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ABSTRACT : We employ analytical techniques in designing numerical models of the layer effects on far field 

microseismic oscillations and the activities of wave train approaching the shoreline from a wide range of 

directions in the intermediate frequency range. We assume the elastic medium in the model earth to be damped 

and horizontally layered and the governing equations to be those that describe the small amplitude oscillations 

in such a medium. Therefrom, we obtain a relationship between the phenomenon of wave reflection along the 

shoreline and microseisms and thus estimate the distance from the shoreline over which the approaching 

shallow water waves are expected to acquire measurable bottom pressure, and further confirm that the distance 

is finite and proportional to wave period. 
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I. INTRODUCTION 
 Microseisms, also known as micro-earth tremors are the continuous background noise on seismic 

records in the range from about 2 to 20 seconds (Hasselmann, 1963). The phenomena had been observed since 

the early days of seismology and the efficiency with which these waves are transmitted from the generating 

source to the far field, their polarization, subsequent detection and recording are quite remarkable and fairly well 

understood.Several mechanisms have been proposed to explain the origin of these background noises. Wiechart 

(1904) conceived it as surf breaking along coasts. Banerji (1930) suggested that the source of microseisms were 

the activities of large storms at sea. Gherzi (1932) proposed that air pressure fluctuations have a pumping action 

that could cause storm microseisms, that is, air pressure are transmitted into the ground and the resulting seismic 

vibrations propagated to great distances, away from the generating source. Bernard (1937), on his part suggested 

that standing waves are the cause of microseisms. Longuet-Higgins (1950) improved on Bernard’s theory. He 

thereby demonstrated that the interference of gravity waves in the ocean could produce a second-order pressure 

effect that might be transmitted into the underlying seabed and further suggested that appropriate conditions for 

the process could occur around the centres of large cyclonic disturbances and also where waves are reflected 

from a coast. 

 

 One major difficulty in determining which mechanism explains the observed microseismic 

disturbances which is qualitatively in comparison with theory can be attributed to the fact that most of the 

theoretical analysis has been formulated in terms of the Green’s function (Hasselmann, 1963). Hasselmann, 

thus, utilized statistical analysis to confirm the results of Longuet-Higgins and others. He also introduced the 

theory of high-phase velocity resonant energy transfer.Further, microseisms are essentially surface waves 

propagating in the direction parallel to the earth's surface and the associated energy trapped near the surface. 

Consequently, they could be detected at quite a distance from the generating source. Interestingly, this model 

has been able to calculate conclusively the layer depth within which the energy is trapped below the earth’s 

surface. 

 

 An analysis of the energy spectrum of the seismic records in the range of microseisms frequencies 

clearly indicate two main peaks. It has been established conclusively that the two peaks are largely associated 

with two distinct activities related to the ocean waves. The lower peak corresponding to the primary frequency 

microseisms is associated with the first order effects of wave bottom pressure modulation as sea waves 

propagate through a sloping beach towards the shoreline (Hinde et al 1965; Darbyshire, 1950; Hasselmann, 

1963; Okeke, 1972) and more recently (Goodman et al 1989, Trevorrow et al 1989; Okeke and Asor 1998, 

Okeke and Asor 2000). On the other hand, the upper frequency peak is associated with the double microseisms. 

This is so called for the microseisms frequencies in this band are double that of the generating sea waves. As 

determined by Longuet-Higgins (1950), the wave activities involved in this regard are the second order pressure 

effects.  
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 These are energized through the nonlinear interactions among progressive sea waves moving in 

opposite directions. The phenomena are not affected by the depth of the water layer. Consequently, they are 

effective generating mechanism both in deep and shallow water areas. In our studies, we have included the 

activities of the generating water waves approaching the shoreline from a wide range of directions. Also, our 

elastic medium which is the model Earth is damped and horizontally layered with the governing equations being 

those that describe the small amplitude oscillations in such a medium. Our study also introduces a damping term 

in the governing equations representing the effect of the material inelasticity which we shall assume to be slight. 

This enables us to adopt the model due to Darbyshire and Okeke (1969) in which the damping term in the 

equation of motion is assumed to be proportional to the time rate of the change of material displacement 

components in the first normal incident theory. Previous calculations based on this model were quite close to the 

measurements of seismic events in the far field. 

 

 Further, there are a number of interesting and innovative publications on the evolution of the 

microseisms in the seafloor. Recent achievements in this area of geophysics owe a lot to the work of Yamamoto 

et al (1977, 1978) and recently, Trevorrow et al (1988, 1989). Information acquired therefrom had been 

effectively used in the study of such areas as the structural depth profile below the seabed. We have extended 

this analysis with identical calculations to the far field microseisms activities. Generally, previous investigators 

based their models on the theory of the homogenous earth without incorporating the effect of earth’s layering in 

the numerical calculations. In this regard therefore, we have analysed the effects of earth’s layering on far field 

micro-earth tremors while extending the normal incident theory of Darbyshire and Okeke (1969) to two 

dimensions. 

 

II. GOVERNING EQUATIONS AND THEIR SPECIFICATIONS 

 The x-axis and y-axis are taken as perpendicular and along the shoreline respectively. The z-axis points 

vertically downwards with z=0 as the earth’s surface, t>0 is the time with t=0 giving the onset of the 

geophysical activities involved in our subsequent studies.The behaviour of an isotropic solid is completely 

specified if  and  are given ( is the modulus of elasticity,  is the Lamé’s constant). In particular,  defines 

the strength of the layered elastic solid, hence, the most important parameter in our present investigation. s  is 

the density of solid which, in the case of horizontally stratified elastic half-space, will be a function of z. Finally, 

the displacement components of the elastic half-space in response to the seismic events are U, V, W in the x, y 

and z directions respectively. 

 

With these specifications, the governing equations are: 
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Differentiate both sides of equations (2.1) with respect to x, (2.2) with respect to y and (2.3) with respect to z 

and add, then, 
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where  defines the wave of compression which moves with the speed  where 
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Further, differentiate both sides of equations (2.2) with respect to z and (2.3) with respect to y, then subtract, we 

obtain 
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In the same way we obtain 
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The vector  

  ),,( zyx           (2.6e) 

gives the wave of rotation in the elastic solid which moves with speed   where 
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It is to be noted however that, for surface waves, we assume the motion to be uniform with respect to the y-axis. 

We then introduce two scalar potentials   and   for the displacements of the elastic solid. Thus, we have, 
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Equations (2.7) and (2.8) indicate that the scalar potentials   and   are respectively related to the waves of 

compression and rotation. Thus, introducing (2.7) and (2.8) into (2.4) and (2.6) respectively, we obtain the wave 

equations in the form 
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Details of the above equations are found in Bullen & Bolt (1985), Burridge (1976). 

 

III. GRAVITY WAVES AND GROUND MOVEMENTS 
 A gravity wave is an oscillation caused by the displacement of an air parcel which is restored to its 

initial position by gravity. The lifting force is buoyancy, while the restoring force is gravity. In this 

consideration, we introduce a damping term into the governing equations to represent the effect of material 

inelasticity which we shall assume to be small since the oscillations take place near the Earth’s surface 

(0<z<100m) and the variations in the elastic parameters are slight.  

 

Introducing   and   in equation (2.1) with (2.2) and using the same notations therein, we have the following 

system of equations: 
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In (3.1), the term on the left hand side is the generating pressure field of the water waves; )(kP  being the 

amplitude spectrum of the bottom pressure. The wave number k  and the phase speed c  are such as to match 

those of the seismic trapped modes below the seabed. Hence, k  and c  will refer to both the generating water 

waves and the seismic response of the elastic half-space in the subsequent discussion. 

 

The solutions of equations (3.1) and (3.2) are expressible in the form: 

)](exp[),,( ctxrzikAtzx        (3.3) 

)](exp[),,( ctxszikBtzx        (3.4) 

where A  and B  do not depend on space and time. 
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The effect of damping term introduced in equations (3.1) and (3.2) is to make k  and c  complex with non-zero 

immaginary part. Thus, kikk  0  and cicc  0  but, kk 0  and cc 0  

 

On the earth's surface and in the far field, the waveforms are free, hence, the equations (3.1) to (3.5) gives: 
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Equations (3.6) and (3.7) above are consistent if 
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Eliminating r  and s  in equation (3.8) using (3.5), then, 
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With   as the medium’s Poisson's constant, we introduce the following notations: 
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Rearranging equation (3.10) as an equation in 1k , 
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In an undamped elastic medium ( 0 ), equation (3.11) reduces to the usual equation for the non-dispersive 

Rayleigh waves in elastic solid. In this case, the equation reduces to a cubic equation in 
2

1k  which has been 

thoroughly analysed (Bullen and Bolt, 1985) to obtain the propagational properties of the surface waves for a 
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range of values of  . Equation (3.11) therefore, exemplifies the case of material dispersion in which 1k  and   

are coupled. So, attenuation term induces material dispersion into an otherwise non-dispersive Rayleigh surface 

waves in the elastic material (Okeke and Asor, 2000). 

 

Equation (3.11) is a sixth order equation and so has six roots that are complex conjugate in the 1k -plane. It 

cannot be reduced to a cubic equation because it contains terms involving odd powers of 1k . However, 

quantitative analysis (Okeke and Asor, 2000), suggests that, 0)1(16)0( 2
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Therefore, there is at least a root of equation (3.11) between 01 k  and 11 k . In brief, there are roots of 

equation (3.11) in the circle of unit radius 11 k  and none on the circumference 11 k . 

 

In the studies involving surface waves, 11 k , so, the interest is roots of equation (3.11) in the circle. To do 

this, sequence   5,4,3,2,1  ,)( 1 mkf m  of Sturm’s function (Kurosh, 1980) are computed from the equation 

(3.11). 
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2)1()0(  cc . Thus, in 11 k , there are four complex conjugate roots, one in each of the four quadrants of 

the 1k -plane. Consequently, this analysis convincingly proves that seismic waves in an elastic solid are 

effectively damped if the attenuation coefficient   inherent in the solid exceeds the value 
40
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. Thus, it is 

concluded that, the effectiveness of the damping of elastic vibrations in elastic solid is a function of the strength 

of the solid material. Put differently, the more rigid a solid is, the greater is the damping of elastic vibrations 
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passing through it. In practice, the upper limit of 
4


 is never attained. In particular, the complex root in the first 

quadrant of k -plane for which 0)Im(  ,0)Re( 11  kk  corresponds to the observed damped seismic 

vibration. 

 

We now apply this result to the microseismic signals recorded on land below which is made of fairly hard rock. 

With this earth’s structure, the phase speed, 0c , of the seismic signal ranges from 
1sec1.1 km  to 

1sec8.1 km . Using the value 8.00 c , the corresponding value of   is between 
1sec021.0 km  to 

1sec04.0 km . This range of values of   is between 
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 suggesting strongly that the microseismic 

signals propagating from the source to the recording station in the far field are damped appreciably. 

 

The variation of this range of values of   with depth is shown in Asor (2000). The uniformity of this range with 

depth is apparent. The calculations cover the case of the horizontally stratified earth for which the elastic 

parameters and density are functions of the z -co-ordinates only. Further, the calculations are confined to the 

shallow earth’s layer below the surface. 

 

IV. THE FREQUENCY SPECTRAL AMPLITUDE COMPONENTS OF MICROSEISMIC 

SIGNALS 

 An attempt is made to calculate the frequency spectral amplitude components of microseismic signals 

as functions of depth variation below the earth’s surface. Identical studies had given rise to a number of useful 

results, (Trevorrow et al, 1991). However, the previous work in this direction (Yamamoto, 1978; Trevorrow et 

al, 1991) concerned seabed gravity waves induced seabed oscillations. Instead, our interest is in the far field 

seismic events. Thus, our model will concern the records obtained from a laboratory buried seismometer at a 

distance of 13km from the seashore. Extrapolating from the data for the seabed vertical profile (Trevorrow et al, 

1989, 1991; Bullen and Bolt, 1985) of elastic shear modulus and other elastic parameters, we have calculated 

the corresponding density, compressional and shear wave speed respectively in the far field. Our results, Asor 

(2000) are in reasonable agreement with the locally observed data. In this consideration, equations (3.1) and 

(3.2) are to be expressible in terms of the related displacement components rather than the scalar potentials. 

Thus, we shall adopt the following representations: 
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Equations (4.3) and (4.4) combine to give the usual matrix form (Bullen & Bolt, 1985) 
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In equation (4.6), d  is the depth of the shallow water layer measured from undisturbed level. Usually, in 

shallow water, 

  0kd  and 1sec hkd , thus,  

  )()( kgakP w  

In this case, the pressure is hydrostatic being unaffected by the depth of the water layer. )(ka  is the amplitude 

spectrum of the exciting water wave. In the subsequent calculations, )(ka  will be expressed in terms of the 

observed wave periods, T  rather than wave number component, k . 

 

In a perfectly damped elastic medium where the elastic parameters and density are assumed uniform with depth, 

equation (4.5) can easily be integrated to give 

    0

A

00 BgBgff   zez)(       4.7 

  
1

0 ABff
      ;)( 0z  

where )( 0zf  is the column matrix representative of the observed microseismic amplitude in the far field and 

0zz  , 0z  is the depth of the burial of the seismometer fault. 

 

Further the eigenvalues of the matrix A  are   where 
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If one assumes that Poisson’s relations apply (which is justified in the present case), 
22 3  . Also, 

00    , cicc   .   is the time decay factor representing the damping effect. 

 

Thus, 
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Using 4.9, we obtain 

 3     ;)Im(      ;)Re(
0

0

2

0

2













 












c

kc

c

k

ss

   4.10 

)Re(  gives the variations of the vibrations with depth. The presence of 
2  (which is quite small) in the 

numerator of the term suggests low rate of energy decay with depth below the earth’s surface. 

 

In a simplified case, we assume that the elastic parameters s   and  ,  are independent of the vertical co-

ordinate. Equation (4.5) is now a linear first order differential equation with constant matrix coefficients. The 

solution given by equation (4.7) is not very efficient numerically. Instead, we propose the following solutions 

(Okeke and Asor, 1999), 
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4.11 simplified to 
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Equation (4.12) seems to have depicted the local pattern of the decoupled compressional and shear waves 

respectively; each of which is subjected to the depth decay. The decay depicted by this model is strongly 

dependent on the non-zero imaginary part of the phase velocity, c , introduced by the damping term   in our 

fundamental equations for elastic half space. 

 

In general, the elastic parameters, 
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However, in the multi-layered half-space, the region below the earth’s surface is structurally assumed to consist 

of horizontally parallel slabs in welded contact. The simplified situation implies that the region within each slab 

is homogeneous and elastic parameters constant. 

 

We now introduce the propagator matrix )zP(z, 0  defined in relation to the displacement column matrix 

)(zf  as 

  ))f(zzP(z,zf 00)(       4.13 

Thus, 

  ))f(zz,P(zzf 0000 )(   and I)zP(z, 0  where I  is an identity zxz      

matrix. Also, 

  ),( 1
1

21 zzP)z,P(z 2
  

which is a simple form of inverse matrix. 

 

To determine )zP(z, 0 , we substitute equation (4.13) into the homogeneous form of equation (4.5) to obtain 
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The complete solution of equation (4.14) is given by 
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since ),(),(),( 011000 zzPzzPIzzP  . Thus, ),(),( 01
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10 zzPzzP   and 
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We now obtain the solution of equation (4.5) when 00 )( fzf   is given by multiplying the equation by 

),( 0
1 zzP

, regarded as the integrating factor, i.e. 
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For the boundary value problem, 
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But, ),(),(),(),(),( 000
1  zPzPzzPzPzzP 

 

Exchanging z and 0z , 
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Thus, 
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But from the definition,  
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So, equation (5.19) becomes 
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Next, we subdivide the shallow layer below the earth’s surface into twenty parallel slabs that are in welded 

contact and each is of thickness 5m. Each subdivision is assumed to be homogeneous within which elastic 

parameters ,  and density,   are assumed to be constant. Regarding 0zz   as the earth’s surface, the 

depth of the slabs below 0zz   is respectively 2021 ,...,, zzzz  . Thus, for 

20,...,2,1   ,1   szzz ss  

).)((exp[),( 11 ssss zzzAzzP    

So, for 1 ss zzz , equation (5.20) gives 
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           4.21 

In numerical computation of the surface displacement components of the layer, we have used the Sylvester’s 

interpolation formula (Bullen & Bolt, 1985) to obtain for each slab 1 ss zzz , 
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d s  is the value of   in 1 ss zzz . Similar results also hold for s . 

 

V. WAVE INTERACTION WITH THE SHORELINE 
 In this consideration, we investigate the geophysical phenomenon which give rise to the intermediate 

frequency range of the microseismic frequency. This frequency range is constantly observed in the series of 

analysed gravity water waves and microseisms energy spectrum. In previous attempts, Darbyshire and Okeke 

(1969) proposed a model of normal incident and reflected waves on a rocky coastline. Okeke (1972, 1985) 

improved on this by assuming that the angle of incidence ranges from 0 to 
2

 . However, the reflected wave 

energy was neglected in the computation. Okeke and Asor (2000) finally generalized the two successful 

attempts. The last generalized theory is now used to study the phenomena of the observed micro-scale seismic 

oscillations in the range of the intermediate frequency. 

 

In this study, the technique initiated by Darbyshire and Okeke (1969) will be exploited and further generalized. 

Let the subscripts i  and r  refer to the incident and reflected wave components along the coastline respectively. 

Let ri kkk   be the wave number difference. We now divide k  in n  sub-divisions each of width pk . 

Thus, pknk   

For the incident modes, the spectral amplitudes for the sub-divisions are nhhh ,...,, 21  and for the reflected 

modes, they are nggg ,...,, 21 . 

In this study, ),,( iii Rhh   and ),,( rrr Rgg   

The definitions incorporate the angle of incidence i  and that of reflection r . Generally, they are usually 

regarded as equal. The resultant spectral amplitude is obtained by the convolution of the two spectral 

components. That is, 
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 and ir  is the Kronecker delta. Physically, ir   corresponds to the case 

of constructive interference, ir   that of destructive interference. 

 

This study concentrates only on the case of constructive interference, so, when, ir  , frr Rhg   where 

fR  is the reflection coefficient and   is taken as the ensemble average for angles of incidence and reflection. 

Thus, 
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  pf

2

if

n

1=i

Kn  )K,SR  = gR  ,( 01 , mKK 0 .  5.1 

0K  is the wave number of gravity water wave mode, mK  is the low wave number component of the water 

wave which is small enough to resonate the seismic modes of the seabed, mKKK  0 , i.e. ],[ K . 

),,( 01  KS  is the spectral amplitude. 

 

To a reasonable degree of accuracy, the power spectrum of a system is proportional to the square of the 

amplitude spectrum. Thus for  0K , 

  
pfp KnKSRKS  ),,(),,( 0

2

10      5.2 

) , ,K(S 0p   is the power spectrum of the sea wave. The inequality immediately before equation (5.2) 

implies that both high and low phase velocity wave number components arising from the linear modulation of 

the gravity (water) wave bottom pressure are now activated (Hasselmann, 1963). 

 

Our model sea wave is that which approaches a shoreline at an angle  . Here,  , is measured from the line 

normal to the shoreline. The sea bottom is uniformly sloping but not necessarily parallel to the shoreline. The 

constant  , is the gradient of slope. Then, following Okeke (1972, 1985), the wave bottom pressure in this 

study takes the form 

  t. 
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2
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

 , w = water density, R is the radial distance measured from the centre of the generating source, 

d  is the width of the shelf which includes the breaking zone as measured from the shoreline, 0J  is a zero 

order Bessel function of the first kind, g  is the acceleration due to gravity. 
 

   Typical Orthogonal (direction of wavenumbers, vectors perpendicular  

   to the wave crest) 
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Fig.1 Reflection of waves along the shoreline…. 

 

The components of the Fourier-Bessel coefficients corresponding to equation (5.3) are  


 


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Okeke (1972) utilized the above approximations in the calculations involving the range of primary frequency 

microseisms. However, in the intermediate range, the whole expressions in the equations (5.4) and (5.5) will be 

used in the on-going calculations. Thus, with variation of one percent in the wave number, the amplitude 

spectral density is defined by 
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Equation (5.7) suggests that the spectral density favours the moderate breaker zone and a rather gently sloping 

beach. The equation gives the power of pressure wave per unit wave number in the water layer, which in the 

present study is inversely proportional to the gravity wave number of the exciting source, i.e. proportional to the 

wavelength of the exciting source (i.e. shallow water swell). This conclusion is quantitatively in agreement with 

the observed behaviour of microseisms and the generating sea waves. 

 

VI. STRESS WAVES IN AN ELASTIC AND HOMOGENOUS HALF SPACE 
 In this section, we review the base equations governing the evolutions of stress waves in an elastic and 

homogeneous half space. Here, the components of the ground displacement in response to the passage of 

seismic oscillations are thus usually given by 
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where RU  is the radial component of displacement whilst U z  is the vertical component.   and   are still 

scalar potential functions associated with the compressional wave with speed   and shear wave with speed   

respectively. z  as before is the vertical coordinate with the related radial distance represented by R . 

 

Take }),(Re{ 0
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then, 0  and 0  respectively satisfy the following equations 
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In the present consideration, K  now refers to seismic mode wave number which, effectively, is the same as 

mK  in the previous section. 

 

Using equation (6.5), the integral representations of the solutions of equations (6.3) and (6.4) are respectively: 
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       6.7 

)(KA  and )(KB  are wave number amplitude spectrum respectively. In this study, we are interested in the 

far field vertical component of the ground movements, ),( zRU z  induced by the micro-scale seismic events. 

Consequently, introducing equations (6.6) and (6.7) into (6.2), we obtain 
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)(KA  and )(KB  are determined using the boundary conditions at the seabed, i.e. at 0z . These are 

(a) The vanishing of tangential stress which gives 
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(b) The vertical stress component is to be balanced by the generating bottom pressure associated with high 

phase velocity component of the generating water waves, that is  
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          6.10 

In equation (6.9), the only terms not yet defined are   and  . Therefore,   and   represent the effect of 

imperfection in the elastic half space and indicate the extent of damping in the half space. 

 

Solving equations (6.9) and (6.10), we obtain 
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is the Rayleigh function (Bullen and Bolt, 1985). 

Take 

)(K,   = )(K, F

2





 








        6.12 

Equation (6.12) is also the Rayleigh function which is multiplied by an empirical factor of  2
 . This factor 

drops out in the subsequent calculations. The exception is however in the computation of the variation of the 

frequency spectral width )(z  with depth where the dependence of material rigidity and frequency is more 

apparent. 
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In the areas outside the shallow water zone, 033 P . Thus, if equations (6.9) and (6.10) are to be consistent, 

),( KF  must vanish identically. Consequently, in verifying the wave number, 

 0 = )K( +  )(K, 
K

F
K + ) ,KF( = ) F(K,

2

K=K








    6.13 

From which 

) ,K(  
K

F

) ,K( F-
  K












          6.14 

where K   is the value of K  for which equation (6.13) is satisfied. 

 

In the evaluation of the numerator of equation (6.14), we work in terms of the group velocity, V , of the seismic 

modes. Thus, 

  
V

F

V

F
  

K

C

V
K

V
F

=
K

F

m

m




















3.65       6.15 

(Here, mC  = 2.8 km sec
-1

). When K = 0.30km
-1

 (wave length of about 20.9km), gives 

  K = 3.1  10
-4

 km
-1

       6.16 

Equation (6.16) gives a result which suggests that the spectrum (energy and amplitude) of the underlying elastic 

solid is highly peaked. 

 

However, wave energy or amplitude spectrum is usually calculated in terms of frequencies rather than wave 

numbers. Thus, if   is the frequency bandwidth shown in figure 2 below, from equation (6.13), 

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

Figure 2. Sketch of Wave Energy as a function of frequency,  , (in Hz) 

 

  0),( KF        6.17 

 

we obtain approximately that, 

  0)(),(),( 2 



 


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F
KFKF  

and then, as 0  

)(E  
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Hz.)(In       
2

        ,11






  f

c
, m  and m  are the dominant wavelength and peak frequency 

respectively. 

Equation (6.18) is here used in studying the shallow layer below the earth's surface. So, we have neglected the 

effect of   which gives the rate of decay of seismic vibrations in the horizontal direction. 

 

In a horizontally stratified shallow structure below the earth's surface, )(z  and )(zss   . 

Therefrom, )(z  . Further, m  is about 30km and   is about 1.8km/sec in the upper earth's layer 

made of soft rock. Thus, despite the factor 
2  on the numerator of the right hand side of equation (6.18), 

1)( z . The inequality applies at all depths below the earth's surface over which microseismic signals are 

detectable. However, the factor 
2  suggests the strong dependence of )(z  on the layer rigidity and the 

peak wavelength m . 

 

The foregoing statement is confirmed by the numerical calculations depicting the vertical profile of )(z . 

The data source is the shear velocity )(z  and density )(zs  vertical structures extrapolated from the 

reference shear wave velocity profile (Bullen and Bolt, 1985; Yamamoto and Torii, 1986; Trevorrow and 

Yamamoto, 1991). Thus, figure 2, compares well with the records from the local data. The computed values of 

f  as function of z  are shown in Asor (2000). 

 

If mz 1.1  and the period is 8seconds, then, 
2182 )sec(109.16)(  radx . These data are those 

frequently used for theoretical calculations involving the peak energy of the solid vertical displacement in 

response to the passage of the seismic events. Hence, mz 1.1  suggests the likely depth of burial of a land-

based seismometer. Calculations from equation (6.8) further verify that )(z  is a decreasing function of the 

material rigidity for 














22

1

1

mT
O


 , where mT  is the period of the peak, 

m
mT


2 . 

 

Consequently, the computed values of f  as function of z depicts the form of the vertical structure of the 

elastic medium to a depth of about m100  below the earth's surface in the locality (Trevorrow et. al., 1989). 

 

Now, 

 








 


s


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22
, 

s


   for the damping coefficient,   (Okeke, 1972). 

Eventually, equation (6.8) takes the form 
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For large R , we use the asymptotic form of (KR) J 0  which is 
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Applying the stationary phase method in seismology (Ewing et. al., 1957) to equation (6.19) using equation 

(6.20), then, 
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where )( mKK   is the delta function. 
k

implies that the summation is over all possible values of k  in 

the spectrum. However, the contribution to equation (6.21) will come from those values of K  that are the roots 

of 0),( KF . 

 

We now evaluate the amplitude spectrum in the K -plane for the left and right hand sides of equation (6.21). 

The convolution theorem applied to Hankel's transform is used to evaluate the power associated with product on 

the right-hand side. However, in terms of the amplitude spectrum, 

  ),(),,(),,( 0  ppu KHKSKS      6.22 

),( pKH  is the spectrum of the transfer function obtained from 
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Using a sampling property of the delta function with support at pKK  , 
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with K  as the wave number associated with compressional wave and K  that associated with wave of 

rotation. 

 

The spectrum expressed by equation (6.23) is strongly peaked when mp KK   with K  as the width. 

However, due to the damping factor, the spectral height is still finite and inversely proportional to R . 

 

Equation (5.7) which gives the spectral density contains d , the shelf width. Because the goal of this study is the 

quantitative evaluation of the gravity waves (water) induced seismic activities in the far field, a realistic estimate 

of d  as a function of wave period is necessary. In this consideration, we take   as the angular frequency 

change between two successive maxima in the spectra of the incident and reflected beach waves. Using some of 

the relations for the shallow water sea waves, the characteristic linear wave speed, 00 ghc  , 0h  being the 

depth of the water layer measured from the undisturbed free surface, 0

2

0

2 cK . Thus, 
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With f 2 , where 
14

00

1

0 104.1  ,22  ,sec15  ,11.0   kmxKmhmcHzf , 

correspondingly, 
0

002.0
K

d


  . The relationship is one of the most acclaimed outcome of this study. It 

strongly suggests that the shelf width varies linearly as the wave period or wavelength of the propagating swell. 

If wave period is s8 , then, kmd 45 . The value agrees with that obtained by computing the orthogonal 

spacing, the corresponding group velocity, gV , and thence, the wave bottom pressure. The data are from a 

refraction diagram for an s8  water wave (Darbyshire and Okeke, 1969; Kinsman, 1965). In this study, d  is the 

distance from the shoreline (seaward) where the wave bottom pressure is appreciable enough to contribute 

significantly to the generation of microseisms in the shallow water zone. 

 

VII. DISCUSSION AND CONCLUSION 

 Equation (6.22) computes the relative energies of microseisms and associated sea waves with R  now 

assigned the value of 13km. This represents the average distance of a seismometer on the land measured from 

the ocean bottom seismic source, near the coastline. In previous calculations fR  was taken to be 1/30 

corresponding to that of Savarensky and others at Lake Yussi-Kul (Darbyshire and Okeke, 1969). In their 

investigation, the coastline was assumed to be rocky. However, in this study, theoretical calculation (Jackson, 

1962) gives the mean value of fR =1/38. This value allows for the finite angle of incident and reflection; thus, 

it seems more realistic. The calculations from this study are shown in Okeke and Asor (2000). On the whole, 

this model represents an improvement on our two previous investigations and further suggests that the 

phenomenon of wave reflection along coastlines contributes significantly to the spectral distortions observed in 

the intermediate frequency range of the spectrum. Finally, this theoretical model concerned the problem of the 

microseismic wave field generated by the activities of random pressure waves acting on the fluid/solid interface. 

The microseisms originating from this process propagate to the far field recording station in the form of guided 

elastic surface waves as expressed by equation (6.8). Along this guide, it is assumed that the mean elastic 

parameters are generally constant. However, any slight variation associated with these is reasonably accounted 

for by the introduction of damping factors in the governing equations for the elastic modes. 

 

In addition however, the denominator of each of equations (6.19) and (6.23) contains )(zs  and )(0 z , 

hence the energy ratio of microseismic and gravity waves will depend on the depth below the earth's surface. 

Consequently, we now divide the region below the earth’s surface into 20 parallel subdivisions. These are given 

by mz 100,...,10,5,2,1 . Using the vertical earth’s structure as data input and finite difference method, the 

calculations which resulted in the energy ratio are repeated at each subdivisions for the specified wave periods. 

The calculations were simplified by the replacement of the quantity  
V

F




in equation (5.3) by 

z

V
/

z

F








 and 

also assuming that the layer between two subdivisions is homogeneous. 

 

We thus show that the layers with low shear strength generally corresponds to those with high energy ratio. 

Consequently, the energy ratios are apparently decreasing function of the depth below the earth’s surface. This 

development is more at depths below 70m. Our calculations further suggests that the energy ratio is vanishingly 

small at about a depth of 100m and below. 

 

We also mention that, because of the presence of )(zs  in the denominator of the energy density ratio, the 

depth variation of the latter does not closely follow that of the spectral bandwidth. In the range of the low and 

intermediate frequency, appreciable microseisms are generated by the high phase velocity components of the 

seafloor pressure fluctuations associated with the propagating shallow water gravity waves. It is not in doubt 

that these components pressure modes possess sufficient energy adequate enough to effectively resonate the 

seismic modes within the seabed considering the intense wave activity that frequently dominates the shallow 
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water areas. Equation (6.22) governs this process with ),,( 0 KS p
 as the functional representative of the 

water wave energy spectrum. On the other hand, ),( 0 KH p  is the coupling function whose role is to 

communicate the gravity wave energy to the seismic modes. 

 

 However, the double frequency microseisms are not related to the linear modulation of the seafloor 

randomly distributed seawave bottom pressure fluctuations. Instead, the energy input in this case is derived from 

non-linear interactions among the components of the seawaves. The amplitude and energy spectra of the 

interacting seawaves in shallow water need to be derived. Successful attempts had been made by Darbyshire and 

Okeke (1969). More promising is the model developed by Okeke (1978). This is a one-dimensional solution and 

it only needs a generalization to two-dimensions to produce the desired result.As already stated, the computed 

results arising from this study are nearer to the observed than previous attempts. However, these results could be 

significantly improved if the energy of the second order wave effects is incorporated. 
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