Comparision between various entering vector criteria with quick simplex algorithm for optimal solution to the linear programming problem.

Mrs. N. V. Vaidya¹ and Dr.Mrs. N.N .kasturiwale²

 ¹Assistant Professor, Dr. Babasaheb Ambedkar College of Engg and Research, Wanadongari, Nagpur(MS),441110,INDIA.
 ²Associate Professor, Department of Statistics, Institute of Science, Nagpur(MS), 440 001, INDIA.

ABSTRACT: In this paper, a new approach is suggested while solving linear programming problems using simplex method. The method sometimes involves less iteration than in the simplex method or at the most an equal number because the method attempts to replace more than one basic variable simultaneously. In this paper we compared quick simplex method with other methods of introducing vectors with various criteria to reach the optimum solution.

KEY WORDS AND PHRASES: basic feasible solution, optimum solution, simplex method, key determinant.

I. INTRODUCTION

The linear programming has its own importance in obtaining the solution of a problem where two or more activities complete for limited resources.

Mathematically we have to maximize the objective function cx

subject to Ax = b, $x \ge 0$ where

 $x = n \times 1$ column vector

 $A = m \times n$ coefficient matrix

 $b = m \times 1$ column vector

 $C = 1 \times n$ row vector

and the columns of A are denoted by P_1, \dots, P_n .

There are two methods to obtain the solution of the above problem. These methods can be classified as :

 (\mathbf{i}) the graphical method

(ii) simplex method.

The simplex method is the most general and powerful. We now give a brief account of the simplex method as below:

Consider a non-degenerate basic feasible solution

 $x_0 = (x_{10}, x_{20}, \dots, x_{m0}, 0 \dots 0)$

The corresponding value of the objective function is

 $x_{10}c_1 + x_{20}c_2 + \dots + x_{m_0}c_m = z_0$ (say)

It follows from the study of linear programming that for any fixed j, a set of feasible solutions can be constructed such that $z < z_0$ for any member of the set where net evaluation $z_j - c_j > 0$. The condition imposed on θ is

$$\theta = \min_{i} \frac{x_{i0}}{x_{ij}} > 0, \ x_{ij} > 0 \text{ for fixed } j.$$

II. SIMPLEX ALGORITHM

Step 1: Check whether the objective functions of the given LPP is maximized or minimized .If it is minimized, then we convert it into a problem of maximizing by using the result, Minimum z = -Maximum(-z)

Step 2: Check Whether all b_i (i=1,2....,m) are non-negative. If any one b_i is negative, then multiply the corresponding inequalities of the constraints by (-1), so as to get all b_i (i=1,2,....m) non-negative.

Step 3: Convert all the inequalities of the constraints into equations by introducing slack/surplus variables in the constraints. Put the costs of these variables equal to zero.

Step 4: Obtain an initial basic feasible solution to the problem in the form $X_B = B^{-1}b$ and put it in the first column of the simplex table.

Step 5: Compute the net evaluations Z_j - C_j , (j=1,2,...,n) by using the relation

$$Z_j - C_j = C_B Y_j - C_j$$

Examine the sign of $Z_i - C_i$

1. If all $(Z_j - C_j) \ge 0$ then the initial basic feasible solution X_B is an optimum basic feasible solution.

2 If at least one $(Z_j-C_j) < 0$, proceed on to the next step.

Step 6: If there are more one negative Z_j - C_j , then choose the most negative of them. Let it be Z_r - C_r for some j = r

1. If all $y_{ir} \leq 0$ ($i = 1, 2, \dots, m$) then there is an unbounded solution to the given problem

2. If atleast one $y_{ir} > 0$ (i= 1,2,...m) then the corresponding vector y_r enters the basis y_B .

Step 7: Compute the ratios $(\frac{x_{Bi}}{y_{ir}}, y_{ir} > 0, i=1,2,...,m)$ and choose the minimum of them.Let the minimum of the ratios $\frac{x_{Bk}}{y_{kr}}$. Then the vector y_k will leave the basis. The common element y_{kr} which is in the kth row and ith column is known as the leading element (or pivotal element) of the table.

Step 8: Convert the leading element to unity by dividing its row by the leading element itself and all other elements in its columns to zeros by making use of the relations.

$$\bar{y}_{ij} = y_{ij} - \frac{y_{kj}}{y_{kr}} y_{ir} , i = 1, 2 \dots (m+1), i \neq k$$
$$\bar{y}_{kj} = \frac{y_{kj}}{y_{kr}} , \qquad j = 1, 2 \dots n$$

Step 9: Go to step 5 and repeat the computational procedure until either an optimum solution is obtained or there is an indication of an unbounded solution.

III. CRITERIA :I

Dantzig's [1] suggestion is to choose that entering vector corresponding to which $z_i - c_i$ is most negative.

Khobragade's [4] suggestion is to choose that entering vector corresponding to which $\frac{(z_j - c_j)\theta_j}{c_j}$ is most

negative. It is shown that if we choose the vector y_j such that $\frac{(z_j - c_j)\theta_j}{c_j \sum y_{ij}}$, $(c_j > 0, y_{ij} \ge 0)$ is most

negative, then the iterations required are fewer in some problems. This has been illustrated by giving the solution of a problem. We also show that either the iterations required are the same or less but iterations required are never more than those of the simplex method.

We shall illustrate the problem where the iterations are less (our method) than the simplex method.

IV. CRITERIA:II

Dantzig's [1] suggestion is to choose that entering vector corresponding to which $z_j - c_j$ is most negative.

Khobragade's [4] suggestion is to choose that entering vector corresponding to which $\frac{(z_j - c_j)}{c_j}$ is most

negative. It is shown that if we choose the vector y_j such that $\frac{(z_j - c_j)}{c_j \sum y_{ij}}$, $(c_j > 0, y_{ij} \ge 0)$ is most

negative, then the iterations required are fewer in some problems. This has been illustrated by giving the solution of a problem. We also show that either the iterations required are the same or less but iterations required are never more than those of the simplex method.

We shall illustrate the problem where the iterations are less (our method) than the simplex method.

V. QUICK SIMPLEX METHOD

1.Replacement of n variables simultaneously and obtaining simplex table after such replacement.

2. Simultaneous replacement of n variables is possible only when **pivotal** elements in the entering vectors are in different rows.

3. We Define key determinant R, which is of order n.

4.R is the determinant of submatrix of matrix A.

5. This submatrix is obtained by using rows and columns containing pivotal elements.

P ₁	<i>P</i> ₂	P ₃	<i>P</i> ₄	<i>P</i> ₅	<i>P</i> ₆	P ₇	<i>P</i> ₈
Pivot a ₁	b ₁	<i>c</i> ₁	<i>d</i> ₁	1	0	0	0
a ₂	Pivotb ₂	<i>c</i> ₂	<i>d</i> ₂	0	1	0	0
<i>a</i> ₃	b ₃	Pivot c ₃	<i>d</i> ₃	0	0	1	0
<i>a</i> ₄	b 4	<i>C</i> ₄	<i>d</i> ₄	0	0	0	1

Here a_1, b_2 and c_3 are the pivotal elements when P_1, P_2, P_3 are the entering vectors in initial simplex table ,then R=

Pivot a_1	b ₁	<i>c</i> ₁
<i>a</i> ₂	Pivotb ₂	<i>c</i> ₂
<i>a</i> ₃	b ₃	Pivot c ₃

Is of order 3 as 3 variables are entered simultaneously.

6. We are giving formula to obtain simplex table after replacement of such n variables.

7. We shall call elements in the new simplex table as * elements.

8. Star elements are obtained by ratio of two determinants.

9. Denominator is nothing but the determinant R.

10. In the rows containing a pivotal element numerator is of order n.

11.Numerators are obtained as follows:

Here column of pivotal element is replaced by the column for which * elements are to be obtained.

Numerator of star elements in the rows in which no pivotal element is there is a determinant of order (n+1)

12. It is obtained by adding the corresponding column in the current simplex table and the row of the element to R.

13. In previous case, simplex table after replacing P_5 , P_6 , P_7 by P_1 , P_2 , P_3 will be as follows.

P_1	P_2	P_3	P4	P_5	P_6	P_7	P_8
1	0	0	$d_1^{***} = \begin{vmatrix} b_1 & c_1 & d_1 \\ b_2 & c_2 & d_2 \\ b_3 & c_3 & d_3 \end{vmatrix} / \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$				0

0	1	0	$d^{***} = \frac{\begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}}{\begin{vmatrix} a_1 & a_2 & c_2 \\ a_3 & a_3 & c_3 \end{vmatrix}}$	0
			$\begin{vmatrix} a_2 & d_2 & c_2 \end{vmatrix}$	
			$d_2^{***} = \frac{ a_3 \ d_3 \ c_3 }{ a_3 \ b_3 \ c_4 }$	
			$d_2^{***} = \frac{\begin{vmatrix} a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 & c_1 \end{vmatrix}}$	
			$a_2^{-1} = \frac{a_1 \ b_1 \ c_1}{a_2 \ b_2 \ c_2}$	
			$\begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix}$	
0	0	1	$ a_1 b_1 d_1 $	0
			$\begin{vmatrix} a_2 & b_2 & d_2 \end{vmatrix}$	
			a_2 b_2 d_2	
			$a_3 = -\frac{1}{ a_1 \ b_1 \ c_1 }$	
			$a_2 b_2 c_2$	
			$\begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix}$	
0	0	0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
			a_2 b_2 c_2 d_2	
			a_3 b_3 c_3 d_3	
			$a_{4} = a_{4} a_{4} a_{4} a_{4} a_{4}$	
			$a_4 = \frac{ a_1 \ b_1 \ c_1 }{ a_1 \ b_1 \ c_1 }$	
			$a_4 = \frac{a_1 \ b_1 \ c_1}{a_2 \ b_2 \ c_2}$	
			$\begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix}$	

14. One must evaluate X_B Column first and nth iteration table should be evaluated only, when all the entries in X_B column comes to be non negative because it may indicate whether n variables can be entered. If any entry is negative then try by entering (n-1) variables instead of n variables.

VI .QUICK SIMPLEX METHOD FORMULAE FOR ENTERING *TWO* VARIABLES SIMULTANEOUSLY

Step1.Use new criteria for entering vector as above.

Step2. Simultaneous exchange of two variables instead of exchanging one basic variable at a time (as done in classical simplex method)

Step3. Both the Pivotal element should not be in same row.Otherwise we can not use our method.

Step 4. Development of the formula to go to third simplex table from first simplex table.

Consider Initial simplex table as following:

Step 1: Initial simplex table

<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₃
Pivot a_1	b_1	<i>c</i> ₁
<i>a</i> ₂	Pivotb ₂	<i>c</i> ₂
<i>a</i> ₃	b_3	<i>c</i> ₃

Here P_1 and P_2 are entering vectors.

Step 2: Second Simplex table

<i>P</i> ₁	<i>P</i> ₂	P ₃
1	$b_1^* = \frac{b_1}{a_1}$	$c_1^* = \frac{c_1}{a_1}$
0	$b_2^* = b_2 - \frac{a_2 b_1}{a_1}$	$c_2^* = c_2 - \frac{a_2 c_1}{a_1}$
0	$b_3^* = b_3 - \frac{a_3 b_1}{a_1}$	$c_3^* = c_3 - \frac{a_3 c_1}{a_1}$

Step 3: Third Simplex table

<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₃
1	0	$c_1^{**}=c_1^*-rac{b_1^*c_2^*}{b_2^*}$
0	1	$c_2^{**} = \frac{c_2^*}{b_2^*}$
0	0	$c_3^{**}=c_3^*-rac{b_3^*c_2^*}{b_2^*}$

Here we can find c_1^{**} , c_2^{**} and c_3^{**} using following formula.

$$c_{1}^{**} = \frac{(-1)^{1} \begin{vmatrix} b_{1} & c_{1} \\ b_{2} & c_{2} \end{vmatrix}}{R} \qquad \qquad c_{2}^{**} = \frac{(-1)^{2} \begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{R} \qquad \qquad c_{3}^{**} = \frac{\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix}}{R}$$

$c_{4}^{**} = \frac{\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{4} & b_{4} & c_{4} \end{vmatrix}}{R}$	$R = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$
--	--

VII. STATEMENT OF THE PROBLEM-I

Solve the following LPP
Maximize
$$z = \frac{3}{4}x_1 - 150x_2 + \frac{1}{50}x_3 - 6x_4 + x_5 + x_6 + x_7$$

Subject to the constraints :
 $\frac{1}{2}x_1 - 90x_2 - \frac{1}{50}x_3 + 3x_4 \le 0$
 $x_3 + x_6 \le 1$
 $\frac{1}{4}x_1 - 60x_2 - \frac{1}{25}x_3 + 9x_4 \le 0$
 $x_1, \dots, x_7 \ge 0$

VIII. SOLUTION OF THE PROBLEM

Maximize $z = \frac{3}{4}x_1 - 150x_2 + \frac{1}{50}x_3 - 6x_4$ Subject to the constraints :

$$\frac{1}{2}x_1 - 90x_2 - \frac{1}{50}x_3 + 3x_4 + x_5 = 0$$
$$x_3 + x_6 = 1$$
$$\frac{1}{4}x_1 - 60x_2 - \frac{1}{25}x_3 + 9x_4 + x_7 = 0$$
$$x_1, \dots, x_7 \ge 0$$

(where $x_5, x_6, x_7 \rightarrow \text{slack variables}$)

We now employ the conventional simplex method where we choose the entering vector for which $z_j - c_j$ is most negative.

Step (1) :	(Initial table)	
-------------------	-----------------	--

		3/4	-150	1/50	-6	0	0	0		Ratio
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇	X _B	
0	<i>x</i> ₅	1/4	-60	-1/25	9	1	0	0	0	0
0	<i>x</i> ₆	1/2	-90	-1/50	3	0	1	0	0	0
0	<i>x</i> ₇	0	0	1	0	0	0	1	1	Not defined
	$z_j - c_j$	-3/4	150	-1/50	6	0	0	0		
		↑				\downarrow				

Step (2) : Introduce P_1 and drop P_5

		3/4	-150	1/50	-6	0	0	0		Ratio
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇	x _B	
3/4	<i>x</i> ₁	1	-240	-4/25	36	4	0	0	0	-ve
0	<i>x</i> ₆	0	30	3/50	-15	-2	1	0	0	0
0	<i>x</i> ₇	0	0	1	0	0	0	1	1	Not defined
	$z_j - c_j$	0	-30	-7/50	33	3	0	0		
			\uparrow				\downarrow			

Step (3) : Introduce P_2 and drop P_6

						0	0	0		Ratio
		3/4	-150	1/50	-6					
C_{B}	$X_{\scriptscriptstyle B}$	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X_B	
3/4	<i>x</i> ₁	1	0	8/25	-84	-12	8	0	0	0
							1/30	0		0
-150	x_2	0	1	1/500	-1/2	-1/15	1/50	0	0	Ū
		0	1							

0	<i>x</i> ₇	0	0	1	0	0	0	1	1	1
	$z_j - c_j$	0	0	-2/25	18	1	1	0		
				\uparrow				\downarrow		

Step (4) : Introduce P_3 and drop P_7

		3/4	-150	1/50	-6	0	0	0		Ratio
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X_B	
3/4	<i>x</i> ₁	1	-160	1	-4	-4/3	8/3	0	0	-ve
1/50	<i>x</i> ₃	0	500	1	-250	-100/3	50/3	0	0	-ve
0	<i>x</i> ₇	0	-500	0	250	100/3	-50/3	1	1	1/250
	$z_j - c_j$	0	40	3/4	-2	-5/3	7/3	0		
					1			\rightarrow		

Step (5) : Introduce P_4 and drop P_7

		3/4	-150	1/50	-6	0	0	0		Ratio
	X _B	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X _B	
3/4	<i>x</i> ₁	1	-168	1	0	-4/5	36/15	4/250	4/250	-ve
1/50	<i>x</i> ₃	0	0	1	0	0	0	1	1	-ve
-6	<i>x</i> ₄	0	-2	0	1	2/15	-1/15	1/250	1/250	1/250
	$z_j - c_j$	0	780	3/4	0	-7/5	11/5	2/250		
					\downarrow	\leftarrow				

Step (5) : Introduce P_4 and drop P_7

		3/4	-150	1/50	-6	0	0	0	
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X _B
3/4	<i>x</i> ₁	1	-180	1	6	0	2	1/25	1/25
1/50	<i>x</i> ₃	0	0	1	0	0	0	1	1
0	<i>x</i> ₅	0	-15	0	15/2	1	-1/2	3/100	3/100
	$z_j - c_j$	0	15	0	21/2	0	3/2	1/20	

Since all $z_j - c_j \ge 0$, an optimum basic feasible solution has been reached

IX. SOLUTION OF THE PROBLEM APPLYING CRITERIA I:

We now employ the simplex method where we choose the entering vector for which $\left(\frac{(z_j - c_j)\theta_j}{c_j \sum y_{ij}}\right)$ is most

Dicp (1). (-)							
		3/4	-150	1/50	-6	0	0	0	
Basis	с _ј	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X _B
<i>x</i> ₅	0	1/4	-60	-1/25	9	1	0	0	0
<i>x</i> ₆	0	1/2	-90	-1/50	3	0	1	0	0
<i>x</i> ₇	0	0	0	1	0	0	0	1	1
$z_j - c_j$		-3/4	150	-1/50	6	0	0	0	
			\checkmark			\downarrow			

negative. **Step (1)**: (Initial table)

In this step, we have

$$z_1 - c_1 = -3/4 \text{ and } z_3 - c_3 = -1/50$$

$$\therefore \frac{(z_1 - c_1)\theta_1}{c_1 \sum y_{i1}} = -\frac{3}{4} \times \frac{4}{3} \times \frac{4}{3} = -\frac{4}{3} \text{ and } \frac{(z_3 - c_3)\theta_3}{c_3 \sum y_{i3}} = \frac{-1}{50} \times \frac{50}{1} = -1, \ \theta_1 = 0 \text{ and } \theta_3 = 1 > 0$$

Therefore the entering vector is P_1 .

Step (2) : Introduce P_1 and drop P_6

		3/4	-150	1/50	-6	0	0	0	
Basis	<i>c</i> _j	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X_{B}
<i>x</i> ₅	0	1/4	-60	0	9	1	0	1/25	1/25
<i>x</i> ₆	0	1/2	-90	0	3	0	1	1/50	1/50
<i>x</i> ₃	1/50	0	0	1	0	0	0	1	1
z _j –	- c _j	-3/4	150	0	6	0	0	1/50	
		↑					\rightarrow		

Step (3).									
		3/4	-150	1/50	-6	0	0	0	
Basis	c_{j}	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X _B
<i>x</i> ₅	0	0	-15	0	15/2	1	-1/2	3/100	3/100
<i>x</i> ₁	3/4	1	-180	0	6	0	2	1/25	1/25
<i>x</i> ₃	1/50	0	0	1	0	0	0	1	1
z , -	- c _j	0	15	0	21/2	0	3/2	1/20	

Sten (3) ·

Since all $z_j - c_j \ge 0$, an optimum basic feasible solution has been reached.

X. SOLUTION OF THE PROBLEM APPLYING CRITERIA II:

We now employ the simplex method where we choose the entering vector for which $\left(\frac{z_j - c_j}{c_j \sum y_{ij}}\right)$ is most negative.

Step (1): (Initial table)

		3/4	-150	1/50	-6	0	0	0	
Basis	c_{j}	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X_{B}
<i>x</i> ₅	0	1/4	-60	-1/25	9	1	0	0	0
<i>x</i> ₆	0	1/2	-90	-1/50	3	0	1	0	0
<i>x</i> ₇	0	0	0	1	0	0	0	1	1
$z_j - c_j$		-3/4	150	-1/50	6	0	0	0	
		\uparrow					\downarrow		

In this step, we have

$$z_1 - c_1 = -3/4 \text{ and } z_3 - c_3 = -1/50$$

$$\therefore \frac{z_1 - c_1}{c_1 \sum y_{i1}} = -\frac{3}{4} \times \frac{4}{3} \times \frac{4}{3} = -\frac{4}{3} \text{ and } \frac{z_3 - c_3}{c_3 \sum y_{i3}} = \frac{-1}{50} \times \frac{50}{1} = -1, \ \theta_1 = 0 \text{ and } \theta_3 = 1 > 0.$$

Therefore the entering vector is P_1 .

Step (2) : Introduce P_1 and drop P_6

		3/4	-150	1/50	-6	0	0	0	
Basis	c_{j}	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X _B
<i>x</i> ₅	0	0	-15	-3/100	9/2	1	-1/2	0	1/25
<i>x</i> ₁	3/4	1	-180	-1/25	6	0	2	0	1/50
<i>x</i> ₇	0	0	0	1	0	0	0	1	1

$z_j - c_j$	0	15	-1/20	21/2	0	3/2	0	
			\uparrow				\rightarrow	

The entering vector is P_3

Step (3) : Introduce P_3 and drop P_7

		3/4	-150	1/50	-6	0	0	0	
Basis	c_{j}	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X _B
<i>x</i> ₅	0	0	-15	0	9/2	1	-1/2	3/100	3/100
<i>x</i> ₁	3/4	1	-180	0	6	0	2	1/25	1/25
<i>x</i> ₃	1/50	0	0	1	0	0	0	1	1
z , -	C _j	0	15	0	21/2	0	3/2	1/20	

Since all $z_j - c_j \ge 0$, an optimum basic feasible solution has been reached.

XI. HERE WE APPLY QUICK SIMPLEX METHOD:

Step (1): (Initial table)

		3/4	-150	1/50	-6	0	0	0		Ratio1	Ratio 3
$C_{\scriptscriptstyle B}$	X _B	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇	X _B		
0	<i>x</i> ₅	<i>a</i> ₃ =1/4	-60	$b_3 = -1/25$	9	1	0	0	0	0	-ve
0	<i>x</i> ₆	$a_1 = 1/2$	-90	$b_1 = -1/50$	3	0	1	0	0	0	-ve
0	<i>x</i> ₇	<i>a</i> ₂ =0	0	b ₂ =1	0	0	0	1	1	Not defined	1
	$z_j - c$	-3/4	150	-1/50	6	0	0	0			
		\uparrow		↑		\downarrow	\downarrow				

Here we introduce P_1 , P_3 Simultaneously and outgoing vectors are P_5 , P_6 .

To find new values in X_B column.

Here we can find c_1^{**} , c_2^{**} and c_3^{**} using following formula.

$$c_1^{**} = \frac{(-1)^1 \begin{vmatrix} -1/50 & 0 \\ 1 & 1 \end{vmatrix}}{1/2} = 1/25 \qquad \qquad c_2^{**} = \frac{(-1)^2 \begin{vmatrix} 1/2 & 0 \\ 0 & 1 \end{vmatrix}}{1/2} = 1$$

 $\operatorname{New} X_B = \begin{bmatrix} 1/25\\1\\3/100 \end{bmatrix}$

To find other entries in third simplex table.

Column $P_2 = \begin{bmatrix} -90\\0\\-60 \end{bmatrix} : -$

$$c_{1}^{**} = \frac{(-1)^{1} \begin{vmatrix} -1/50 & -90 \\ 1/2 \end{vmatrix}}{1/2} = -180 \qquad \qquad c_{2}^{**} = \frac{(-1)^{2} \begin{vmatrix} 1/2 & -90 \\ 0 & 0 \end{vmatrix}}{1/2} = 0$$

$$c_{3}^{**} = \frac{\begin{vmatrix} 1/2 & -1/50 & -90 \\ 0 & 1 & 0 \\ 1/4 & -1/25 & -60 \\ 1/2 \end{vmatrix}}{1/2} = -15$$

$$R = \begin{vmatrix} 1/2 & -1/50 \\ 0 & 1 \end{vmatrix} = 1/2$$

 $\mathbf{NewP_2} = \begin{bmatrix} -180\\0\\-15 \end{bmatrix}$

To find other entries in third simplex table.

Column
$$P_4 = \begin{bmatrix} 9\\3\\0 \end{bmatrix} : -$$

 $c_1^{**} = \frac{(-1)^1 \begin{vmatrix} -1/50 & 3\\1/2 \end{vmatrix}}{1/2} = 6$
 $c_2^{**} = \frac{(-1)^2 \begin{vmatrix} 1/2 & 3\\0 & 0 \end{vmatrix}}{1/2} = 0$

$$c_3^{**} = \frac{\begin{vmatrix} 1/2 & -1/50 & 3\\ 0 & 1 & 0\\ 1/4 & -1/25 & 9 \end{vmatrix}}{1/2} = 15/2$$

New Column
$$P_4 = \begin{bmatrix} 6\\0\\15/2 \end{bmatrix}$$

Column $P_5 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} : -$

$$c_1^{**} = \frac{(-1)^1 \begin{vmatrix} -1/50 & 1 \\ 1 & 0 \end{vmatrix}}{1/2} = 2 \qquad \qquad c_2^{**} = \frac{(-1)^2 \begin{vmatrix} 1/2 & 1 \\ 0 & 0 \end{vmatrix}}{1/2} = 0$$

$$c_{3}^{**} = \frac{\begin{vmatrix} 1/2 & -1/50 & 1\\ 0 & 1 & 0\\ 1/4 & -1/25 & 0 \end{vmatrix}}{1/2} = -1/2$$

New Column P₅ = $\begin{bmatrix} 2\\0\\-1/2 \end{bmatrix}$ Column P₆ = $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$: -

$$c_{1}^{**} = \frac{(-1)^{1} \begin{vmatrix} -1/50 & 0 \\ 1 & 1 \end{vmatrix}}{1/2} = 1/25 \qquad \qquad c_{2}^{**} = \frac{(-1)^{2} \begin{vmatrix} 1/2 & 0 \\ 0 & 1 \end{vmatrix}}{1/2} = 1$$

$$c_3^{**} = \frac{\begin{vmatrix} 1/2 & -1/50 & 0 \\ 0 & 1 & 1 \\ 1/4 & -1/25 & 0 \end{vmatrix}}{1/2} = 3/100$$

New Column P₆ =
$$\begin{bmatrix} 1/25 \\ 1 \\ 3/100 \end{bmatrix}$$

Column P₇ = $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$: -
 $c_1^{**} = \frac{(-1)^1 \begin{vmatrix} -1/50 & 0 \\ 1/2 \end{vmatrix} = 0$ $c_2^{**} = \frac{(-1)^2 \begin{vmatrix} 1/2 & 0 \\ 0 & 0 \end{vmatrix} = 0$

$$c_{3}^{**} = \frac{\begin{vmatrix} 1/2 & -1/50 & 0 \\ 0 & 1 & 0 \\ 1/4 & -1/25 & 1 \\ 1/2 \\ \end{vmatrix}}{1/2} = 1$$

[0] New Colum

nn
$$P_7 = \begin{bmatrix} 0\\1 \end{bmatrix}$$

So we get direct third simplex table using above formulae

STEP	:5
SIEP	:5

		3/4	-150	1/50	-6	0	0	0	
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	P_7	X_B
3/4	<i>x</i> ₁	1	-180	1	6	0	2	1/25	1/25
1/50	<i>x</i> ₃	0	0	1	0	0	0	1	1
0	<i>x</i> ₅	0	-15	0	15/2	1	-1/2	3/100	3/100
	$z_j - c_j$	0	15	0	21/2	0	3/2	1/20	

Since all $z_j - c_j \ge 0$, an optimum basic feasible solution has been reached.

In this problem it is observed that we reached to solution by using conventional simplex method in fifth step And by using criteria-I it reached to two step and by criteria-II it reached to two step while by using quick simplex algorithm we reached to solution in one step only. Since this is a cyclic problem ,here we got advantage of our method.

XII. STATEMENT OF THE PROBLEM-II

Solve the LPP: Max $Z = 22x_1 + 30x_2 + 25x_3$

Subject to the constraints

$$2x_1 + 2x_2 \le 100$$
, $2x_1 + x_2 + x_3 \le 100$, $x_1 + 2x_2 + 2x_3 \le 100$, $x_1, x_2, x_3 \ge 0$

XIII. SOLUTION OF THE PROBLEM:

 $Max \ Z = 22x_1 + 30x_2 + 25x_3$

Subject to the constraints

$$2x_1 + 2x_2 + x_4 = 100$$
, $2x_1 + x_2 + x_3 + x_5 = 100$, $x_1 + 2x_2 + 2x_3 + x_6 = 100$, $x_1, x_2, x_3 \ge 0$

(where $x_4, x_5, x_6 \rightarrow$ slack variables)

We now use the simplex method where we choose the entering vector for which $z_j - c_j$ is most negative.

			20	25	0	0	0		
		22	30	25	0	0	0		
C_{B}	X_{B}	P_1	P_2	P_3	P_4	P_5	P_6	X_{B}	Ratio2
0	X_4	2	2	0	1	0	0	100	50
0	X_5	2	1	1	0	1	0	100	100
0	X 6	1	2	2	0	0	1	100	50

Step (1). Initial Simplex Table

	Z^{*}	-22	-30	-25	0	0	0	0	
			\uparrow				\rightarrow		

Step (2) : Introduce P_2 and drop P_6

		22	30	25	0	0	0		
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	X _B	Ratio
0	X_4	1	0	-2	1	0	-1	0	0
0	X_{5}	3/2	0	0	0	1	-1/2	50	100/3
30	<i>X</i> ₂	1/2	1	1	0	0	1/2	50	100
	$z_j c_j$	-7	0	5	0	0	15		
		↑			\downarrow				

In this step, we have

Step (3) : Introduce P_1 and drop P_4

		22	30	25	0	0	0		
C_B	X _B	P_1	P_2	P_3	P_4	P_5	P_6	x _B	Ratio
22	X_1	1	0	-2	1	0	-1	0	-ve
0	X_{5}	0	0	3	-3/2	1	1	50	50/3
30	X_{2}	0	1	2	-1/2	0	1	50	50/2
		0	0	-9	7	0	8		
				\uparrow		\downarrow			

Step (4) : Introduce P_3 and drop P_5

		22	30	25	0	0	0	
C_{B}	X_{B}	P_1	P_2	P_3	P_4	P_5	P_6	X _B
22	X_1	1	0	0	0	2/3	-1/3	100/3
25	<i>X</i> ₃	0	0	1	-1/2	1/3	1/3	50/3
30	X_{2}	0	1	0	1/2	-2/3	1/3	50/3
		0	0	0	5/2	3	11	1650

Since all $Z_j - C_j \ge 0$ hence an optimum basic feasible solution has been reached.

: optimum solution is $x_1 = 100/3$, $x_2 = x_3 = 50/3$ and Max. Z = 1650.

XIV. SOLUTION OF THE PROBLEM APPLYING CRITERIA-I

We now use the simplex method where we choose the entering vector for which $\left(\frac{z_j - c_j}{c_j \sum y_{ij}}\right) \theta_j$ is most negative.

Step (1). Initial Simplex Table

			1		1			
		22	30	25	0	0	0	
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	X_B
0	X_4	2	2	0	1	0	0	100
0	X_{5}	2	1	1	0	1	0	100
0	X_{6}	1	2	2	0	0	1	100
	Z^{*}	-22	-30	-25	0	0	0	0
				\uparrow			\downarrow	

In this step, we have $\frac{(z_1 - c_1)\theta_1}{c_1 \sum y_{i1}} = -\frac{22}{22} \times \frac{1}{5} \times 50 = -10$, $\frac{(z_2 - c_2)\theta_2}{c_2 \sum y_{i2}} = -\frac{30}{30} \times \frac{1}{5} \times 50 = -10$ and

$$\frac{(z_3 - c_3)\theta_3}{c_3 \sum y_{i3}} = \frac{-25}{25} \times \frac{1}{3} \times 50 = -\frac{50}{3}$$

Therefore the entering vector is P_3 .

Step (2) : Introduce P_3 and drop P_6

		22	30	25	0	0	0	
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	X _B
0	<i>x</i> ₄	2	2	0	1	0	0	100
0	<i>x</i> ₅	3/2	0	0	0	1	-1/2	50
25	<i>x</i> ₃	1/2	1	1	0	0	1/2	50
	$z_j c_j$	-19/2	-5	0	0	0	25/2	
		↑				\downarrow		

Step (3) : Introduce P_1 and drop P_5

		22	30	25	0	0	0	
C_{B}	x_B	P_1	P_2	<i>P</i> ₃	P_4	P_5	P_6	X _B
0	<i>x</i> ₄	0	2	0	1	-4/3	2/3	100/3
22	<i>x</i> ₁	1	0	0	0	2/3	-1/3	100/3
25	<i>x</i> ₃	0	1	1	0	-1/3	2/3	100/3

0	-5	0	0	19/3	7	
	¢		\downarrow			

Step (4) : Introduce P_2 and drop P_4

			22	30	25	0	0	0
C_{B}	x _B	X _B	P_1	P_2	<i>P</i> ₃	P_4	P_5	P_6
30	<i>x</i> ₂	50/3	0	1	0	1	-2/3	1/3
22	<i>x</i> ₁	100/3	1	0	0	0	2/3	-1/3
25	<i>x</i> ₃	50/3	0	0	1	-1	1/3	1/3
		1650	0	0	0	5	3	11

Since all $Z_j - C_j \ge 0$ hence an optimum basic feasible solution has been reached.

: optimum solution is $x_1 = 100/3$, $x_2 = x_3 = 50/3$ and Max. Z = 1650.

XV. SOLUTION OF THE PROBLEM APPLYING CRITERIA II

We now use the simplex method where we choose the entering vector for which $\left(\frac{z_j - c_j}{c_j \sum y_{ij}}\right)$ is most negative

Step (1). Initial Simplex Table

		22	30	25	0	0	0	
C_{B}	x _B	P_1	P_2	P_3	P_4	P_5	P_6	X _B
0	<i>x</i> ₄	2	2	0	1	0	0	100
0	<i>x</i> ₅	2	1	1	0	1	0	100
0	<i>x</i> ₆	1	2	2	0	0	1	100
	Z^*	-22	-30	-25	0	0	0	0
				↑			\downarrow	

In this step, we have

$$\therefore \frac{z_1 - c_1}{c_1 \sum y_{i1}} = -\frac{22}{22} \times \frac{1}{5} = -\frac{1}{5}, \frac{z_2 - c_2}{c_2 \sum y_{i2}} = -\frac{30}{30} \times \frac{1}{5} = -\frac{1}{5} \text{ and } \frac{z_3 - c_3}{c_3 \sum y_{i3}} = \frac{-25}{25} \times \frac{1}{3} = -\frac{1}{3}$$

Therefore the entering vector is y_3 .

		22	30	25	0	0	0	
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	X _B
0	<i>x</i> ₄	2	2	0	1	0	0	100
0	<i>x</i> ₅	3/2	0	0	0	1	-1/2	50
25	<i>x</i> ₃	1/2	1	1	0	0	1/2	50
	$z_j \ c_j$	-19/2	-5	0	0	0	25/2	
		↑				\downarrow		

Step (2) : Introduce P_3 and drop P_6

Step (3) : Introduce P_1 and drop P_5

		22	30	25	0	0	0	
C_{B}	X _B	P_1	P_2	P_3	P_4	P_5	P_6	X _B
0	<i>x</i> ₄	0	2	0	1	-4/3	2/3	100/3
22	<i>x</i> ₁	1	0	0	0	2/3	-1/3	100/3
25	<i>x</i> ₃	0	1	1	0	-1/3	2/3	100/3
		0	-5	0	0	19/3	7	
			\uparrow		\downarrow			

Step (4) : Introduce P_2 and drop P_4

			22	30	25	0	0	0
C_B	X _B	X _B	P_1	P_2	P_3	P_4	P_5	P_6
30	<i>x</i> ₂	50/3	0	1	0	1	-2/3	1/3
22	<i>x</i> ₁	100/3	1	0	0	0	2/3	-1/3
25	<i>x</i> ₃	50/3	0	0	1	-1	1/3	1/3
		1650	0	0	0	5	3	11

Since all $Z_j - C_j \ge 0$ hence an optimum basic feasible solution has been reached.

: optimum solution is $x_1 = 100/3$, $x_2 = x_3 = 50/3$ and Max. Z = 1650.

Step (Step (1). Initial Simplex Table										
		22	30	25	0	0	0				
$C_{\scriptscriptstyle B}$	<i>X</i> _{<i>B</i>}	P_1	<i>P</i> ₂	<i>P</i> ₃	P_4	P_5	<i>P</i> ₆	X _B	Ratio 1	Ratio2	Ratio3
0	X_4	<i>a</i> ₁ = 2	<i>c</i> ₁ =2	<i>b</i> ₁ =0	1	0	0	100	50	50	
0	<i>X</i> ₅	<i>a</i> ₂ =2	<i>c</i> ₂ =1	b ₂ =1	0	1	0	100	50	100	100
0	X ₆	<i>a</i> ₃ =1	<i>c</i> ₃ =2	<i>b</i> ₃ =2	0	0	1	100	100	50	50
	Z^*	-22	-30	-25	0	0	0	0			
		Ŷ	↑	↑	\rightarrow	\rightarrow	\rightarrow				

XVI. QUICK SIMPLEX METHOD

Here we introduce simultaneously P_1 , P_2 , P_3 three vectors and outgoing vectors are P_4 , P_6 , P_5 , So we get direct fourth simplex table using above formulae. Introduction is such that Pivotal element should be in different row. To find new values in X_B column.

$$x_{1} = \frac{\begin{vmatrix} 0 & 2 & 100 \\ 1 & 1 & 100 \\ 2 & 2 & 100 \end{vmatrix}}{R} = \frac{100}{3}, \quad x_{2} = \frac{\begin{vmatrix} 2 & 100 & 2 \\ 2 & 100 & 1 \\ 1 & 100 & 2 \end{vmatrix}}{R} = \frac{50}{3}, \quad x_{3} = \frac{\begin{vmatrix} 2 & 0 & 100 \\ 2 & 1 & 100 \\ 1 & 2 & 100 \end{vmatrix}}{R} = \frac{50}{3},$$

where $R = \begin{vmatrix} 2 & 0 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 2 \end{vmatrix} = 6$

Since all the values are positive, non-negativity constraint is satisfied and it indicates that such transformation is allowed. To find other entries in third simplex table.

Column
$$P_4 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} : -$$

 $x_1 = \frac{\begin{vmatrix} 0 & 2 & 1\\1 & 1 & 0\\2 & 2 & 0 \end{vmatrix}}{R} = 0, \quad x_2 = \frac{\begin{vmatrix} 2 & 1 & 2\\2 & 0 & 1\\1 & 0 & 2 \end{vmatrix}}{R} = \frac{-1}{2}, \quad x_3 = \frac{\begin{vmatrix} 2 & 0 & 1\\2 & 1 & 0\\1 & 2 & 0 \end{vmatrix}}{R} = \frac{1}{2}$
New $P_4 = \begin{bmatrix} 0\\-1/2\\1/2 \end{bmatrix}$
Column $P_5 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} : -$

$$\mathbf{x}_{1} = \frac{\begin{vmatrix} 0 & 2 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 0 \\ R \end{vmatrix}}{R} = \frac{2}{3}, \quad \mathbf{x}_{2} = \frac{\begin{vmatrix} 2 & 0 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 2 \\ R \end{bmatrix}}{R} = \frac{1}{3}, \quad \mathbf{x}_{3} = \frac{\begin{vmatrix} 2 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \\ R \end{bmatrix}}{R} = \frac{-2}{3}$$
New $\mathbf{P}_{5} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{-2}{3} \end{bmatrix}$
Column $\mathbf{P}_{6} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} : -$

$$\mathbf{x}_{1} = \frac{\begin{vmatrix} 0 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{vmatrix}}{R} = \frac{-1}{3}, \quad \mathbf{x}_{2} = \frac{\begin{vmatrix} 2 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \end{vmatrix}}{R} = \frac{1}{3}, \quad \mathbf{x}_{3} = \frac{\begin{vmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 2 & 1 \end{vmatrix}}{R} = \frac{1}{3}$$

New $P_{6} = \begin{bmatrix} \frac{-1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$

New
$$P_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, New $P_2 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$, New $P_3 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$

Step (4) :

			22	30	25	0	0	0
C_{B}	X _B	X _B	P_1	P_2	P_3	P_4	P_5	P_6
22	<i>x</i> ₁	100/3	1	0	0	0	2/3	-1/3
25	<i>x</i> ₃	50/3	0	0	1	-1/2	1/3	1/3
30	<i>x</i> ₂	50/3	0	1	0	1/2	-2/3	1/3
		1650	0	0	0	5/2	3	11

Since all $Z_j - C_j \ge 0$ hence an optimum basic feasible solution has been reached.

: optimum solution is $x_1 = 100 / 3$, $x_2 = x_3 = 50 / 3$ and Max. Z = 1650

In this problem it is observed that we reached to solution by using conventional simplex method in third step And by using criteria-I it reached to third step and by criteria-II it reached to third step while by using quick simplex algorithm we reached to solution in one step only. Here also we got advantage of our method

XVII. CONCLUSION

In the first problem it is observed that we reached to solution by using conventional simplex method in fifth step And by using criteria-I it reached to two step and by criteria-II it reached to two step while by using quick simplex algorithm we reached to solution in one step only. Since this is a cyclic problem ,here we got advantage of our method

In the second problem it is observed that we reached to solution by using conventional simplex method in third step And by using criteria-II it reached to third step and by criteria-II it reached to third step while by using quick simplex algorithm we

reached to solution in one step only. Here also we got advantage of our method.

Hence the number of iterations required is reduced by Quick simplex algorithm methodology. This method found to be more convenient when introducing more than one vector simultaneously.

REFERENCES

- [1] S.I.Gass, Linear programming, McGraw-Hill Book Co. Inc., New York. Fourth Edition (1975).
- [2] Prem kumar Gupta and Hira D. S., Operation Research., S. Chand and Company Ltd. Fifth Revised Edition (2010).
- [3] J.K.Sharma , Operation Research., Macmillan India Limited (1997).
- [4] Prem kumar Gupta, Kanti Swarup and Man Mohan, Operation Research., S.Chand and Company Ltd. Fifteenth Revised Edition (2010).
- [5] N. V. Vaidya and N. W. Khobragade, Optimum Solution to the Simplex Method- An Alternative Approach Int. J Latest
- [6] Trend Math Vol-2 No. 3 September (2012),99-105.
- [7] N. V. Vaidya and N. W. Khobragade ,Solution of Game Problems Using New Approach, International Journal of Engineering and Innovative Technology (IJEIT), Volume 3, Issue 5, November (2013),181-186.
- [8] N. V. Vaidya , N. W. Khobragade and Navneet K. Lamba, Approximation algorithm for optimal solution to the linear
- [9] programming problem, Int. J. Mathematics in Operational Research, Vol. 6, No. 2, (2014),139-154.