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Summary : This article is an attempt to explore missing responses in second order response design model 

using Expected Maximization algorithm with and without imposing restrictions on the design matrix towards or 

thogonality are derived and are implemented with suitable examples. The properties of estimated parameters 

and estimated responses are also studied and findings are presented in detail at the end of the study.  
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I. INTRODUCTION 
Let X = (X1, X2, …, Xv) be the vector of v factors, each factor with „s‟ levels for experimentation and 

let xui be the level of the i
th

 factor in the u
th

 treatment combination (i=1,2 ... v; u =1,2…N) and let DNxv = ( ( xu1, 

xu2  …  xuv) ) denotes the design matrix of the combination of the factor levels.  Let Yu denotes the response at 

the u
th

 combination. The factor-response relationship is given by E(Yu) = f(xu1, xu2  …  xuv) is called the 

„response surface‟.  The functional form of the response surface may be first order, second order…etc. The 

design used for fitting the response surface model is termed as „response surface design‟ and the model is called 

„response surface design model‟. Suppose it is required to fit a second order response surface design model 

expressed in the form  

Y = Xβ + ε      (1.1) 

Where Y = (Y1, Y2 … YN)' is the vector of responses, 

 Xu = (1, xu1, xu2 … xuv, x
2

u1, x
2

u2 … x
2
uv, xulxu2 … xuv-1xuv) is the u

th 
row of X,  

β = (β0, β1, β2… βv, β11, β22 … β vv, βl2 … βv-1v)' is the vector of parameters. 

ε = (ε1, ε2 ... εN) is the vector of random errors and follows N(0,σ 
2
I). 

Least square estimate of parameters is ̂ =(X′X)
-1

X'Y  with Var( ̂ ) = (X′X)
-1

σ
2
,  where,  X′X = 
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; where [i], [ij], [ijk], [ijkl] are terms related to sum of design levels of factor(s) xui,  

xuixuj,  xuixujxuk , xuixujxukxul  over the N design points. Then the estimated value of the  response at the u
th

 design 

point is  

Ŷu = ̂ 0 + 


v

i 1

̂ i xui + 
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 Suppose the restrictions imposed on the moment matrix X'X towards reaching to orthogonality for a 

second order response surface design model are 


N

u
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lkji xxxx

1
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= 0; i≠j≠k≠l=1,2… v for any  value is 
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= Nλ4  and let Δ = λ4(C+v-2)-vλ2
2 

> 0. Then the moment 

matrix X'X  and (X'X)
-1

 can be obtained as  
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 Where   =  4 (c+k–1) – k 2
2
  > 0  and Zkxk = 
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if any set of observations miss, in well-planned experiments  the resulting data is incomplete to carry 

out the analysis as per the original plan. For these contexts Yates (1933) developed an iterative process starting 

with some initial guessing values. Healy and Westmacott (1956) described a more general iterative method for 

estimating the missing values. Draper N.R (1961), et.al, made attempts on the estimation of missing values in 

design and analysis of experiments.   

 

II. EXPECTED MAXIMIZATION ALGORITHM 
 Let y = [ y1,  y2, y3, … , yn ]′  be the vector of observed sample of size „n‟ corresponding at design points 

X. Let us assume that sample drawn from  population with  a Normal density function f(y) and the data may 

contain some unobserved or latent variable and unknown parameters.  Let L(y) be the likelihood function and 

log L(y) be the log of likelihood function of the sample. Initially estimate the values of the parameters by 

maximizing the likelihood function based on the known observed sample. The expected value of log of 

likelihood function is evaluated. Based on the existing parameter the improved version of the parameter that 

maximizes the expected value of  Log of Likelihood function can be evaluated by repeating the above two steps 

of evaluations until two successive iterations will results same value or with negligible difference. 

There is a little review on the estimation of missing values in the experimental design using expected 

maximization algorithm directly. So an attempt is made to develop the procedure to estimate the parameters and 

missing responses for second order response surface design model using expected maximization algorithm. 

 

III. ESTIMATION OF PARAMETERS AND MISSING RESPONSES IN RESPONSE 

SURFACE DESIGN MODEL USING EM ALGORITHM 
Let y = [y1, y2 … yn ]' be the vector of responses correspondingly at the design matrix Xnx(v+1). Assume 

the factor-response relationship is linear with first order response surface model in v factors, satisfying the 

model (1.3). Assume the response variable Y follows Normal with E(Y) =  X with V(Y) = 
2
. Let us assume 

that the responses  miss at some design points. Then the model (1.3) can be expressed as follows 
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where Y1 is the vector of (n-m) known observations, Ym is the vector of „m‟ missing observations, X1 is part of 

the design points corresponding to the known and Xm is corresponding to the missing observations design 

points. Let the error is also partitioned accordingly. The least square estimate of the parameters from the known 

observations is ̂  = (X1' X1)
-1

 X1Y1. Then the estimated missing observations can be obtained as Ŷm = Xm ̂ .  

Let us consider the problem of estimating the parameters and missing responses using expected 

maximization algorithm, then the response variable Y follows N(X, 
2
). If y = [y1, y2 … yn ]'  be the observed 

responses ( including missing responses) then the log of the likelihood function is  
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The estimates of parameters  and 
2
 and missing responses ( yu ; u = n-m+1, … , n ) can be obtained 

using maximum likelihood method as  
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From the expectation of log of likelihood, the conditional expectation of missing observations can be 

obtained as  

E [ log L(y)]  E [yu / y, X) = xu
)(ˆ k  and   E [yu

2
 / y, X) = (xu

)(ˆ k )‟ (xu
)(ˆ k ) + 

2 (k)
 (3.7) 

From the equation (3.4), (3.5) and (3.6) and (3.7), by starting with initial guess values for missing 

observations, the recurrence equations can be obtained as  
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   The missing response values are assumed as zeros or average of known responses or arbitrary values 

and estimate   as ̂ = (X′X)
-1

X′
 
Y and maximize the estimated response Ŷ m = Xm ̂  repeatedly maximize the 

estimated values for the parameters and missing responses until the values are stabilized.  

Estimate  and Ym vectors iteratively using (3.8) and (3.10) as ̂ = (Xm′Xm + X1′X1)
-1 

(Xm′ Ŷm  + X1′Y1 

) and Ŷm = Xm ̂  . Assume missing response values as zeros or average of known responses or any arbitrary 

value. Iteratively maximize the estimated values using the same for the parameters and missing response values 

until the values are stabilized. 

a. Assume missing response values as zeros and estimate , its first iterative estimate is 
)1(~

 = (X'X)
-

1
(Xm′0m + X1′Y1) = (X′X)

-1 
X′Y. 

b. Assume missing response values as average of known responses and estimate , its first iterative estimate 

is 
)1( = (X′X)

-1 
[ Xm′ mNY   + X1′Y1 ] = (X′X)

-1 
X′Y. 

c. Assume missing response values as an arbitrary value and estimate , its first iterative estimate is, 
)1(

=(X′X)
-1 

(Xm'A+X1Y1) = (X′X)
-1 

X′Y. 

 

The method of estimating the parameters and missing values using least square and EM algorithm 

(with initial guess values means and zeros) are implemented with suitable examples in case of second order 

response surface design under with and without restrictions on the moment matrix.  

Example 3.1: Consider three factors of second order response surface design model with eighteen responses : 

2.83, 3.25, 3.56, 2.53, 3.01, 3.19, Y7, 2.65, 3.06, 2.57, Y11, 3.50, 2.42, 2.79, 3.03, 2.07, 2.85, 3.12  at the design 

points (-1, -1, -1), (0, -1, -1), (1,-1, -1), (-1, 0, -1), (0, 0, 1), (1, 0, 1), (-1, 1, 1), (0, 1, 1), (1, -1, 0) (-1, -1, 0), (0, -

1, -1),    (1, 0, -1), (-1, 0, 1), (0, 0, -1), (1, 1, 0), (-1, 1, 1), (-1, -1, -1), (-1, 1, -1) respectively.  

Let us consider the initial guess missing response values as Y7 =  Y11 =2.901875 (average of known 

responses), and are zeroes , the estimated parameters and missing responses are evaluated using (3.8) - (3.10) 

and are same irrespective of iterations. And, if the initial guess missing values are taken as zeroes, the iterations 

are more (19 iteration) when average (16 iteration) is considered.  The estimated values are ̂ =[ 2.04114   

0.45262   -0.23045   -0.04153   -0.01109   0.55668   0.87291   0.18637   -0.06678   -0.54492 ] and  ̂ (-1, 1, 1, )= 

2.080646, ̂ ( 0, -1, -1)= 3.207924. 



Estimation Of Parameters And Missing… 

www.ijmsi.org                                                          4 | Page 

The estimated values of missing responses using Least square method  using the equations ̂ u = Xu ̂  

where ̂  = (X1'X1)
-1

X1'Y1 as ̂  = [ 2.04114   0.45262   -0.23045   -0.04415   -0.01109   0.55668   0.87291   

0.18637   -0.06678   -0.54492 ] and  ̂ (-1 1, 1, )= 2.080646, ̂ (0, -1, -1)= 3.207924 

 

EXAMPLE 3.2: Consider a four factor second order response design model but not rotatable with 20 responses 

63.03, 62.19, 64.01, 61.60, 58.95, Y6, 45.75, 72.66, 46.36, 68.62, 35.16, 59.24, Y13, 84.01, 61.18, 77.78, 61.15, 

74.85, 52.45, 65.72 with the design points (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (-1,-1,-1,-1), (1,-1,-1,-

1), (-1,1,-1,-1), (1,1,-1,-1), (-1,-1,1,-1), (1,-1,1,-1), (-1,1,1,-1), (1,1,1,-1), (-1,-1,-1,1), (1,-1,-1,1), (-1,1,-1,1), 

(1,1,-1,1), (-1,-1,1,1), (1,-1,1,1), (-1,1,1,1), (1,1,1,1) respectively.   

Let us consider the initial guess missing response values as Y6 =  Y13 =61.927222 (average of known 

responses), and are zeroes , the estimated parameters and missing responses are evaluated using (3.8) - (3.10) 

and are same irrespective of iterations. And, if the initial guess missing values are taken as zeroes, the iterations 

are more (48 iteration) when average (42 iteration) is considered.  The estimated values are ̂ = [62.707500 

9.626248 4.802500 -5.603750 4.888750 0.209375 0.209375  0.209375  0.209375  0.481251 -0.465000 -

2.475000 0.003750 0.651250 0.707500] and Ŷ(-1, -1, -1, -1) =82.50999, Ŷ(-1, -1, -1, 1) = 70.35001 

The estimated values of missing responses using Least square method  as ̂  = [62.707500 9.626248 

4.802500 -5.603750 4.888750 0.209375 0.209375 0.209375 0.209375 0.481251 -0.465000 -2.475000 0.003750 

0.651250 0.707500] and Ŷ(-1, -1, -1, -1) =82.50999, Ŷ(-1, -1, -1, 1) = 70.35001 

  

EXAMPLE 3.3: Consider a four factor second order rotatable design model with 27 responses 11.28, 8.44, Y3, 

7.71, 8.94, 10.9, 11.85, 11.03, 8.26, 7.87, 12.08, 11.06, 7.98, 10.43, 10.14, 10.22, 10.53, Y20, 10.98, 9.56, 8.78, 

9.02, 11.64, 8.24, 9.79 with the design points  (-1, -1, 0, 0), (1,-1, 0, 0), (-1, 1, 0, 0), (1, 1, 0, 0), (0, 0, -1, -1), (0, 

0, 1, -1), (0, 0, -1, 1), (0, 0, 1, 1), (0, 0, 0, 0), (-1, 0, 0, -1), (1, 0, 0, -1), (-1, 0, 0, 1), (1, 0, 0, 1), (0, -1, -1, 0), (0, 

1,-1,0), (0, -1, 1, 0), (0, 1,1,0), (0, 0, 0, 0),      (0, -1, 0, -1), (0, 1, 0, -1), (0, -1, 0, 1), (0, 1, 0, 1), (-1, 0, -1, 0), (1, 

0, -1, 0), (-1, 0, 1, 0) ,(1, 0, 1, 0),  (0, 0, 0, 0).   

Let us consider the initial guess missing response values as Y3 =  Y20 = 9.9014 (average of known 

responses), and are zeroes , the estimated parameters and missing responses are evaluated using (3.8) - (3.10) 

and are same irrespective of iterations. And, if the initial guess missing values are taken as zeroes, the iterations 

are more (47 iteration) when average (40 iteration) is considered.  The estimated values are ̂ =[9.18333 -

0.46524   -0.57786   0.28333   0.01298   -0.45196   0.33589   0.69768  0.90304   0.53179   -0.91   -1.8225    0.15   

0.13179    -0.695] and Ŷ(-1, 1, 0, 0) =8.422857, Ŷ(0, 1, 0,-1) = 9.582857   

The estimated values of missing responses using Least square method as ̂  = [9.18333  -0.46524   -

0.57786   0.28333   0.01298   -0.45196   0.33589   0.69768  0.90304   0.53179   -0.91   -1.8225    0.15   

0.131785    -0.695] and Ŷ3=8.422857, Ŷ20=9.582857.  

   

 

IV. PROPERTIES ON ESTIMATED PARAMETERS AND MISSING RESPONSES 
The properties of the estimated parameters are presented below. 

1. If the numbers of missing responses increase, the difficulty level for estimating the parameters and 

missing responses increase due to the increase of number of equations to be solved.  

2. An iterative approach is preferred if the number of equations to be solved is more. In these situations 

EM algorithm can be used. 

3. The rate of convergence of EM algorithm is second order convergence. 

4. From the examples 3.1, 3.2 and 3.3 it can be noted that both the least square and EM algorithm give 

same result. But in the EM algorithm the number of iterations are depends on the initial guess values. 

5. It can be noted that Yates (1933) general iterative process and Healy, et.al (1956) iterative procedures 

are giving similar results with EM algorithm. 

6. If ̂ = (X1′
 
X1)

-1 
X1′

 
Y1 then E[ ̂ ] = E[(X1′

 
X1)

-1 
X1′

 
Y1] =  i.e. it is an unbiased estimate. 

7. If 
~

= (X′
 
X)

-1 
X1′

 
Y1 then E[ 

~
] = (X′

 
X)

-1 
(X1′X1)   i.e. it is not an unbiased estimate. 

8. If  = (X′X)
-1 

[ Xm′ mNY   + X1′Y1 ] then E[  ] =  i.e. it is an unbiased estimate 
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9. If  is estimated through different approaches as ̂ = (X1′X1)
-1 

X1′Y1, 
~

= (X′X)
-1

X1′Y1,  = (X′X)
-1 

[ 

Xm′ mNY   + X1′Y1 ], the relationship between the parametric relation is: ̂ = [ I + (X′X)
-1 

Xm′MXm] 


~

 where M = [ I - Xm(X‟X)
-1

Xm ]
-1 

and  = [ (X′X)
-1 

X′ mNY  ] +
~

 

10. If the estimate of  is ̂ = (Xm′Xm + X1′X1)
-1 

[ Xm′ Ŷm  + X1′Y1 ] for a full model in case of missing 

responses, and Ŷm = Xm ̂  and ̂ = (X1′
 
X1)

-1 
X1′

 
Y1, the value of  

 ̂ =  (X′X)
-1 

[ Xm′(Xm (X1′X1)
-1 

X1′Y1) + X1′Y1]         

 ̂ =  (X′X)
-1 

[ (Xm′Xm) (X1′X1)
-1 

X1′Y1 + X1′Y1]   

 ̂ = (X′X)
-1

 [ ( X′X - X1′X1 )  (X1′X1)
-1

  +  I ]  X1′Y1  

 ̂ = (X′X)
-1

 [ (X′X) (X1′X1)
-1

 – I + I ] X1′Y1 

 ̂ = (X′X)
-1

 [ (X′X) (X1′X1)
-1

 ] X1′Y1  

 ̂ = (X1′X1)
-1

 X1′Y1  

11. If the estimate of  is ̂ = (Xm′Xm + X1′X1)
-1 

[ Xm′ Ŷm  + X1′Y1 ] for a full model in case of missing 

responses, and Ŷm = Xm ̂  and ̂ = (X′
 
X)

-1 
X1′

 
Y1 , the value of ̂  is 

̂  =  (X′X)
-1

[ 2I - (X′1X1) (X′X)
-1

]  X1′Y1  

12. In case of Central Composite Design or any other Response Surface Design, if the responses are miss at 

origin and the responses are known at all other points the estimated value of the parameter ̂  will be 

same as ̂ =  (X′X)
-1

 X1′Y1 = (X′1X1)
-1

X1′Y1 because  X′mXm=0 
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