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Abstract: In this paper we prove some extension of the Enestrom-Kakeya theorem by relaxing the hypothesis of
this result in several ways and obtain zero-free regions for polynomials with restricted coefficients and there by
present some interesting generalizations and extensions of the Enestrom-Kakeya Theorem.
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1. INTRODUCTION

The well known Results Enestrom-Kakeya theorem [1,2] in theory of the distribution of zeros of polynomials is
the following.

Theorem (A4).): Let P(z2)= ¥, a;z' be a polynomial of degree nsuchthat 0 < ay, <a; < a, <,...,< a,
then all the zeros of P(z) lie in |z|<1.

Applying the above result to the polynomial z"P(i) we get the following result:

Theorem (A,). If P(z) =X, a;z* be a polynomial of degree nsuchthat 0 < a, < a,.; < ap_p <, ..., <
Qo

then P(z) does not vanish in |z|<1

In the literature [3-9], there exist several extensions and generalizations of the Enestrom-Kakeya Theorem.
Recently B. A. Zargar [9] proved the following results:

Theorem (43). If P(z) =X, a;z" be a polynomial of degree n such that for some k >1,
0<a, <a,_1 < a,_; <, ..., < qq then P(z) does not vanish in the disk |z|<ﬁ.
Theorem (A4). If P(z)=¥",a;z" beapolynomial of degree n such that for some real number

0<p<an,0<a, —p<a,1< an_, <,...,a; <a, then P(z) does not vanish in the disk |z|<1+%_p.

ag

Theorem (As). If P(z)=3Y",a;z" beapolynomial of degree n such that for some real number k >1,

0<ay €£a; < a,s,...,< ka, then P(z) does not vanish in the disk |z|<2ka1 p
-

Theorem (Ag). If P(z)=Y",a;z" bea polynomial of degree n such that for some real number p >0

1

0<ay<a, < a,<,..,<ay_q <a,+p then P(z) does not vanish in the disk |z|<
2(ap+p)—ay

In this paper we give generalizations of the above mentioned results. In fact, we prove the following results:
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Theorem 1. Let P(z) =¥ , a;z' be a polynomial of degree n with real coefficients such that for some k >1
p=20,a,#0, a0, —p<a, 1<, ,fapy<kap=an42..,2a =2q

lao|
2k(am+|am)—(ag+2|aml+an)+an+2p

then all the zeros of P(z) does not vanish in the disk |z]| <

Corollary 1.. LetP(z) =¥, a;z" be a polynomial of degree n with real coefficients such that for some
a, <0, 1<, 01 < an=20p_12,...,= 01 = Qg

laol

2am+lanl—(ap+an)

then all the zeros of P(z) does not vanish in the disk |z| <

Corollary 2. Let P(z) =X, a;z' be a polynomial of degree n with positive real coefficients such that for

somek=>1, p=0,a, #0, a, —p<a,1<,...<ap <kap,=a,_1=>..,2a =q

o
2(2k-1)am—ag+2p

then all the zeros of P(z) does not vanish in the disk |z| <

Remark 1.
(i) By taking p = 0 and k = 1 in theorem 1, then it reduces to Corollary 1.

(ii) By taking a; > 0 for i = 0,1,2,...,n — 1, theorem 1, then it reduces to Corollary 2.

Theorem 2. Let P(z) =X, a;z' be a polynomial of degree n with real coefficients such that for some

p=20 0<r<1 a, <0, 15 . <auuu<ap+p=au_1=..,2a0 =210

lao|
4p+lagl+2am+|an|-an—r(ao+laol)’

then all the zeros of P(z) does not vanish in the disk |z]| <

Corollary 3. Let P(z) =3, a;z" be a polynomial of degree n with real coefficients such that for some
O0<r<la, <ap 15, <auu1<aup+p=au_12..,20a =210

lao|
lag|+2am+|an|-an—r(ao+laol)’

then all the zeros of P(z) does not vanish in the disk |z]| <

Corollary 4. Let P(z) =X, a;z' be a polynomial of degree n with positive real coefficients such that for
some

p=20 0<r<l,a,<a, 15, ...<aquui<aup+tp=anu_4=..,20 2710

Ao

then all the zeros of P(z) does not vanish in the disk |z| < :
4p+apt2am—2rag
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Remark 2.

(i) By taking p = 0 in theorem 2 then it reduces to Corollary 3.

(if) By taking a; > 0 for i = 0,1,2,...,n — 1, in theorem 2, then it reduces to Corollary 4.

Theorem 3. Let P(z) =¥ , a;z' be a polynomial of degree n with real coefficients such that for some
0<r<i,

p=20,a,#0,a,+p=0a,12..,2Aq41 270, < A1 S0, <0 S Qg

laol

ap+2|am|-2r(am+lamD+an+lan|+2p

then all the zeros of P(z) does not vanish in the disk |z| <

Corollary 5. Let P(z) =X , a;z" be a polynomial of degree n with real coefficients such that for some ,
Ay 2 0p 12,0, 2 Q1 2 A S A1 S, 00,201 S Qg

laol
ap—2am+antian|

then all the zeros of P(z) does not vanish in the disk |z| <

Corollary 6. LetP(z) =¥ ,a;z' be a polynomial of degree n with Positive real coefficients such that for
some

0<r<1,p=20,0,#0,a, +p=2ap 12,2 0ps1 27 <A1 <, ., < L ag

Ao
ap+2(ap+p+(1-2r)ay,)

then all the zeros of P(z) does not vanish in the disk |z| <

Remark 3.

(i) By taking p = 0 and r = 1 in theorem 3, then it reduces to Corollary 5.

(if) By taking a; > 0 for i = 0,1,2, ...,n — 1, in theorem 3, then it reduces to Corollary 6..

Theorem 4. Let P(z) =¥, a;z" be a polynomial of degree n with real coefficients such that for some k >
11

p=0 a,2a, 12 ...2aqp1 20, —P<ap15,...,5ay < kay

laol
lan|+an+k(ao+lag)—lagl-2am+4p

then all the zeros of P(z) does not vanish in the disk |z]| <

Corollary 7. LetP(z) =X ,a;z" be a polynomial of degree n with real coefficients such that for some
k=1,

Ay 20120, 2 A1 20 — P <A1 S, ., <0y S kag

=

laol
lanl+an+k(ao+lagD—lagl—2am

then all the zeros of P(z) does not vanish in the disk |z| <

Corollary 8. Let P(z) =¥, a;z" be a polynomial of degree n with positive real coefficients such that for
some

k=21,p20, a, 20,12, ...,20p41 20 —P<0p_1<,..,.<a; <ka,
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Ao
(2k—-1)ag—2am+2ap+4p

then all the zeros of P(z) does not vanish in the disk |z]| <

Remark 4.

(i) By taking p = 0 in theorem 4, then it reduces to Corollary 7.
(if) By taking a; > 0 for i = 0,1,2,...,n — 1, in theorem 4, then it reduces to Corollary 8.

2. Proofs of the Theorems

Proof of the Theorem 1.

Let P(2)= a,z" + ap_1z" 1 + -+ a;z + a,

Let Consider the polynomial J(z):z"P(i)

And R(2)= (z-1)J(2) so that

Then R(z2)=(z-1)(apz™ + a1z 1 + - 4+ 12" ™ + a4 2" ™ + a2V ™+ a2+ ay)

= apz™ —{(ap — a)z" + (a; — ax)z" 4 4 (A1 — A)Z" T+ (A = Ape) 2V o+ (A —
a,)z+ a,}

Also if |z| > 1 then m% <fori=012,..,n—1.

Now [R(2)| = |aollz|™ = { lag — allz|™ + |a; — ax||z|" ™" + - + |@p_1 — Q|2 + |ay, —
am+1||Z|n_m + +|an—1 - an”Zl + |an| }

lai—az|

1 lam—1—am]l lam—a | lan—1—an| lan|
= |a0||Z|n[|Z|_@{|a0 _all ++ Iz| + -t 7|"Z|11n_1m + m|Z|r’:+1 +ot Tzl‘il—ln +|Z%}]

1
> |a0||z|”[|z|—@

"'+|an—1 +p—a, _pl + I anl }]

{lag — aq|+|a; — ay| + -+ |apm—y — kay, + ka,, — apl|+|ay, —kay, + kay, + appql| +

> IaoIIZI”[IZI—ﬁ{(al —ag) +(az —ay) + -+ (kay — a1 ) + (k — Dlan| + (k — Dlay| + (kan —
am+1) -"+(an—1 +p - an) +p+ | anl }]

1
2 |aollz|" (12—~ {2k(am — lamD) = (a + 2lam| + an) + lax| +2p}]
. 1
> 0if |Z| > @[ (Zk(am - |am|) - (aO + zlaml + an) + |an| + 2.0 ]

This shows that all the zeros of R(z) whose modulus is greater than 1 lie in the closed disk
1
|Z| =< @[ (Zk(am - |am|) - (ao + Zlaml + an) + |an| + Zp ]

But those zeros of R(z) whose modulus is less than or equal to 1 already lie in the above disk.
Therefore, it follows that all the zeros of R(z) and hence J(z) lie in

2] < o [ k(@ = lam]) = (@0 + 2lam| + an) + |anl +2p ]
Since P(z) = z"J(i) it follows, by replacing z by i ,
Then all the zeros of P(z) lie in

lag|
(2k(am—laml)—(ao+2|am|+an )+lanl+2p

lz| =

Hence P(z) does not vanish in the disk
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laol

zZl <
| | k(am—laml)—(ag+2lam|+an)+lanl+2p

This completes the proof of the Theorem 1.

Proof of the Theorem 2.

Let P(2)= apz™ + ap_1z" 1+ -+ a;z + a,

Let Consider the polynomial J(z):z”P(i)

And R(z)= (z-1)J(z) so that

Then R(2)=(z-1)(apz™ + a1 2" 1 + -+ 4+ A1z ™ + a4 2" ™ + a2+ a1z + ay)

= agz™ —{(ao — a)z" + (a; — a2)z" M+ (@por — )2+ (@ — Qe )Z T
(an-1 —an)z + an}

Also if |z| > 1then ——

= <fori=012..,n—1
Now [R(2)| = |aollzI™™ = { lao — ail|z|* + |ay — a||z|" ™" + - + @y — Gm|]2]" 7 + |ap, —
am+1||Z|n_m + o +|an—1 - an”Zl + |an| }

lai—az|

> laollz1"[i2) - o {lag — @y | + + 122 4o g Fmeaiml g Hom ] g Roneinl 4 tony)

|z| |z|™m-1 lzI™ z|™~1 |z|™

1
2 |aollz[*llzl— o {Irap — ar +rao +ao |+lay —az| + -+ lamy —p+p—anltlan—p+p+
am+1+... +lan—1—an|+| an/}]

1
2 |ao|lz|"[lz]- = {(ar —rag) + (L =Mlaglt (az —a) + -+ (@m +p —ams) +p+(an +p -
am+1) +p.. +(an—1 - an) + | anl }]

1
= |aollz[™[lz| _@{4p+|a0|+2am +lap| —an —7(ag +lagl) }]

>0 if |Z|>ﬁ[4p+ lag| + 2a, + la,l — a, —r(ag +|ag|)]

This shows that all the zeros of R(z) whose modulus is greater than 1 lie in the closed disk

2l < o[ 40+ laol + 2ap + lanl = an —7(ao +lao|) ]
But those zeros of R(z) whose modulus is less than or equal to 1 already lie in the above disk.
Therefore, it follows that all the zeros of R(z) and hence J(z) lie in

2l < o[ 40+ laol + 2ap + lanl = an —7(ao +ao|) ]
Since P(2) = z”J(i) it follows, by replacing z by i ,
Then all the zeros of P(z) lie in

a
4p+|ag| + 2am + lan|— an -r(ag +lagl)

Hence P(z) does not vanish in the disk
| | laol
4p+ lagl + 2am + lan|— an —r(ag +lao|)

This completes the proof of the Theorem 2.
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Proof of the Theorem 3.

Let P(2)= apz™ + ap_1z" 1+ -+ a;z + a,

Let Consider the polynomial J(z):z”P(i)

And R(z)= (z-1)J(z) so that

Then R(2)=(z-1)(apz™ + a1 2" 1 + -+ 4+ A1z ™ + a4 2" ™ + a2+t ay_Zz + ay)

= apz" —{(a —a)z" + (@ —a)z" M+ o+ (@nog — W) 2T+ (@ — Q)2
(an—l - an)Z + an}

Also if |z| > 1then —— W —<fori=012,..,n—-1

Now |R(2)| = |0to||Z|"Jr1 —{ lag = aillz]" + lay — az||z|" ™" + -+ + |@moy — @pl 2" + |y, —
am+1||Z|n_m + o +|an—1 - an”Zl + |an| }

> |ao|lz|™[lZ] _ﬁ{ lag — a| + +|a1 as| ot |am-1—am| + |[am=am+1l ot [@n-1—anl +|a_n|}]

|z| |z|™m-1 lzI™ z|™~1 |z|™

= |a0||Z| [lzl_m{ |a0 a1| + |a1 _a2| + ot |am—1 —Tay tray, _aml + |am — Ty + 710y +

am+1[+... +lan—1+p—an—p|+] anf}]

> Jaollz|" 2= 1 (a0 = a1) + (@1 = @3) + -+ + (@og =T ) + (L= Dltm] + (1 =1)lm| + (@1 =
ram) +(an + p— an—l) + p + | anl }]

1
= |a0||Z|n[|Z| __{ IaOI + 2|am| - Zr(am + | am |)+ |an| +a, +2P}]

>0 if |z|> [ lag| + 2|la,] —2r(aym + |an|) + lax] + a, +2p]

This shows that all the zeros of R(z) whose modulus is greater than 1 lie in the closed disk
1
2l <7D aol + 2Zlaml = 2r(am + lam ) + lanl + an +2p]

But those zeros of R(z) whose modulus is less than or equal to 1 already lie in the above disk.
Therefore, it follows that all the zeros of R(z) and hence J(2) lie in

|z I_| [laol + 2[am| = 2r(am + | am | )+ lan| + a, +2p]
Since P(z) = z”J(i) it follows, by replacing z by ; ,
Then all the zeros of P(2) lie in

| | |a0|
~ laol + 2lam|=2r(am + | am | )+ lan|+ an +2p

Hence P(z) does not vanish in the disk
| | |a0|
lagl + 2lam|—2r(am + | am | )+ lan|+ an +2p

This completes the proof of the Theorem 3.

Proof of the Theorem 4.

Let P(2)= apz™ + ap_1z" 1 + -+ a;z + aq
Let Consider the polynomial J(z)=z"P(§)

And R(2)= (z-1)J(z) so that
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Then R(2)=(z-1)(apz™ + a1 2" 1 + -+ 4+ a1z ™ + a4 2" ™ + a2+t ay_Zz + ay)

= aozn+1 —{(ap —a)z" + (a; — az)Zn_l + -+ (apm-g — am)Zn_mJr1 + (A — )2+ (Apog —
a,)z +a,}

Also if |z| > 1then ——

= <fori=012,..,n—1.
Now [R(2)| = |aollz|™ = { lao — aillz|® + |ay — a||z|" ™" + - + |amoq — Gml]2]" 7 + |ap, —
am+1||Z|n_m + +|an—1 - an”Zl + |an| }

1 lai—az| lam-1—aml lam—a | lapn—1—an| lan|
> |ao|l2l"[l2] = 5 (1o = @y | + -+ 4 oo Bl g Pl g a4 ]

1
2 |aollz|"[lz]= 1~ {l kao — a1 + kay +ao [+]ay —az| + -+ |am-s —p+p—amltlan—p+p+
am+1+... +lan—1—an|+| an/}]

2 |a0||Z|n[|Z|_ﬁ{(kao —a;)+ (k—Dlagl+ (e —a) + -+ (@n1+tp—an) +p+ (@ni1 +p—
am) +p.. +(an - an—l) + | anl }]

> Jagllz|"[l2] = o {lan] + an + kCao + lag) ~ lagl — 2ay + 4p}]
> 00 f2] > 2= [ lagl + an + k(ao + lao]) ~ laol — 2ay, + 4p]

This shows that all the zeros of R(z) whose modulus is greater than 1 lie in the closed disk
2l < oy Llanl + an + kCag + lao]) = lao| = 2, + 4p]

But those zeros of R(z) whose modulus is less than or equal to 1 already lie in the above disk.
Therefore, it follows that all the zeros of R(z) and hence J(z) lie in

2l < oy [lanl + an + kCao + lao]) = laol = 2ay, + 4p]

Since P(z) = z”J(i) it follows, by replacing z by i ,
Then all the zeros of P(z) lie in

lao|
2| =
lanl+a,+k(ag +lagl)—laogl— 2am + 4p

Hence P(z) does not vanish in the disk
lz| <

laogl
lanl+ant+k(ao +lagD—laol— 2am + 4p

This completes the proof of the Theorem 4.
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