consequently 
given a totally ordered set  𝒮, < , we have  ≪𝐷𝑀⊆≪ℜ and ≪𝐷𝑀⊆≪𝒮 . But  𝔐 𝒮 ,≪𝐷𝑀   is total given a totally 
ordered set  𝒮, < . Hence,  𝔐 𝒮 , ≪ℜ  and  𝔐 𝒮 , ≪𝒮  must be totally ordered. 

 
Proposition 4.2 
The following hold: 
 (i) ≺≺𝒏⊂≺≺∞⊂≺≺𝑯𝑶 (ii)  ≺𝜺 ⊂≺𝑯𝑶 and  (iii) ≺𝒏⊂ ≺∞  

Proof:  
 Following  the definition of ≺≺𝒏, ≺≺∞ , ≺𝜀   and  ≺≺𝑯𝑶 it is easy to see that (i) and (ii) hold. 

For (iii), Let  𝑀, 𝑁 ∈  𝔐 𝒮  such that 𝑀 ≺𝑛 𝑁. 

By definition, there is a finite  ≺≺𝑛  chain from 𝑀 to 𝑁 i.e., a sequence 𝑀0,…,𝑀𝑚  such that 𝑀 = 𝑀0, 𝑁 = 𝑀𝑚   

and  𝑀𝑖−1 ≺≺𝑛 𝑀𝑖     , 𝑖 = 1,2, … , 𝑚.   

It follows that   𝑀𝑖−1 ≺≺∞ 𝑀𝑖     , 𝑖 = 1,2, … , 𝑚. Thus, there is a finite  ≺≺∞  chain from 𝑀 to 𝑁 i.e., a sequence 
𝑀0,…,𝑀𝑚   such that 𝑀 = 𝑀0, 𝑁 = 𝑀𝑚   and  𝑀𝑖−1 ≺≺∞ 𝑀𝑖    , 𝑖 = 1,2, … , 𝑚. Therefore, by definition, 𝑀 ≺∞ 𝑁 

and  ≺𝒏⊂ ≺∞  we have, 𝑀 ≽≽𝐷𝑒𝑟 𝑁 → 𝑀 ≻≻𝐷𝑀 𝑁  for any 𝑀, 𝑁 ∈ 𝔐 𝒮  such that 𝑀 ≠ 𝑁                      (viii) 
(see Dershowitz (1987) for details).    

However, in general,  
≺≺𝐷𝑀⊈≼≼𝐷𝑒𝑟 ;  since  3,4,2,1,1 ≺≺𝐷𝑀  3,3,4,0  but  
 3,4,2,1,1 #≼≼𝐷𝑒𝑟

 3,3,4,0  . 

 

We have  𝑓𝐴 > = ≻≻𝐻𝑂   whenever 𝐴 = 𝐼𝑛  where 𝐼𝑛  is an  identity matrix of order 𝑛.         (ix) 

However, in general, 𝑓𝐴 ≻ ≠ ≻≻𝐻𝑂 ,  for example  𝑦, 𝑦 𝑓𝐴 ≻ [𝑥]   
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where 𝐴 =  
1 1
1 0

  and 𝒮 =  𝑥, 𝑦  such that 𝑥 ≻ 𝑦;  but  𝑦, 𝑦 ≻≻𝐻𝑂 [𝑥]  is not true. 

We have, ≺≺𝑍𝑎𝑛 =≺≺𝐷𝑀   (see Zantema (1992))                                                              (x) 
We have,  ≺≺𝐵𝑁=≺≺𝐷𝑀  (see Kusakari (2000) and Ruiz-Reina et al. (2000 ))            (xi) 
 
Proposition 4.3   
 ≺≺𝐻𝑂⊆≺≺𝑍𝑎𝑛 .  
Proof:  
For  𝑀, 𝑁 ∈  𝔐(𝒮), we have  𝑀 ≺≺𝐻𝑂 𝑁 if and only if  𝑀 ≠ 𝑁 and 
 [𝑀 𝑦 > 𝑁 𝑦 →  ∃𝑥 ∈  𝒮 𝑦 ≺ 𝑥  and 𝑀(𝑥) < 𝑁(𝑥)]. 

Now, let 𝑧 ∈ 𝒮 such that 𝑥 ≺ 𝑧  ∀𝑥 ∈ 𝒮. We show that 𝑀 𝑧 < 𝑁 𝑧 . 

Let  𝑀 𝑧 > 𝑁 𝑧 .  Then, by definition, there must exist an element 𝑝 ∈ 𝒮, 𝑧 ≺ 𝑝 such that 𝑀 𝑝 < 𝑁 𝑝  (a 
contradiction, since ∀𝑥 ∈ 𝒮, 𝑥 ≺ 𝑧  ). Hence,  𝑀 𝑧 < 𝑁 𝑧 .  In particular, 
 𝑀 ≺≺𝐻𝑂 𝑁 if and only if  𝑀 ≠ 𝑁 and [𝑀 𝑦 > 𝑁 𝑦 →  ∃𝑥 ∈  𝒮 𝑦 ≺ 𝑥  and 
 𝑀(𝑥) < 𝑁(𝑥) and 𝑀 𝑧 < 𝑁 𝑧  if 𝑥 ≺ 𝑧 ∀𝑥 ∈ 𝒮] 
Thus, 𝑀 ≺≺𝑍𝑎𝑛 𝑁. In this case, we have ≺≺𝐻𝑂⊆≺≺𝑍𝑎𝑛 . 
 
Corollary 4.4  
 ≺≺𝐻𝑂=≺≺𝑍𝑎𝑛  
Proof: 
We have, from (iii) and (x),  ≺≺𝑍𝑎𝑛 =≺≺𝐷𝑀=≺≺𝐻𝑂                                                        
Thus,  ≺≺𝐻𝑂=≺≺𝑍𝑎𝑛 . 

Proposition 4.5   
For all 𝑀, 𝑁 ∈  𝔐(𝒮)  
 𝑀 ≠ 𝑁 ∧ 𝑀 ≺≺𝑀𝑎𝑟 𝑁 → 𝑀 ≺≺𝐻𝑂 𝑁. 

Proof: 
 Let 𝑀, 𝑁 ∈  𝔐(𝒮) such that  𝑀 ≠ 𝑁 and  𝑀 ≺≺𝑀𝑎𝑟 𝑁. 
We show that 𝑀 ≺≺𝐻𝑂 𝑁. 
By definition, 𝑀 ≺≺𝑀𝑎𝑟 𝑁 if and only if 𝑓𝑥 𝑀 ≤ 𝑓𝑥 𝑁  for all 𝑥 ∈ 𝒮  
where 𝑓𝑥 𝑀 =  𝑀 𝑦 𝑦≽𝑥  and  𝑓𝑥 𝑁 =  𝑁 𝑦 𝑦≽𝑥 . 

Let  𝑀 𝑧 > 𝑁 𝑧 .    
By definition, 𝑓𝑧 𝑀 ≤ 𝑓𝑧 𝑀 ;  i.e,   𝑀 𝑦 ≤𝑦≽𝑧  𝑁 𝑦 𝑦≽𝑧 . 

Thus, there exists 𝑝 ∈ 𝒮 such that 𝑝 ≻ 𝑧  and 𝑀 𝑝 < 𝑁 𝑝 . 
Otherwise, 𝑀 𝑝 ≥ 𝑁 𝑝  for all 𝑝 ≽ 𝑧 and  𝑀 𝑝 ≥𝑝≽𝑧  𝑁 𝑝 𝑝≽𝑧  (a contradiction). Thus, if 𝑀 𝑧 > 𝑁 𝑧 , 

we have 𝑝 ∈ 𝒮 such that 𝑀 𝑝 < 𝑁 𝑝 . Hence, 𝑀 ≺≺𝐻𝑂 𝑁.  
Note that  ≼≼𝑊𝑒  allows for weaker relation between objects of 𝑋  and 𝑌, but ≺≺𝐷𝑀   needs to be  strict. In 
particular, relaxing the weaker relation between elements of 𝑋  and 𝑌, we have 
 ≺≺𝑊𝑒=≺≺𝐷𝑀                                                                                                                (xii) 
(see Wehrman (2006) for details).  
However, in general,  ≺≺𝐷𝑀⊂≼≼𝑊𝑒  holds.                                                                (xiii)      
    
In view of the aforesaid comprehensive study of mset orderings on  𝔐(𝒮) induced by a partial order on 𝒮, and 
the results obtained in  (i)-(xiii) and 4.2-4.4, a summary of the results pertaining to comparison of mset orders 
is  as follows: 
 

(i) ≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛                           
(ii) ≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛 ⊆≺≺𝒮   
(iii)  ≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛 ⊆≺≺ℛ    
(iv)  ≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛 ⊂≺≺𝑊𝑒   

(v) ≺≺⊆≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛
1   

(vi)  ≺≺𝒏⊂≺≺∞⊂≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛  
(vii) ≺𝜺 ⊆≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛  
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(viii) 𝑓𝐴 ≺ =≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛   whenever 𝐴 = 𝐼𝑛  where        𝐼𝑛  is  an  identity 
matrix of order 𝑛 
However, relaxing the weaker relations on 𝒮 and  𝔐(𝒮) , we have 
(ix) ≺≺𝑀𝑎𝑟 ⊂≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛    
(x) ≺≺𝐷𝑒𝑟⊂≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛  and  
(xi) ≺≺𝑊𝑒=≺≺𝐵𝑁=≺≺𝐷𝑀= ≺≺∗ =≺≺∗=≺≺𝐻𝑂=≺≺𝑍𝑎𝑛   
 

5 IMPLEMENTATION AND EFFICIENCY 
With the proposed efficient implementation of the ordering ≺≺𝐷𝑀  in Jouannaud and Lescanne (1982), we 
propose the same efficient implementation for the equivalent orderings 𝑓𝐴 ≺ ,  ≺≺𝐵𝑁 ,  ≺≺𝐷𝑀 , ≺≺∗ ,  ≺≺∗,
≺≺𝐻𝑂 , ≺≺𝑍𝑎𝑛   whenever 𝐴 = 𝐼𝑛  where   𝐼𝑛  is  an  identity matrix of order 𝑛 
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