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ABSTRACT: R. H. Bruck’s theorem [I] established the fact that any semigroup S can be embedded in a
Simple Semigroup which posses an identity element {(S). In this paper, we discuss some of the properties which
{(S) shares with any semigroup which posses an identity element S*. Thus we establish the following results

i Any regular (inverse) semigroup can be embedded in a Simple regular (Inverse) semigroup with an
identity element

ii. There exist simple inverse (and hence, regular) semigroups with an identity element which have an
arbitrary cardinal number of D — classes.

These results are new extensions arising from [1].

KEYWORDS:_Green’s Relations; L, R, D, H and J, Simple Semigroups, Regular Semigroups, Inverse
Semigroups.

l. DEFINITIONS AND PRELIMINARIES
The elements of a Semigroup S, are said to be L — (R -) equivalent if and only if they generate the same
principal left (right) ideal of S. We writte H=LNRand D = L°R =R°L. Thus L, R, D, H and J are
equivalence relations on S, such that H € L € D and H € R € D. We denote for each a € S, L-class, R-class,
H-class, D-class of a by La, Ra, Ha and Da respectively.
Forany a,b € S,aJb if SaS U Sa U aS U {a} = SbS U Sb U bS U {b}. (See [2] and [7])

S is a Simple Semigroup < S consists of a single J-class.

S is left [right] simple < S consists of a single L-[D-] class.

S is a Regular Semigroup if foreacha € S = a € aSa.

S is an Inverse Semigroup if for each a € S there exists a unique element x € S such that xax =

x and axa = a. Thus an inverse semigroup is a regular semigroup in which each element has a regular
conjugate.

oo o

Comments

Every semigroup consists of a collection of mutually disjoint D-classes. Each D-class can be broken down in the
following way called the egg-box picture. Imagine the elements of a D-class, arranged in a rectangular pattern
so that the rows correspond to R-classes and the columns to L-classes contained in D. Each cell of the egg-box
correspond to an H-class. A typical D-class looks like:

.......................................... R,
.......................................... Rs

Figure 1: A typical D-class
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Then a typical semigroup can be broken down as follows:

Dy

D,

D3

Figure 2: A typical semigroup

Remarks

S is simple [right S|mple]<=¢ S is bisimple o S is simple
b. The following conditions on a semigroup are equivalent
i S is regular and any two idempotents of S commute.
ii. Every L-[R-] class of S contains a unique idempotent.
iii. S is an inverse semigroup. (See [8] for proof)
s,if s has an identity element
s U1, otherwise
d. Every semigroup consists of a collection of mutually disjoint D-classes. In a D-class each H-class is
equally full of elements. Any two H-classes in the same D-class, have the same cardinal number.
e. Inan inverse semigroup of idempotents, each D-class consists of a single idempotent (See [6])

c. Forasemigroup S, we write; S = {

S can be embedded in (S)

Proof: Let {(S) be the semigroup generated by S U {a, b}where a, b € S, such that ab = 1,as = a,sb = s for
every s € S, Let a® = 1,b° = 1. Then the element of {(S) are of the form
bisa’(s € S,i and j are nonnegative numbers).

Hence bisa’ = b™ta™ & i = m,s = t and j = n. Now, let a = bisa’/, § = b™ta™, be any two elements of
{(S),then & = b'sa™ 1, = b 1ta’.

Thus, {(S) is simple. Also 1 is an identity for{(S). Hence S* can be embedded in ¢(S). (See also, [1])
The L-, R- and D- classes of {(S) in terms of those of §!

Let A and B be subsemigroups of ¢(S) such that;;1 z %Ziz z g 1 ; 3 ;
Then

Conjecturel: (See also, [3] and [4])

If {L,: 1 € A} are the L-classes of S?, then {BL;a™: 1 € A,n = 0,1,2,3,...} are the L-classes of {(S).

Proof: The elements hisa’ and b™ta™ are L-equivalent in {(S) < there exists bPxa? and b*va? in {(S) such
that:

a. bPxalbisa’ = b™ta™
b. b*va’bh™ta™ = bisa’
Thus, we have the following possibilities:
bPxa/*171if q > i
bPxalbsa’ =4 bPxsal,if q =i

bP*1-4sal if q < i
and
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b*ya™r ™ if v > m
bYya’bh™ta™ =< b¥ytatifv=m
p*t™Via™,if v <m

Suppose that g > i. Then from (a) we have that j + (¢ — i) = n and (b) n < j. This is impossible! Hence g < i,
and similarly v < m. Furthermore, each of them implies that j = n.

Since g < i, from (a), we have either p = mand xs =t orp + (i — q) = mand s = t. Since v < m, from (b)
we either u = i and yt = sor u+ (m —v) = i and t = s. For any non-negative integers i, m, we can find
non-negative integers p, g, u, v satisfying these conditions. Hence we have shown that b’sa’ and b™ta™ are L-
equivalent in {(S) if and only if n = j and sLt in S*.

Conjecture 2

If{Ri: i € I} are the R-classes of St then {b™RiA:i € ,m = 0,1, 2,3, ...} are the R-classes of {(5).
Proof: This is the left — right dual of Conjecturel.

Conjecture 3

If {Ds: 6 € A} are the D-classes of S then {BDsA: § € A} are the D-classes of {(S).

Proof:

The elements bisa’ and b™ta™ are D-equivalent in {(S) if and only if there exists b?xa? such that
b'sa’ L bPxa? R b™ta™. By Conjectures 1 and 2 above, this obtains if and only if j = q,p = m and sLxRt in
S*. Hence bisa’ D b™ta™in {(S) if and only if sDt in S*.

Theorem
{(S) is aregular [inverse] semigroup if and only if St is a regular [inverse] semigroup.[9]

Proof:
Let bisa’ and b™ta™ be any two elements in {(S) with s, t € S*. Then we assert that

) ) ) ) bi 2 j’ ifi> ) P —
(b'sa’)(b™ta™)(b'sa’) = sa ifj : .m.n +0 m.) l
b'stsa’,if j=mn =1
We also assert that these are the only cases for which the product on the left is equal to bixa’ for any x € S*.
Thus the inverse of b'sa’ in {(S) are the elements b/ta’ where t is an inverse of s in S*. So b'sa’ has a unique
inverse in ¢(S) if and only if s has a unique inverse in S*. Hence the theorem is proved.

Extensions/Conclusion

a. Any regular [inverse] semigroup can be embedded in a simple regular [inverse] semigroup with
identity.

Proof:
In view of the above theorem and the fact S is a regular [inverse] semigroup if and only if S is a regular
[inverse] semigroup, this extension is tenable.

b. There exist simple inverse [and hence, regular] semigroups with an identity, which contain an arbitrary
number of D-classes.

Proof:
In view of the theorem above as well as Conjecture 3, it suffices to observe that in an inverse semigroup of
idempotents, each D-class consists of a single idempotent. We also refer to Green’s Theorem [7].

Green’s Theorem: Let a and ¢ be the D-equivalent elements of a semigroup S. Then there exists € S such that
aRb and bLc and hence as = b, bs' = a,tb = c, for some s, s',t,t' € St.
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The functions f: Ha — Hc and g: Hc — Ha defined by f(x) = txs and g(y) = ttys?! are 1-1, onto, and
mutually inverse. Hence, any two H-classes in the same D-class have the same cardinal number (See [5] and
[10]). Thus this extension is tenable. m
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