TOTALLY _α * CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES

S. Pious Missier¹, P. Anbarasi Rodrigo²

¹Associate Professor of Mathematics PG and Research Department of Mathematics VOC College, Thoothukudi, India ²Research Scholar PG and Research Department of Mathematics VOC College, Thoothukudi, India

ABSTRACT

The aim of this paper is to define a new class of functions namely totally α * continuous functions and slightly α * continuous functions and study their properties. Additionally, we relate and compare these functions with some other functions in topological spaces.

Keywords and phrases: totally α * continuous and slightly α * continuous.

I. INTRODUCTION

Continuity is an important concept in mathematics and many forms of continuous functions have been introduced over the years. In 1980 S.N Maheswari and S.S.Thakur [4] defined α continuous functions. RC Jain [2] introduced the concept of totally continuous functions and slightly continuous for topological spaces. In this paper, we define totally α * continuous functions and slightly α * continuous functions and slightly α * continuous functions and slightly α * continuous functions and basic properties of these functions are investigated and obtained.

II. PRELIMINARIES

Throughout this paper (X, τ), (Y, σ) and (Z, η) or X, Y, Z represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A) and int(A) denote the closure and the interior of A respectively. The power set of X is denoted by P(X). If A is α *open and α * closed, then it is said to be α * clopen.

Definition 2.1: A subset A of a topological space X is said to be a α *open [5] if A \subseteq int* (cl (int* (A))). **Definition 2.2:** A function f : (X, τ) \rightarrow (Y, σ) is called *totally continuous* [2] if f⁻¹(V) is clopen set in X for each open set V of Y.

Definition 2.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a α * *continuous* [8] if f⁻¹(O) is a α *open set of (X, τ) for every open set O of (Y, σ).

Definition 2.4: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be *perfectly* α * *continuous* [6] if the inverse image of every α *open set in (Y, σ) is both open and closed in (X, τ) .

Definition 2.5: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *slightly continuous*[2] if the inverse image of every clopen set in Y is open in X.

Definition 2.6: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra continuous* [1] if f⁻¹ (O) is closed in (X, τ) for every open set O in (Y, σ) .

Definition 2.7: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called *Contra* α * *continuous functions* [7] if f⁻¹ (O) is α * closed in (X, τ) for every open set O in (Y, σ) .

Definition 2.8: A topological space X is called a $\alpha *$ *connected* [9] if X cannot be expressed as a disjoint union of two non-empty α *open sets.

Definition 2.9: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be *pre* α **open* [7] if the image of every α *open set of X is α *open in Y.

Definition 2.10: A topological space X is said to be **connected** [10] if X cannot be expressed as the union of two disjoint nonempty open sets in X.

Definition 2.11: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *strongly* α * *continuous* [6] if the inverse image of every α *open set in (Y, σ) is open in (X, τ) .

Definition 2.12: A Topological space X is said to be $\alpha * T_{1/2}$ space or $\alpha * space$ [8] if every $\alpha *$ open set of X is open in X.

Definition 2.13: A space (X, τ) is called a *locally indiscrete space* [3] if every open set of X is closed in X. **Theorem 2.14**[5]:

(i) Every open set is α *- open and every closed set is α *-closed set

III. Totally α * continuous functions

Definition 3.1: A function $(X, \tau) \rightarrow (Y, \sigma)$ is called **totally** α * **continuous functions** if the inverse image of every open set of (Y, σ) is both α * open and α * closed subset of (X, τ) .

Example 3.2: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{abc\}, X\}, \sigma = \{\phi, \{a\}, \{b\}, \{ab\}, Y\}, \alpha *O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{ad\}, \{acd\}, \{acd\}$

Theorem 3.2: Every totally α * continuous functions is α * continuous.

Proof: Let O be an open set of (Y, σ) . Since, f is totally α * continuous functions, f⁻¹(O) is both α * open and α * closed in (X, τ) . Therefore, f is α * continuous.

Remark 3.3: The converse of above theorem need not be true.

Example 3.4: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{ab\}, \{ab\}, \{ab\}, \{ab\}, \{ab\}, Y\}$. Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = a, g(b) = c, g(c) = b, g(d) = d. $\alpha * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{abc\}, \{abd\}, X\}$ and $\alpha * C(X, \tau) = \{\phi, \{c\}, \{d\}, \{ad\}, \{cd\}, \{acd\}, \{bc\}, \{acd\}, \{bc\}, X\}$. Clearly, g is not totally α *continuous since $g^{-1}(\{a\}) = \{a\}$ is α * open in X but not α * closed. However, g is α * continuous.

Theorem3.5: Every totally continuous function is totally α * continuous.

Proof: Let O be an open set of (Y, σ) . Since, f is totally continuous functions, f⁻¹(O) is both open and closed in (X, τ) . Since every open set is α * open and every closed set is α * closed. f⁻¹(O) is both α * open and α * closed in (X, τ) . Therefore, f is totally α * continuous.

Remark 3.6: The converse of above theorem need not be true.

Example 3.7: Let $X = Y = \{a, b, c,d\}, \tau = \{\phi, \{ab\}, X\}, \tau^c = \{\phi, \{cd\}, X\}, \sigma = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, Y\}$. Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by $g(a) = a, g(b) = b, g(c) = c, g(d) = d. \alpha * O(X, \tau) = P(X) = \alpha * C(X, \tau)$. Clearly, g is totally α *continuous but $g^{-1}(\{a,b\}) = \{a,b\}$ is open in X but not closed in X. Therefore, g is not totally continuous.

Theorem 3.8: Every perfectly α * continuous map is totally α * continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a perfectly α * continuous map. Let O be an open set of (Y, σ) . Then O is α * open in (Y, σ) . Since f is perfectly α * continuous, $f^{-1}(O)$ is both open and closed in (X, τ) , implies $f^{-1}(O)$ is both α * open and α * closed in (X, τ) . Therefore, f is totally α * continuous.

Remark 3.9: The converse of above theorem need not be true.

Example3.10: Let $X = Y = \{a, b, c,d\}$, $\tau = \{\phi, \{ab\}, X\}$, $\tau^c = \{\phi, \{cd\}, X\}$, $\sigma = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, Y\}$. Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = a, g(b) = b, g(c) = c, g(d) = d. $\alpha * O(X, \tau) = P(X) = \alpha * C(X, \tau)$. $\alpha * O(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, \{abd\}, Y\}$. Clearly, g is totally α *continuous but $g^{-1}(\{a,b\}) = \{a,b\}$ is open in X but not closed in X. Therefore, g is not perfectly α *continuous.

Remark 3.11: The concept of totally α * continuous and strongly α * continuous are independent of each other.

Example 3.12: Let $X = Y = \{a, b, c,d\}, \tau = \{\phi, \{ab\}, X\}, \tau^c = \{\phi, \{cd\}, X\}, \sigma = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, Y\}$. Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by $g(a) = a, g(b) = b, g(c) = c, g(d) = d. \alpha * O(X, \tau) = P(X) = \alpha * C(X, \tau)$. and $\alpha * O(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{abc\}, \{abd\}, Y\}$. Clearly, g is totally α *continuous but $g^{-1}(\{b\}) = \{b\}$ is not open in X. Therefore, g is not strongly α * continuous.

Example 3.13: Let $X = Y = \{a, b, c\}, \tau = \{\varphi, \{a\}, \{ab\}, \{ac\}, X\}, \sigma = \{\varphi, \{a\}, \{ab\}, \{ab\}, \{Ac\}, Y\}$. Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = a = g(b), $g(c) = c \cdot \alpha * O(X, \tau) = \{\varphi, \{a\}, \{ab\}, \{ac\}, X\}$, $\alpha * C(X, \tau) = \{\varphi, \{bc\}, \{b\}, \{c\}, X\}$ and $\alpha * O(Y, \sigma) = \{\varphi, \{a\}, \{b\}, \{ab\}, \{ac\}, Y\}$. Clearly, g is strongly α *continuous but $g^{-1}(\{a\}) = \{ab\}$ is α * open in X but not α * closed. Therefore, g is not totally α * continuous.

Theorem 3.14: If f: X \rightarrow Y is a totally α * continuous map, and X is α * connected, then Y is an indiscrete space.

Proof: Suppose that Y is not an indiscrete space. Let A be a non-empty open subset of Y. Since, f is totally α * continuous map, then f⁻¹ (A) is a non-empty α * clopen subset of X. Then X = f⁻¹ (A) \cup (f⁻¹ (A))^c. Thus, X is a union of two non-empty disjoint α * open sets which is contradiction to the fact that X is α * connected. Therefore, Y must be an indiscrete space

Theorem 3.15: Let $f\colon X \to Y$ and $g\colon Y \to Z$ be functions. Then $g \circ f: X \to Z$

(i) If f is α * irresolute and g is totally α * continuous then $g \circ f$ is totally α * continuous

(ii) If f is totally α * continuous and g is continuous then $g \circ f$ is totally α * continuous. **Proof:**

- (i) Let O be an open set in Z. Since g is totally α * continuous, g⁻¹(O) is α * clopen in Y. Since f is α * irresolute, f⁻¹(g⁻¹(O)) is α * open and α * closed in X. Since, (g \circ f)⁻¹(O) = f⁻¹(g⁻¹(O)). Therefore, g \circ f is totally α * continuous.
- (ii) Let O be an open set in Z. Since g is continuous, $g^{-1}(O)$ is open in Y. Since, f is totally α * continuous, $f^{-1}(g^{-1}(O))$ is α * clopen in X. Hence, $g \circ f$ is totally α * continuous.

IV. Slightly α * continuous functions.

Definition 4.1: A function $(X, \tau) \rightarrow (Y, \sigma)$ is called **slightly** α * **continuous** at a point $x \in X$ if for each clopen subset V of Y containing f(x), there exists a α * open subset U in X containing x such that $f(U) \subseteq V$. The function f is said to be slightly α * continuous if f is slightly α * continuous at each of its points.

Definition 4.2: A function $(X, \tau) \rightarrow (Y, \sigma)$ is said to be **slightly** α * **continuous** if the inverse image of every clopen set in Y is α * open in X.

Example 4.3: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{ab\}, \{abc\}, X\}$, $\sigma = \{\phi, \{a\}, \{bc\}, Y\}$ and $\alpha * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{ab\}, \{abc\}, \{ab\}, \{abc\}, \{abd\}, \{acd\}, \{acd\}, \{bcd\}, X\}$. Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g (a) = b, g(b) = a, g(c) = d, g(d) = c. Clearly, g is slightly α *continuous . **Proposition 4.4:** The definition 4.1 and 4.2 are equivalent.

Proof: Suppose the definition 4.1 holds. Let O be a clopen set in Y and $x \in f^{-1}(O)$. Then $f(x) \in O$ and thus there exists a α * open set U_x such that $x \in U_x \subseteq f^{-1}(O)$ and $f^{-1}(O) = \bigcup_{x \in f^{-1}(O)} U_x$. Since, arbitrary union of α * open set is α * open. $f^{-1}(O)$ is α * open in X and therefore, f is slightly α *continuous. Suppose, the definition 4.2 holds. Let $f(x) \in O$ where, O is a clopen set in Y. Since, f is slightly α *continuous,

 $x \in f^{-1}(O)$ where $f^{-1}(O)$ is α * open in X. Let $U = f^{-1}(O)$. Then U is α * open in X, $x \in X$ and $f(U) \subseteq O$.

Theorem 4.5: For a function f: $(X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent.

(i) f is slightly α *continuous.

- (ii) The inverse image of every clopen set O of Y is α * open in X.
- (iii) The inverse image of every clopen set O of Y is α * closed in X.
- (iv) The inverse image of every clopen set O of Y is α * clopen in X.

Proof:

- (i) \Rightarrow (ii): Follows from the proposition 4.4
- (ii) \Rightarrow (iii): Let O be a clopen set in Y which implies O^c is clopen in Y. By (ii), f⁻¹ (O^c) = (f⁻¹(O))^c is α * open in X. Therefore, f⁻¹(O) is α * closed in X.
- (iii) \Rightarrow (iv): By (ii) and (iii), f⁻¹(O) is α * clopen in X.
- (iv) \Rightarrow (i): Let O be a clopen set in Y containing f(x), by (iv) f⁻¹(O) is α * clopen in X. Take U = f⁻¹ (O), then f(U) \subseteq O. Hence, f is slightly α *continuous.

Theorem 4.6: Every slightly continuous function is slightly α *continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a slightly continuous function. Let O be a clopen set in Y. Then, f⁻¹(O) is open in X. Since, every open set is α * open. Hence, f is slightly α *continuous.

Remark 4.7: The converse of the above theorem need not be true as can be seen from the following example. **Example 4.8:** Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{ab\}, \{abc\}, X\}, \sigma = \{\phi, \{a\}, \{bcd\}, Y\} \text{ and } \alpha * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{abc\}, \{abd\}, \{acd\}, \{acd\}, \{bcd\}, X\}.$ Let *g*: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by g (a) = b, g(b) = a, g(c) = d, g(d) = c. Clearly, g is slightly α *continuous but not slightly continuous. Since, g⁻¹(a) = b where a is clopen in Y but b is not open in X.

Theorem 4.9: Every α *continuous function is slightly α *continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a α *continuous function. Let O be a clopen set in Y. Then, f⁻¹(O) is α * open in X and α * closed in X. Hence, f is slightly α *continuous.

Remark 4.10: The converse of the above theorem need not be true as can be seen from the following example.

Example 4.11: Let $X = \{a,b,c\}$ and $Y = \{a,b\}$, $\tau = \{\phi, \{a\},\{b\},\{ab\},X\}$, $\sigma = \{\phi, \{a\},Y\}$ and $\alpha * O(X, \tau) = \{\phi, \{a\},\{b\},\{ac\},X\}$. Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a)=b, g(b)=g(c)=a, The function f is slightly α *continuous but not α *continuous, since, $g^{-1}(a) = (bc)$ is not α * open in X.

Theorem 4.12: Every contra α *continuous function is slightly α *continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a contra α *continuous function. Let O be a clopen set in Y. Then, $f^{-1}(O)$ is α * open in X. Hence, f is slightly α *continuous.

Remark 4.13: The converse of the above theorem need not be true as can be seen from the following example. **Example 4.14:** Let $X = Y = \{a,b,c\}, \tau = \{\phi, \{a\}, \{b\}, \{ab\}, X\}, \sigma = \{\phi, \{a\}, \{c\}, \{ab\}, \{ac\}, Y\}$ and $\sigma^{c} = \{\phi, \{b\}, \{c\}, \{ab\}, \{bc\}, Y\}$ and $\alpha^{*} O(X, \tau) = \{\phi, \{a\}, \{b\}, \{ac\}, X\}$. Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a)=a, g(b)=c, g(c)=b. The function f is slightly α *continuous but not contra α *continuous, since, $g^{-1}(b) = (c)$ is not α^{*} open in X.

Remark 4.15: Composition of two slightly α *continuous need not be slightly α *continuous as it can be seen from the following example.

Example 4.16: Let $X=Y=\{a,b,c,d\}$, $Z = \{a,b,c\}$ and the topologies are $\tau = \{\phi, \{a\}, \{ab\}, \{abc\}, X\}$ and $\sigma = \{\phi, \{a\}, \{bcd\}, Y\}$ and $\eta = \{\phi, \{b\}, \{ac\}, Z\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c, f(d) = d, $\alpha *O(X,\tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{ac\}, \{ad\}, \{bc\}, \{abc\}, \{acd\}, X\}$. Clearly, f is slightly α *continuous. Define g: $(Y, \sigma) \rightarrow (Z, \eta)$ by g(a) = a, g(b) = b = g(c), g(d) = c, $\alpha *O(Y, \sigma) = P(Y)$. Clearly, g is slightly α *continuous. But $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is not slightly α *continuous, since $(g \circ f)^{-1}(\{ac\}) = f^{-1}(g^{-1}\{ac\}) = f^{-1}(\{ad\}) = \{bd\}$ is not a α *open in (X, τ) .

Theorem 4.17: Let f: X \rightarrow Y and g: Y \rightarrow Z be functions. Then the following properties hold:

- (i) If f is α * irresolute and g is slightly α *continuous then (g \circ f) is slightly α *continuous.
- (ii) If f is α * irresolute and g is α *continuous then (g \circ f) is slightly α *continuous.
- (iii) If f is α * irresolute and g is slightly continuous then (g \circ f) is slightly α *continuous.
- (iv) If f is α *continuous and g is slightly continuous then (g \circ f) is slightly α *continuous.
- (v) If f is strongly α *continuous and g is slightly α * continuous then (g \circ f) is slightly continuous.
- (vi) If f is slightly α *continuous and g is perfectly α * continuous then (g \circ f) is α * irresolute.
- (vii) If f is slightly α *continuous and g is contra continuous then (g \circ f) is slightly α *continuous.
- (viii) If f is α * irresolute and g is contra α * continuous then (g \circ f) is slightly α * continuous.

Proof:

- (i) Let O be a clopen set in Z. Since, g is slightly α *continuous, g⁻¹(O) is α *open in Y. Since, f is α * irresolute, f⁻¹(g⁻¹(O)) is α *open in X. Since, (g \circ f)⁻¹ (O) = f⁻¹(g⁻¹(O)), g \circ f is slightly α *continuous.
- (ii) Let O be a clopen set in Z. Since, g is α *continuous, g⁻¹(O) is α *open in Y. Since, f is α * irresolute, f⁻¹(g⁻¹(O)) is α *open in X. Hence, g \circ f is slightly α *continuous.
- (iii) Let O be a clopen set in Z. Since, g is slightly continuous, $g^{-1}(O)$ is open in Y. Since, f is α * irresolute, $f^{-1}(g^{-1}(O))$ is α *open in X. Hence, $g \circ f$ is slightly α *continuous.
- (iv) Let O be a clopen set in Z. Since, g is slightly continuous, $g^{-1}(O)$ is open in Y. Since, f is α * continuous, $f^{-1}(g^{-1}(O))$ is α *open in X. Hence, $g \circ f$ is slightly α *continuous.
- (v) Let O be a clopen set in Z. Since, g is slightly α *continuous, g⁻¹(O) is α *open in Y. Since, f is strongly α * continuous, f⁻¹(g⁻¹(O)) is open in X. Therefore, g \circ f is slightly continuous.
- (vi) Let O be a α *open in Z. Since, g is perfectly α *continuous, g⁻¹(O) is open and closed in Y. Since, f is slightly α *continuous, f⁻¹(g⁻¹(O)) is α *open in X. Hence, g \circ f is α * irresolute.
- (vii) Let O be a clopen set in Z. Since, g is contra continuous, $g^{-1}(O)$ is open and closed in Y. Since, f is slightly α *continuous, $f^{-1}(g^{-1}(O))$ is α *open in X. Hence, $g \circ f$ is slightly α *continuous.
- (viii) Let O be a clopen set in Z. Since, g is contra α *continuous, g ⁻¹(O) is α *open and α *closed in Y.Since, f is α *irresolute, f ⁻¹(g ⁻¹(O)) is α *open and α *closed in X. Hence, g \circ f is slightly α *continuous.

Theorem 4.18: If the function f: $(X, \tau) \rightarrow (Y, \sigma)$ is slightly α *continuous and (X, τ) is $\alpha * T_{1/2}$ space, then f is slightly continuous.

Proof: Let O be a clopen set in Y. Since, g is slightly α *continuous, f⁻¹(O) is α *open in X. Since, X is α * $T_{1/2}$ space, f⁻¹(O) is open in X. Hence, f is slightly continuous.

Theorem 4.19: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be functions. If f is surjective and pre α *open and $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is slightly α *continuous, then g is slightly α *continuous.

Proof: Let O be a clopen set in (Z, η) . Since, $(g \circ f): (X, \tau) \to (Z, \eta)$ is slightly α *continuous, $f^{-1}(g^{-1}(O))$ is α *open in X. Since, f is surjective and pre α *open $f(f^{-1}(g^{-1}(O))) = g^{-1}(O)$ is α *open in Y. Hence, g is slightly α *continuous.

Theorem 4.20: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be functions. If f is surjective, pre α *open and α * irresolute, then $(g \circ f)$: $(X, \tau) \rightarrow (Z, \eta)$ is slightly α *continuous if and only if g is slightly α *continuous.

Proof: Let O be a clopen set in (Z, η) . Since, $(g \circ f): (X, \tau) \to (Z, \eta)$ is slightly α *continuous, $f^{-1}(g^{-1}(O))$ is α *open in X. Since, f is surjective and pre α *open $f(f^{-1}(g^{-1}(O))) = g^{-1}(O)$ is α *open in Y. Hence, g is slightly α *continuous.

Conversely, let g is slightly α *continuous. Let O be a clopen set in (Z, η), then g⁻¹(O) is α *open in Y. Since, f is α * irresolute, f⁻¹(g⁻¹(O)) is α *open in X. Hence, (g \circ f): (X, τ) \rightarrow (Z, η) is slightly α *continuous.

Theorem 4.21: If f is a slightly α *continuous from a α *connected space (X, τ) onto a space (Y, σ) then Y is not a discrete space.

Proof: Suppose that Y is a discrete space. Let O be a proper non-empty open subset of Y. Since, f is slightly α *continuous, f⁻¹(O) is a proper non-empty α *clopen subset of X which is contradiction to the fact that X is α *connected.

Theorem 4.22: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a slightly α *continuous surjection and X is α *connected, then Y is connected.

Proof: Suppose Y is not connected, then there exists non-empty disjoint open sets U and V such that $Y = U \cup V$. Therefore, U and V are clopen sets in Y. Since, f is slightly α *continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint α *open in X and $X = f^{-1}(U) \cup f^{-1}(V)$. This shows that X is not α *connected. This is a contradiction and hence, Y is connected.

Theorem 4.23: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a slightly α *continuous and (Y, σ) is a locally indiscrete space then f is α *continuous.

Proof: Let O be an open subset of Y. Since, (Y, σ) is a locally indiscrete space, O is closed in Y. Since, f is slightly α *continuous, f⁻¹(O) is α *open in X. Hence, f is α *continuous.

Theorem 4.24: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a slightly α *continuous and A is an open subset of X then the restriction $f|_A: (A, \tau_A) \rightarrow (Y, \sigma)$ is slightly α *continuous.

Proof: Let V be a clopen subset of Y. Then $(f|_A)^{-1}(V) = f^{-1}(V) \cap A$. Since $f^{-1}(V)$ is α *open and A is open, $(f|_A)^{-1}(V)$ is α *open in the relative topology of A. Hence, $f|_A : (A, \tau_A) \rightarrow (Y, \sigma)$ is slightly α *continuous.

REFERENCES

[1] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J.Math. Math. Sci. 19 (1996), 303–310

[2] **RC Jain,** *The role of regularly open sets in general topology,* Ph.D Thesis, Meerut 1980

[3] S. Jafari, T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest 42(1999), 27–34.

[4] S.N Maheswari and SS Thakur, On α - *irresolute maps* Tamkang J.Math11(1980) 209-214.

[5] **S.Pious Missier and P. Anbarasi Rodrigo**, Some notions of nearly open sets in Topological spaces, IJMA 4(12), 2013, 1-7

[6] S.Pious Missier and P. Anbarasi Rodrigo, Strongly α * continuous functions in Topological spaces, IOSR – JM, Volume 10, Issue 4 Ver. I (Jul-Aug. 2014), PP 55-60

[7] S.Pious Missier and P. Anbarasi Rodrigo, Contra α * continuous functions in Topological spaces, IJMER, Vol. 4 Iss.8 Aug. 2014 PP 1-6

[8] S.Pious Missier and P. Anbarasi Rodrigo, On α * continuous functions in Topological spaces, OUTREACH Volume VII 2014 148 – 154

[9] **S.Pious Missier and P. Anbarasi Rodrigo,** On α * closed functions in Topological spaces,(communicated)

[10] Willard, S., General Topology, (Addison Wesley, 1970).