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ABSTRACT: In this paper, an attempt is made to estimate the missing values in Latin Square Design in 

Bayesian approach. The method is illustrated for one, two and m-missing values using R and WinBUG 

software’s. Some remarks on the method are presented. 
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I.  INTRODUCTION 

Consider the statistical linear model for a Latin Square Design with „v‟ rows, „v‟ columns and for „v‟ 

treatments as 

Y= X   +   
  where   Y = [y111 … y11k … y11v |  … | yij1 … yijk  … yijv| … |yvv1…yvvk…yvvv] ′ is the vector of 

observations where yijk is the observation belongs to i
th

 row, j
th

 column and k
th

 treatment.  = [ µ | α1 ... αi ... αv | 

β1… βj … βv | γ1… k  … γv ]′ vector of parameters, µ is the mean,   αi, βj , k  are the effects due to the  i
th 

row,  j
th 

column and k
th

 treatment respectively.    = [ε11 1…ε1jk…ε1vv|…| εi11… εijk ….εivv |…|εv11…εvjk… εvvv ]′   vector of 

random error, εijk is random error corresponding to yijk and X is the design matrix. 

 

 

     

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimated response is Ŷ= X ̂  , where ̂  = (X'X)
-1

XY 

If an observation is missing the resulting data is incomplete to carry out the analysis as per the original 

plan of the experiment and also affecting the orthogonality. So, it is necessary to estimate the missing values to 

carry out the analysis as per the original plan of experiment. Several authors made attempts since 1930. An 

attempt is made to estimate the missing values in Latin Square Design (LSD) in Bayesian approach is presented 

in section 2 and is illustrated with suitable examples. 

 

II. ESTIMATION OF MISSING ALUES IN BAYESIAN APPROACH 
Consider the general linear model and partition the vector of responses into known (Y1) and missing (Ym) 

response vectors and accordingly model can be expressed as  
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Let y = (y1, y2 , …,  yn)′ be the vector of observed sample y ϵ R
n
. Assume the sample drawn from normal 

population with mean X and variance σ
2 

i.e. 
.
follows N(X, σ

2
), where the parameters  and 

2
 are unknown 

and X ϵ R
n×p

 be the design matrix.  The likelihood function of the observed sample with the estimated 

parameters is P( y / β, 
2
). The distribution of the parameter β is follows normal with mean ̂  and variance 

σ
2
/∑xi

2
. The sample mean follows N ( y , σ

2
/n) and precision follows Gamma distribution with parameters (a, 

b), where a=(n-k) and b= σ
2
/(n-k) The posterior probability of β given y can be evaluated by generating a 

sequence of sample values in such a way that, as more and more sample values as possible, such that the 

distribution of sample values more closely approximates the desired distribution and is used to evaluate the 

normalized constant P(y) =  P(β). P(y/β) dβ.  Generate a large sample (n is large) from a normal using Gibbs 

simulation technique by setting initial parameters using WinBUG software and estimate the vector of 

parameters ̂  to evaluate the estimated responses using the normal equation ̂ˆ
mm

XY  .  The estimation of 

parameters and missing values using Bayesian approach is illustrated for one, two and m missing values with 

suitable examples in example 2.1, 2.2 and in 2.3. 

 

EXAMPLE 2.1: Consider the Latin square design experimental data with 3 treatments presented in Table 2.3, 

related to bioequivalence study with an observation is missing. 

 

 Period 

Subject 1 2 3 

1 (A)  1186 (B)  642 (C)  1183 

2 (B)   984 (C)     x1 (A)  1305 

3 (C)  1426 (A) 1540 (B)  873 

Table 2.3 

The estimated parameters of normal populated observations are 1142.375 and 88081.41. The estimated 

vector of parameters  mean and variances are [(590, 11010.18), (20.3333, 29360.47), (273.3333, 44040.71), 

(296.3333, 29360.47), (215.3333, 29360.47), (237.6666, 44040.71), (137, 29360.47), (360.3333, 29360.47),      

(-150.3333, 29360.47), (380, 44040.71)]. The precision follows Gamma distribution with parameters 3.5 and 

0.000000324. Estimate parameter  using Win BUG software, by generating a large sample from normal as 

[590, 20.33, 273.3, 296.3, 215.3, 237.7, 137, 360.3, -150.3, 380]′. The estimated missing response is 1481. 

 

EXAMPLE 2.2: Consider the problem of manufacturer of disk drives, interested in studying the effect of four 

substrates (Aluminium, Nickel-plated and two types of Glass) on the amplitude of the signal that is received. 

There were four machines, four operators, four days of production that were to be involved with machines, 

operators and days to save as blocking variables. It can be noted that two observations are missing and the data 

presented in Table 2.2. 

8 (A) 11 (C)  2 (D) 8 (B)  

7 (C )  x1 (A) 2 (B) 4 (D) 

3 (D)  9 (B) 7 (A) x2 (C) 

4 (B)  5 (D)  9 (C)  3 (A)  

      Table 2.2 

The estimated parameters of normal populated observations are 5.8571 and 8.5934. The estimated 

values of vector  of parameters mean and variances are [(3.5535, 0.6138), (1.9196, 2.1483), (-0.5178, 2.8644), 

(2.2321, 2.1483), (-0.0803, 2.1483), (0.1696, 2.8644), (2.4821, 2.1483), (-0.3303, 2.1483), (1.2321,  2.8644), 

(0.7321, 2.1483), (0.4196, 2.1483), (4.2321, 2.8644), (-1.8303, 2.1483)]. The precision follows Gamma 

distribution with parameters 6.5 and 0.0179. Estimate parameter  using Win BUG software, by generating a 

large sample from normal, as [2.453, 1.606, -0.2539, 1.702, -0.0956, 0.0775, 2.121, 0.1747, 1.046, 0.5138, 

0.475, 3.728, -1.146]′. The estimated values for missing responses are 6.0046, 8.929. 

 

EXAMPLE 2.3: Consider the data presented in Table 2.1 obtained through 25 plots can be arranged in two way 

blocking with five rows and five columns for testing five treatments with seven missing values. 
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(D) 376 (E) 371 (C)    x1 (B) 356 (A) 335 

(B) 316 (D) 338 (E) 336 (A) 356 (C)   x2 

(C)   x3 (A) 326 (B) 335 (D)  x4 (E) 330 

(E) 317 (B)   x5 (A) 330 (C) 327 (D) 336 

(A) 321 (C) 332 (D)   x6 (E)   x7 (B) 306 

     Table 2.1 

The estimated parameters of normal populated observations are 335.7778 and 340.3007. The mean and 

variances of estimated vector  of parameters values are: [(228.1523,18.90559), (67.3771,85.07518), (39.3704, 

85.07518), (47.0638, 113.4336), (38.8171, 85.07518), (40.5238, 113.4336), (39.2438, 85.07518), (40.683, 

113.4336), (51.5971, 113.4336), (65.0571, 85.07518), (31.5704, 85.07518), (14.1866, 113.4336), (4.6466, 

85.07518), (-0.266, 340.3007), (37.8266, 170.1504), (22.6666, 113.4336)]. The precision follows Gamma 

distribution with parameters 8.5 and 0.00034. Estimate parameter  using WinBUG software, by generating a 

large sample from normal: (228.1, 67.37, 39.37, 47.06, 38.82, 40.52, 39.24, 40.68, 51.6, 65.06, 31.57, 14.19, 

4.645, -0.2663, 37.83, 22.67)′. The estimated missing responses obtained using R software are (346.8037, 

298.7737, 314.1337, 378.05, 312.245, 309.0337, 358.05). 

 

III. REMARKS ON ESTIMATED PARAMETERS AND MISSING VALUES 

The Bayes procedure for estimating missing values in LSD is compared with least square approach and 

made some remarks and are presented below.  

1. It can be observed that the Least square and Bayes estimated values for the parameters are nearly same due 

to the normality. It can be noted that the least squares and Maximum likelihood estimates for missing values 

are same. 

2. It does not provide any formulae to estimate missing value even in case of single missing observation and it 

is ideal for many missing values when data is small or large. 

3. Bayes approach is complicated when compared with least squares approach because it is a simulating 

procedure and involves distribution for generation of samples and is difficult to solve manually. 

4. The limit for number of missing values belong to a treatment is (0, v-1) and the limit for number of missing 

values belong to each row or column is also same. 

5. As the number of missing values is increasing the efficiency will decrease. The error sum of squares in case 

of missing observations is least when compared with original data.  
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