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ABSTRACT : In this paper  we have  analyzed   the effect of radiation on the  convective  heat and mass 

transfer flow of a viscous electrically conducted fluid   in a horizontal rotating channel in the presence  of 

constant heat  sources. The  governing  partial differential equations can be transformed into a system of 

ordinary differential  equations using non - dimensional  process. The velocity, temperature  and concentration 

profiles are shown in graphically for different values of the parameters entering into the problem 
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I. INTRODUCTION 
           Convective flow through porous media is an area of research undergoing rapid a  growth in the fluid 

mechanics and heat transfer field due to its broad range of scientific and engineering applications. It is 

associated with petroleum and geothermal processes, fiber and granular insulation materials, high performance 

insulation buildings, transpiration cooling packed bed, chemical reactors control of pollutant spread in ground 

water. A nice review about heat transfer in geothermal system has been presented in chang [1978]. 

 All fluid phenomena on earth involve rotation to a greater or lesser extent because of the basic rotation 

of the earth. Most of the large scale motions in atmosphere and seas/oceans fall under the category in which 

rotation is an absolutely essential factor the atmosphere and the ocean are not homogeneous in compressible 

fluids, but in many cases the essential physical features of atmospheric or oceanic flows are not dependent on 

this factor and satisfactory theories can be based on Mathematical models assuming the fluid as incompressible. 

 A large variety of processes of interest to industry and society involve the flow of fluids through porous 

media. Examples include the use of filtration to purity water and treat Sewage, Membranes to separate gases, the 

chemical factors having porous a catalysts supports. The mathematical modeling and simulation of the flow of 

fluids through porous media are important for designing and controlling a number of industrial processes 

including the production of fluids from underground reservoir and remediation of under ground water resources 

fluids embedded in the earth’s crust enables one to use minimal energy to extract the minerals. For example, in 

the recovery of hydrocarbons from underground petroleum reservoirs, the use of thermal processes is becoming 

important to enhance the recovery. Heat can be injected into the reservoir as hot water or steam, or heat can be 

generated inside by burning part of the reservoir crude. In all such thermal recovery processes, fluid flow takes 

place through a porous medium and convection flow through a porous medium is of utmost important. 

Determination of the external energy required to initiate convection currents needs a though understanding of 

convective processes in a porous medium. There has been a great quest in Geophysicists to study the problem of 

convection currents in a porous medium heated from below. 

 In the last several years considerable attention has been given to the study of the Hydromagnetic 

thermal convection due to its numerous applications in Geophysical and Astrophysics.In geothermal region 

gases are electrically conducting and that they undergo the influence of a magnetic field. Magneto-thermal 

dynamics phenomenon in a porous medium results from the mutual effects of a magnetic field and conducting 

fluid flowing through the porous medium Examination of the flow model reveals the combined influence of 

porosity and a magnetic field on the velocity, temperature profiles and the local heat transfer etc. 

 The unsteady hydromagnetic rotating viscous flow through a porous medium has drawn the attention in 

recent years for possible applications in Geophysical and Cosmical fluid dynamics. The buoyancy and rotational 

forces are often comparable in geophysical processes like ‘Dust devils’ caused by rotating atmosphere above a 

locally heated surface and other rising atmospheric circulations [2008 &1998]. They are also common in Nature 

and in devices and processes equipments.  
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One of the earlier investigation related to this aspect appears in the work of Claire Jacobs [1971] who 

has studied the transient effects considering the small amplitude torsional oscillations of disks. This problem has 

been extended to the hydromagnetics by Murthy [1979] who discussed torsional oscillations of the disks 

maintained at different temperatures. Debnath [1975] has considered an unsteady hydrodynamic and 

hydromagnetic boundary flow in a rotating, viscous fluid due to oscillations of plates including the effects of the 

velocity field and the associated Stokes, Ekman and Rayleigh boundary layers on the plates are determined for 

the resonant and non-resonant cases. The ultimate steady state flows are examined for various cases. Rao et al., 

[1982] have made an initial value investigation of the combined free and forced convection effects in an 

unsteady hydromagnetic viscous, incompressible rotating fluid between two disks under a uniform transverse 

magnetic field. This analysis has been extended to porous boundaries by Sarojamma & Krishan [1981] and 

Sivaprasad [1985]. Mishra and Narayan [1986] have studied the unsteady free convective flow through a porous 

medium when the temperature of the plate is oscillating with time about a non-zero mean. Raptis [1986] has 

studied the unsteady MHD free convective flow of an electrically conducting fluid through a porous medium 

bounded by an infinite vertical porous plate. Sreeramachandra Murthy[1992] has investigated the MHD mixed 

convection flow of a viscous, electrically conducting fluid through a porous medium in a rotating parallel plate 

channel. The perturbations in the flow are created by a constant pressure gradient along the plates in addition to 

non-torsional oscillations of the lower plate. The exact solutions of the velocity and the temperature fields have 

been obtained by using the Laplace transform method. 

 Seth and Ghosh [1986] has investigated  the unsteady hydromagnetic flow of a viscous, 

incompressible, electrically conducting fluid in rotating channel under the influence of periodic pressure 

gradient and of uniform magnetic field, which is inclined with the axes of rotation. The problem of steady 

laminar micro polar fluid flow through porous walls of different permeability had been discussed by  Agarwal 

and  Dhanpal [1987]. The steady and unsteady hydromagnetic flow of viscous incompressible, electrically 

conducting fluid under the influence of constant and periodic pressure gradient in the presence of magnetic field 

had been investigated by Ghosh [1991] to study the effect of slowly rotating systems with low frequency of 

oscillation when the conductivity of the fluid is low and the applied magnetic field is weak. El-mistikawy et al., 

[1990] have discussed the rotating disk flow in the presence of strong ; magnetic field and weak magnetic field. 

Later Hazem Ali Allia [1990] developed  the MHD flow of in compressible ; viscous and electrically conducting 

fluid above an infinite rotating porous disk was extended to flow starting impulsively from rest. The fluid was 

subjected to an external uniform magnetic field perpendicular to the plane of the disk. The effects of uniform 

suction or injection through the disk on the unsteady MHD flow were also considered. 

 Recently Padmavati ea al [2008] et all have studied unsteady Hydromagnetic connected heat and mass 

transfer through a porous medium in a rotating channel. Circar and Mukherjee [2008] have analyzed the effect 

of mass transfer and rotation on a flow past a porous plate in a porous medium with variable suction in a slip 

flow regime. 

 Many processes in engineering areas occur at high temperatures and consequently the radiation plays a 

significant role. Chandrasekhara and Nagaru[1998] examined the composite heat transfer in a variable porosity 

medium bounded by an infinite vertical flat plate in the presence of radiation. Yih [1999] studied the radiation 

effects on natural convection over a cylinder embedded in porous media. Mohammadien and El-Amin [2000] 

considered the thermal radiation effects on power law fluids over a horizontal plate embedded in a porous 

medium. Raptis [2000] studied the steady flow and heat transfer in a porous medium with high porosity in the 

presence of radiation. 

   

II. FORMULATION  OF THE PROBLEM 
              We consider the steady flow of an incompressible, viscous fluid through a porous medium bounded by 

two parallel plates. In this undisturbed state both the plates and the fluid rotate with the same angular velocity  

and are maintained at constant temperature and concentration. Further the plates are cooled or heated by 

constant temperature gradient in some direction parallel to the plane of the plates. We chose a Cartesian 

coordinate system O(x,y,z) such that the plates are at z=0 and z=L and the z-axis coinciding with the axis of 

rotation of the plates. We consider the Soret effect into account in the diffusion equation. The steady 

hydrodynamic boundary layer equations of motion including soret effect with respect to a rotating  frame 

moving with angular velocity  under Boussinesq approximation are 
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the energy equation is 
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the diffusion equation is  
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where u,v are the velocity components along x and y directions respectively, p is the pressure including the 

centrifugal force, is the density, k is the permeability constant, is the coefficient of viscosity,k1 is the thermal 

diffusivity,D1 is the chemical molecular diffusivity, is the coefficient of thermal expansion ,
*

 is the volumetric 

coefficient of expansion with mass fraction ,Q is the strength of the constant heat source, is the electrical 

conductivity and e is the magnetic permeability of the medium. . 

 

Invoking Rosseland approximation for radiative heat flux we get 
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and expanding  
4T  about Te by using Taylors expansion and neglecting higher order terms we get 
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Combining the equations(2.1) and (2.2) we obtain  
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where 

 q = u+iv 

Integrating equation (2.3) we obtain 
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where 
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Using (2.7),equation(2.6) can be written as  
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Since q = q( z, t) , equation (2.8) is valid if the temperature and concentration distributions are of the form 

        T – T0 = 1x + 1y + 1(z ,t)      (2.9a) 

      C – C0 = 2x + 2y + 2(z ,t)                    (2.9b) 

Where  1 , 1 ;   2 , 2 are the gradients of the temperature and concentration along  0(x, y) directions 

respectively , 1(z ,t) , C1(z,t) are the arbitrary functions of z and t. We taken T0 + 1 x + 1  y + 1  w1  and  T0 + 

1 x + 1  y + 1 w2 , C0 + 2 x + 2  y + C1 w1 and C0 + 2 x + 2  y + C1 w2 to be temperature and concentration 

of the lower and upper plates respectively , for t > 0. 

Substituting (2.7) in (2.6) and using (2.8) we get 
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Where 2 [ ( , )]D   

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, A= I + i 1 and B = 2 + i 2 

Introducing non – dimensional variables ( z , t , q ,  , c)  
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the governing equations in the non – dimensional form ( dropping the suffixes) are. 
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III.  SOLUTION  OF THE PROBLEM 
   The governing equations (2.12)-(2.14) reduce to  
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The boundary conditions in the non-dimensional form are  
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Solving the equations (2.15)-(2.17) subject to the boundary conditions (2.18) 

we obtain 

 )
)(

)(
()1

)(

)(
(

22
z

Sinh

zSinhG

Cosh

zCoshR
q 










  

 

)1(
2

)1())1((
2

)(
6

))()(())()(((Re

02

1

2

2

3

2

2

2

2

1

zzz
R

zz
G

zSinhzSinh
A

CoshzCosh
A

alGP


















 

           

2/)1())1((
2

)(
6

))()(())()(((Re

2

6

2

2

3

2

2

2

2

1
5





zAz
R

zz
G

zSinhzSinh
A

CoshzCosh
A

alAC









 

 

IV. FLOW RATE,  SHEAR STRESS,   NUSSELT NUMBER    AND 
     SHERWOODNUMBER:              

The non-dimensional flow rate is given by  
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The Shear stress on the walls z = 1 are given by  
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The local rate of heat transfer across the walls (Nusselt Number) is given by 

  

322

21

1

)

/))()(((Re

)(

A
RG

CoshASinhAalGP

dz

d
Nu z





 










 

The rate of mass transfer(Sherwood Number)is given by 
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V.   DISCUSSION OF THE NUMERICAL RESULTS 
 In this analysis we investigate the Soret and radiation effects on  MHD connective heat and mass 

transfer of a viscous, electrically conducting fluid in a horizontal rotating channel. 

 The velocity, temperature and concentration profiles are drawn for different positive and negative G. It 

is to be noted that in all the profiles drawn we have taken G be real so that the applied pressure gradient in the 

oy-direction is zero and the applied pressure gradient in the ox-direction is positive or negative according as the 

walls are heated or cooled in the axial direction (i.e., G>0 or G<0). It is found from fig. 1 that in the heating of 

the channel walls the fluid changes its direction from positive to negative as we move from the lower half to the 

upper half there by indicating the reversal flow in the upper half of the channel. In the case of cooling (G<0) the 

reversal flow appears in the lower half. The region of reversal flow enlarges with increase in G (<0>). Fig. 2 

indicates the variation of u with D
-1

, it follows that lesser the permeability of the porous medium. The variation 

of  u with M shows that u exhibits a higher M (fig. 3) smaller the magnitude of u with M. Also an increase in 

the rotation parameter K reduces the magnitude of u (fig. 4). When the molecular buoyancy force dominates 

over the thermal buoyancy force u enhancers in the entire fluid region when the forces act in the same 

direction and for the forces acting in opposite directions we find a reduction in uin the flow region. (fig. 5). 

We find that for N>0 the region of reversal flow appears in the upper half region and for N<0 the flow 

continues to be negative except in the vicinity of the lower flow and this region of reversal flow extends 

towards the lower wall as Nincreases       (fig. 5). It is found that the velocity v exhibits a back flow and is 

directed towards the opposing the oy-direction near the lower wall for any value of G. For G (<0) the 

velocity v experiences a back flow opposing oy-direction in the upper region. Also venhances with increase 

in G(<0>) with a maximum at z = 0.6. The maximum v drifts towards the upper half for G>0 and for G<0 

the point of maximum occurs at z = -06 and the maximum v enhances with G (fig. 6). Fig. 7 indicates that lesser 

the permeability of the porous medium smaller the magnitude of v. the behaviour of v with Hartmann number 

M exhibits a decreasing tendency in the entire flow region (fig. 8).  
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The variation of v with rotation parameter K exhibits that the fluid in the lower half is directed towards 

the mid region while it moves towards the upper wall (fig. 9). The variation of v with the buoyancy ratio N is 

shown in fig. 8. It is observed with Venhances with N(>0) when the forces act in the same direction and 

depreciates with Mwhen the buoyancy forces act in opposite directions. 

 The temperature distribution () is exhibited in figs. 10-13for different variations of the governing 

parameters.  is positive or negative according as the actual temperature is greater or smaller than the 

equilibrium temperature. It is found that for G>0.  is positive in the in the entire fluid region and for higher 

Gnegative in the upper of and positive in lower half. But for higher G it continues to be negative except in 

a narrow region adjacent to the lower wall (fig. 10). From fig 11 we find that lesser the permeability of the 

porous medium smaller the magnitude of the temperature for any G. The variation of  with M shows that the 

temperature experiences a depreciation  with increase in M (fig. 12). Also the effect of the radiation parameter 

N1 is to enhance the temperature in the entire flow region (fig. 13). The variation of  with rotation parameter k 

exhibits that the temperature continues to be positive for all values of k. The temperature experiences a marginal 

depreciation with increase in k (fig. 14). When the molecular buoyancy force dominates over the thermal 

buoyancy force the temperature enhances when the buoyancy forces act in the same direction and for different 

directions of the buoyancy forces  decreases in the lower half and enhances in the upper half of the channel 

(fig. 15). 

 The concentration distribution (C) is positive for G>0 and negative for G<0. It is noticed that the 

concentration enhances with increase in G. Also for G<0 the concentration for G2x10
3
 is negative in the 

entire fluid region and for higher G3x10
3
. C is negative except in a narrow region abutting the lower wall 

C enhances with G (fig. 16). From fig. 17 we find that lesser the permeability of the porous medium 

smaller the concentration in the lower half and greater C in the right half. From fig. 14a shows that the 

concentration experiences a depreciation with increase in M (fig. 18). The variation of C with rotation 

parameter k indicates that for k  1 it is totally positive and for higher k 1.5, it is positive except in the vicinity 

of the lower wall and for further increase in k the transition from positive to negative extends towards the 

midregion). The variation of C with the buoyancy ratio N shows that C is positive for N = 1 and for higher 

values of N it is positive except in the region 0.6  z  0.8, near the upper wall. For the buoyancy forces acting 

in opposite directions we find that the actual concentration is greater than the equilibrium concentration in the 

lower half and a reversed effect is observed in the upper half. Also C enhances with increase in N(<0>)). 

The variation of C with Sc indicates that lesser the molecular diffusivity higher the concentration in the entire 

fluid region  

 

 The Shear stress () at the walls z =  1 has been evaluated for different governing parameters G,D
-

1
,Sc,S0,k,N,M and  are presented in tables. 1-8. The component of stress in the x-direction (x) is positive in the 

heating case, and negative in the cooling case while y is negative for G>0 and positive G<0. An increase in G 

enhances x at both the walls. The variation of x with D
-1

 shows that lesser. Permeability of the porous medium 

larger x  at z = -1 and smaller xat z = 1. An enhancement in K depreicates x at z = 1. The variation of y 

shows that enhancesG,D
-1

 and depreciates with M. An increase in k 1.5 reduces y and for further 

increase in K 2.5, y experiences an enhancement. When the molecular buoyancy force dominates over the 

thermal buoyancy force x experiences an enhancement at walls when they act in the same direction and 

depreciates at z = 1 and enhances at z=-1 if they act in opposite directions. Also y enhancement at z = 1 

with increase in N1>0 while an increase in N1<0, enhances y at z = 1 (tables – 8). 

 The Nusselt Number (Nu) which measures the rate of heat transfer across the walls z = 1 has been 

exhibited in tables 9-12 for different variations of N1,G,D
-1

M,k,N and . It is found that the Nusselt Number 

(Nu) at z = 1 is negative in both heating and cooling of the walls. The rate of heat transfer at both the walls 

enhances with G and depreciates with D
-1

, M and k. An increase in the strength of the heat source is associated 

with an increase in Nu and an increase in <0 depreciates  

 Nu at both the walls. When the molecular buoyancy force dominates over the thermal buoyancy force the 

magnitude of Nu at z = 1 depreciates when the buoyancy forces act in the same direction and enhances when 

they act in opposite directions. 

 The Sherwood Number (Sh) which measures the rate of mass transfer across the boundaries is depicted 

in tables 13-14 for different G.D.Sc.N and k. It is noticed that the Sherwood number (Sh) at the upper wall is 

negative and is positive at the lower wall for all variations. We find that an increase in G results in an 

enhancement at both the walls. The variation of Sh with D
-1

 and M shows that lesser thpermeability of the 

porous medium or higher the Lorentz force smaller Sh at z = 1. Alsosmaller the molecular diffusivity larger 

the magnitude of Sh at both the walls. Also an increase in the rotation parameter k 
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       Fig.1 Variation of axial velocity u with G 
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               Fig.2   Variation of  u with D

-1
 

                           G=10
3
,k=50,N=1 

                             I    II     III 

                  D
-1

   5x10
2 
        10

3  
       2x10

3
 

 

 

   Fig.3    Variation of axial velocity(u) with M 
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           Fig.4     Variation of u with k 
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             Fig.5 Variation of  u with N 
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Fig.6  Variation of secondary velocity( v ) with G 
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               Fig.7   Variation of  v with D

-1
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            Fig.8   Variation of v with M 
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                Fig.9    Velocity v with k 
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      Fig.10    Variation of temperature(  )with G 
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     Fig.11     Variation of temperature(  )with D
-1 
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Fig.12Variation of temperature (  ) with M 

                         I        II       III      IV 

                 M   2        4       6       10 

 



The  Effect Of Radiation On The  … 

www.ijmsi.org                                                          29 | Page 

 
Fig.13   Variation of  with N1 
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             Fig.14     Temperature  with k 
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             Fig.15    Temperature  with N 
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Fig.16  Variation of  Concentration( C ) with G 
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                  Fig.17Variation of C  with D
-1
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              Fig.18   Variation of C with M 
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   Table.1 

 Shear Stress (  ) at z = 1 

                                                        P=0.71,N=1,=2 

G/  I II III IV V VI VII 

10
3
 4.76054 3.44816 2.84281 4.36155 3.48124 4.75752 4.73719 

3x10
3
 9.42302 6.82630 5.62827 8.63367 6.89176 9.41705 9.37685 

-10
3
 -4.56442 -3.30813 -2.72810 -4.18267 -3.33982 -4.56154 -4.54213 

-3x10
3
 -9.22691 -6.68627 -5.51356 -8.45478 -6.75034 -9.18178 -9.18178 

 

     Table.2 

                                                  Shear Stress (  ) at z = -1 

  

G/  I II III IV V VI VII 

10
3
 4.56442 3.30813 2.72810 4.18267 3.33982 4.54154 4.54213 

3x10
3
 9.22691 6.68627 5.51356 8.45478 6.75034 9.22107 9.18178 

-10
3
 -4.76054 -3.44816 -2.84281 -4.36155 -3.48124 -4.75752 -4.73719 

-3x10
3
 -9.42302 -6.62630 -5.62827 -8.63367 -6.89176 -9.41705 -9.37685 

 

    Table.3 

Shear Stress ( yx10 ) at z = 1 

  

G/  I II III IV V VI VII 

10
3
 -0.1087 -0.04082 -0.0227 -0.0832 -0.0420 -0.9769 -2.6937 

3x10
3
 -0.21502 -0.08072 -0.0449 -0.1647 -0.0830 -1.9325 -5.3291 

-10
3
 0.1039 0.0390 0.0218 0.0797 0.0402 0.9345 2.5769 

-3x10
3
 0.2121 0.0789 0.0440 0.1611 0.0813 1.8901 5.2123 

 

   Table.4 

                                                Shear Stress ( y x10) at z = -1 

 G/  I II III IV V VI VII 

10
3
  -0.1039 -0.3900 -0.0218 -0.0797 -0.0402 -0.9345 -2.5769 

3x10
3
 -0.2102 -0.0789 -0.0440 -0.1611 -0.0813 -1.8900 -5.2123 

-10
3
 0.1087 0.0408 0.0227 0.0832 0.0420 0.9769 2.69937 

-3x10
3
 0.2150 0.0807 0.0449 0.1647 0.0830 1.9325 5.32913 

 

        

D
-1

 10
3
 3x10

3
 5x10

3
 10

3
 10

3
 10

3
 10

3
 

M 2 2 2 5 10 2 2 

K 0.5 0.5 0.5 0.5 0.5 1.5 2.5 

 
 

Table.5 

Shear Stress (  x) at z = 1 

P=0.71,D
-1

=10
3
,M=2,=2 

G/  I II III IV 

10
3
 4.76054 7.21197 1.08339 0.88657 

3x10
3
 9.42302 14.3258 2.06873 1.87660 

-10
3
 -4.56442 -7.0158 -0.88728 -0.76549 

-3x10
3
 -9.22691 -14.1297 -1.87262 -1.65784 

 

Table.6 

Shear Stress ( x) at z = -1 

 G/  I II III IV 

10
3
 4.56442 7.01585 0.88728 1.02346 

3x10
3
 9.22691 14.12977 1.87262 2.06548 

-10
3
 -4.76054 -7.21197 -1.08339 -1.13478 

-3x10
3
 -9.42302 -14.3258 -2.06873 -2.35456 
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Table.7 

Shear Stress ( y x10) at z = 1 

 G/  I II III IV 

103 -0.1087 -0.1676 -0.0203 -0.02456 

3x103 -0.21502 -0.3328 -0.0382 -0.36785 

-103 0.1039 0.16293 0.0156 0.02341 

-3x103 0.2121 0.32812 0.0335 0.03678 

 

Table.8 

Shear Stress ( y x10) at z = -1 

 G/  I II III IV 

103  -0.1039 -0.1629 -0.01563 -0.01254 

3x103 -0.2102 -0.3281 -0.03352 -0.03045 

-103 0.1087 0.1676 0.02033 0.018765 

-3x103 0.2150 0.3328 0.03822 0.032679 
 

 I II III IV 

N 1 2 -0.5 -0.8 

                                                                

Table.9 

Nusselt Number(Nu) at z = 1 

P=0.71,N=1,=2 

G/  I II III IV V VI VII 

103 -0.43197 -0.01321 0.17801 -0.28479 0.00343 -0.43055 -0.42095 

3x103 -3.28032 -1.53938 -0.89431 -2.70498 -1.57767 -3.27472 -3.23726 

-103 -0.34801 0.05735 -0.20803 -0.21426 0.04841 -0.34672 -0.33806 

-3x103 -3.11237 -1.45111 -0.83426 -2.56393 -1.4877 -3.10707 -3.07150 
 

                

Table.10 

Nusselt Number(Nu) at z = - 1 

 G/  I II III IV V VI VII 

103 -5.27604 -3.78972 -3.23722 -4.78562 -3.82249 -5.27131 -4.53213 

3x103 -15.4120 -9.32074 -7.05897 -13.4010 -9.45490 -15.3926 -15.2621 

-103 -5.58391 -3.95156 -3.34730 -5.04422 -3.98744 -5.57867 -5.54347 

-3x103 -16.0277 -9.82630 -7.27912 -13.9182 -9.78479 -16.0073 -15.8699 
 

 I II III IV V VI VII 

D-1 103 3x103 5x103 103 103 103 103 

M 2 2 2 5 10 2 2 

K 0.5 0.5 0.5 0.5 0.5 1.5 2.5 

 

Table.11 

Nusselt Number(Nu) at z =  1 

P=0.71,D
-1

=10
3
,M=2,=2 

G/  I II III IV V VI 

103 -0.43197 -0.6789 -1.4567 0.45367 0.34675 0.30246 

3x103 -3.28032 -3.98765 -4.35768 2.54688 2.12348 1.89765 

-103 -0.34801 -0.37865 -0.45673 0.33245 0.30132 0.28976 

-3x103 -3.11237 -3.23452 -3.65788 3.23489 2.98763 2.45638 

 

Table.12 

Nusselt Number(Nu) at z = -1 

 G/  I II III IV V VI 

103 -5.27604 -5.78965 -6.12347 4.56785 4.12343 3.76552 

3x103 -15.4120 -15.8775 -15.9998 13.2345 12.8976 11.8977 

-103 -5.58391 -5.90876 -6.23414 5.12543 4.98765 4.45678 

-3x103 -16.0277 -17.1234 -17.8976 14.6789 14.0123 12.7886 

 
 I II III IV V VI 

 2 4 6 -2 -4 -6 
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Table.12 

Nusselt Number(Nu) at z =  1 

P=0.71,D
-1

=10
3
,M=2,=2 

G/  I II III IV V 

10
3
 -0.43197 -0.5678 -1.2365 -1.6785 -1.9876 

3x10
3
 -3.28032 -3.6785 -5.67854 -5.9876 -6.0123 

-10
3
 -0.34801 -0.39876 -0.6785 -0.7896 -0.9987 

-3x10
3
 -3.11237 -3.4567 -4.3568 -4.9876 -5.1232 

 

                                          

Table.13 

Nusselt Number(Nu) at z = -1 

 G/  I II III IV V 

10
3
 -5.27604 -5.1234 -4.6785 -4.3456 -3.5674 

3x10
3
 -15.4120 -14.678 -13.8976 -13.0123 -12.786 

-10
3
 -5.58391 -5.7654 -5.4578 -4.9876 -4.2345 

-3x10
3
 -16.0277 -15.678 -15.4589 -14.5687 -13.345 

 

 I II III IV V 

N1 0.5 1.5 4 10 100 

 

 Table.15 

Sherwood Number(Sh) at z = 1 

      P=0.71,N=1,=2  

G/  I II III IV V VI VII 

10
3
 -5.41026 -2.94852 -2.03902 -4.59460 -3.00251 -5.40224 -5.34838 

3x10
3
 -21.0773 -11.4977 -7.95454 -17.9049 -11.7081 -21.0462 -20.8372 

-10
3
 -4.84655 -2.65220 -1.83747 -4.12111 -2.70049 -4.83959 -4.79194 

-3x10
3
 -19.9499 -10.9051 -7.55144 -16.9579 -11.1039 -19.9207 -19.7242 

 

Table.16 

Sherwood Number(Sh) at z = - 1 

 G/  I II III IV V VI VII 

10
3
 0.02779 0.00806 0.00380 0.01992 0.00836 0.24975 0.68673 

3x10
3
 0.10860 0.03154 0.01488 0.07789 0.03273 0.97597 2.68370 

-10
3
 0.02523 0.00736 0.00348 0.01812 0.00764 0.22672 0.62435 

-3x10
3
 0.10348 0.03015 0.01424 0.07429 0.03128 0.92992 2.55724  

 

 I II III IV V VI VII 

D
-1

 10
3
 3x10

3
 5x10

3
 10

3
 10

3
 10

3
 10

3
 

M 2 2 2 5 10 2 2 

K 0.5 0.5 0.5 0.5 0.5 1.5 2.5 
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